Developing and analysing novel tools to study endogenous WNT signalling in mice

van de Moosdijk, A.A.A.

Publication date
2021

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Addendum
Summary

The adult human body is built out of an estimated 30 trillion cells. All of these started out as a single cell, that had the potential to grow into a whole organism. This single cell, the fertilized oocyte, shows huge potential to turn into different cell types, but needs directions to know what to build. How does this work? This is where DNA comes in. DNA is present in all cells, and it is the molecule on which the genetic code is stored. It serves as a blueprint of the building plans for the body.

Though just having a blueprint by itself is not enough: for cells to organize themselves into a functional body with specialized cells and tissues, they need to be able to work together. To achieve this, cells need to communicate. To this end, cells have multiple networks of proteins inside them that can sense what is happening on the outside and communicate these outside signals towards the inside of the cell. They do so via a chain of protein-protein interactions going from the cells surroundings towards the DNA in the centre of the cell, the nucleus. You can imagine this as a bucket of water passed down a line of people from a water source towards a burning house, with the water being the signal, the people being the proteins, and the burning house representing the nucleus of the cell where the DNA is located. So, an outside signal ultimately reaches the DNA. In response, the cell typically reacts by activating or inactivating specific genes, which are specific segments of DNA. One gene contains the instructions (a sort of recipe) to make one specific protein. Thus, when genes get activated, novel proteins can be made, and the cell can adjust its behaviour. We call the protein networks that are responsible for passing down the signals “signalling pathways”.

One signalling pathway that is essential for communication during embryonic development and later in keeping the body balanced and healthy (a state termed “homeostasis”), is called the WNT signalling pathway. It is found and studied throughout the animal kingdom: from fly to frog, and from fish to mice and humans. One of the functions of the WNT signalling pathway is to balance two important processes in cells: cell division (“proliferation”) and cell specialization (“differentiation”). By correctly balancing these, the body will have enough cells – not too few or too many – and those cells will be of the right type, doing their right function. If any of these processes get disrupted, this can lead to diseases. The most prominent example is cancer, in which cell division gets out of control.

This WNT signalling pathway is very complex: both the mouse and human DNA contains 19 different genes encoding 19 different WNT proteins. Different cell types in the body express different sets of WNT genes. To add to that, dozens of other proteins are involved in the WNT signalling pathway. They interact with the WNT
proteins during the receiving or transmission of signals in the cell. Because of this complexity, after nearly 40 years of research on this pathway, there are still major gaps in our knowledge of the exact interactions happening in the cell when a WNT protein comes by on the outside.

In this thesis, we have developed novel experimental tools to help visualize and track how WNT signalling controls development and homeostasis, and what mechanisms and interactions happen in cells that receive WNT signals.

Tissues are complex 3D environments, consisting of different cell types that all have their specialized function. Breast tissue is no exception: it contains fat cells, cells forming the milk ducts, the milk glands and all kinds of support cell types as well. We know that WNT signalling is important for the development and homeostasis of breast tissue, but we also know that changes in WNT gene expression are difficult to measure in all of these different cell types, since they are often subtle. Therefore, very sensitive techniques are needed to detect these subtle changes. Since we cannot directly study these processes in humans, we make use of the mouse as mammalian model organism. In chapter 2, we use a technique called qRT-PCR for studying subtle gene expression changes during different developmental stages of the breast (also called mammary gland). To accurately quantify the subtle gene expression changes that occur during tissue development, normalization of the data is required using so-called reference genes. However, it turned out that the traditionally used ones were not sufficient. We therefore used large published gene expression datasets to identify novel reference genes and tested and validated these for qRT-PCR studies of the developing mouse mammary gland. Using the new reference genes Prdx1, Phf7 and Ctbp1, we are able to more reliably detect subtle WNT gene changes between different mammary gland developmental timepoints.

The mouse mammary gland grows out during puberty, but in the adult the tissue remains remarkably dynamic. Like in every other tissue, maintenance is an active process where new cells replace old or damaged cells. On top of that, in the mammary gland, every reproductive cycle, the ducts meant to transport milk prepare themselves by building extra side ducts in the case a pregnancy happens. When that doesn’t occur, they regress again. The same thing happens during the menstrual cycle in humans, but in mice this cycle is only 4-5 days, so you can imagine this needs a lot of controlled cell growth. Specialized cells, called mammary stem cells, are responsible for producing the cells forming these ducts.

We want to know where these stem cells are located and how exactly they contribute to cell turnover and homeostasis of the mammary gland tissue. In chapter 3 we describe a method to carry out such an investigation in intact mouse mammary glands. The method is called lineage tracing, and it allows us to label cells and follow exactly where they are and what their line of progeny is (hence the term
lineage). We discuss the pros and cons of two different genetic labelling techniques to perform lineage tracing of mammary stem cells: one using CreERT2/LoxP, the other rtTA/TeO-Cre/LoxP and point out the critical steps in designing and executing such experiments.

Lineage tracing is possible via the use of genetically engineered mouse models. One mouse must carry a so-called “driver gene” as well as a “reporter gene” in the genome. The driver consists of a gene expressed in a specific cell-type (such as a stem cell) and the resulting protein encoded by that gene can in turn switch on the reporter gene, but only when a drug is given to the mouse, allowing us to control at with timepoint we switch on the reporter gene in a stem cell. This process is similar to flicking on a light switch in a dark room, with the difference that once this reporter is switched on, it will be switched on forever and permanently label the cell. Moreover, when the cell divides all daughter cells inherit it. In this way, we can track which cells are the progeny of the stem cell that was initially labelled. The label often used is a fluorescent protein. With the help of microscopes, we can literally make the cells carrying fluorescent proteins light up and visualize where they are in a tissue.

Several lineage tracing mouse models exist. However, we noticed that the current driver lines were not perfect for studying stem cells in the mammary gland. Therefore, in chapter 4 we describe the generation of a novel genetic mouse model (its full name being Axin2P2A-rtTA3-T2A-3xNLS-SGFP2) that has a double function: it serves as a driver line for lineage tracing, but also as a live fluorescent reporter for WNT-responsive stem cells (most stem cells found in adult tissues are receiving WNT signals, we call those cells “WNT-responsive”). This double function allows us to visualize the current stem cells (they will be labelled with a live, bright green fluorescent reporter) and at the same time visualize their lineage (once we cross this driver to a suitable reporter mouse line). This double function was not available yet for the WNT signalling target gene $Axin2$, which is expressed in most adult stem cells responding to WNT. We show that this novel mouse model faithfully reports WNT signalling activity during development and in different tissues, and that we can use it as a proper driver line for lineage tracing as well.

To further improve our lineage tracing toolbox, in chapter 5 we describe the generation and analysis of a novel lineage tracing reporter (named $Rosa26^{PRIME}$). This reporter cannot express just one, but four different fluorescent proteins, allowing more resolution when tracing the lineage of cells because we can distinguish cell lineages carrying different colours (red, cyan and yellow). It also expresses a far-red fluorescent protein in all non-labelled cells, allowing easy visualization of whole tissues. This novel reporter aims to be better and brighter than previously existing mouse models, although we did not yet manage to test this in a living organism ($in vivo$).
Creating genetically engineered mouse models is a long and challenging process. But recently, the emergence of the CRISPR/Cas9 genome editing technique promised that this could become easier. In chapter 6 we therefore set out to create a toolbox for CRISPR/Cas9 genome editing, first starting in human and mouse cell lines and ultimately in mice. We focused on a very important protein in the WNT signalling pathway that is central to most of the signalling events: beta-catenin (with the gene name being \textit{Ctnnb1}). We show that we can successfully edit the \textit{Ctnnb1} gene in cells: we can not only cut it up (an destroy it), but we can also modify it with high precision, so that it becomes labelled with a fluorescent protein. After that, we optimized CRISPR/Cas9 genome editing to specifically insert a gene encoding for a fluorescent protein into the \textit{Ctnnb1} gene in mouse embryos, creating precision engineered knock-in mice. The resulting mice carry a fusion of the fluorescent protein with beta-catenin. This allows us to image the localization of this protein in cells and tissues and study what it is doing in live cells for the first time.

Overall, this thesis describes the generation of several novel tools to study WNT signalling at physiological levels in mice. Together they provide a strong basis for future generations of scientists to unravel the mechanisms of WNT signalling and its impact on development, tissue homeostasis and disease.
Samenvatting

Het menselijk lichaam is opgebouwd uit naar schatting 30 biljoen cellen. Deze zijn allen begonnen als één enkele cel, met de potentie om uit te groeien tot een compleet organisme. Wij willen beter in beeld krijgen hoe de processen die dit sturen werken.

De enkele cel waarmee het begint, is een bevruchte eicel. Deze bevat de potentie om in allerlei verschillende celtypen te veranderen. Maar hoe weet die cel wat te doen? Hier komt DNA om de hoek kijken. DNA is aanwezig in alle cellen en als molecul waarop de genetische code is opgeslagen. Het dient als een bouwtekening voor het lichaam, waar alle plannen staan opgeslagen.

Maar alleen een bouwtekening hebben is niet genoeg: als cellen zich samen organiseren tot een compleet lichaam, is samenwerking essentieel. Dus moeten ze communiceren. Om dit te doen, zijn er binnen cellen meerdere netwerken van eiwitten aanwezig, die kunnen voelen wat er aan de buitenkant gebeurt en allerlei signalen van buiten naar de binnenkant van de cel brengen. Dit gaat via een keten van eiwit, naar eiwit, naar een volgend eiwit enzovoorts. Je kunt je dit voorstellen als een emmer water die door een rij mensen van een kraan (het signaal) naar een brandend huis wordt gebracht, waarbij de mensen de eiwitten zijn, en het brandende huis de kern van de cel, waar het DNA zich bevindt. Zo bereikt een signaal van buitenaf het DNA via het (in dit geval vrij simpele en directe) netwerk van eiwitten.

De reactie die de cel dan doet, is vaak het activeren of deactiveren van specifieke genen op het DNA. Deze genen bevatten een soort recept voor het maken van eiwitten. Wanneer een gen wordt geactiveerd, kunnen dus nieuwe eiwitten worden gemaakt. We noemen de eiwitnetwerken die de signalen doorgeven "signaleringsroutes".

Een signaleringsroute die essentieel is voor communicatie tijdens de ontwikkeling en later om het lichaam in evenwicht en gezond te houden (een toestand die "homeostase" wordt genoemd), wordt de WNT-signaling of ook wel WNT pathway genoemd (spreek WNT uit als “wint”). De WNT pathway wordt overal in het dierenrijk gevonden en ook bestudeerd: van vlieg tot kikker, en van vis tot muis en mens. WNT-signaling zorgt voor evenwicht in twee belangrijke processen: celdeling (“proliferatie”) en cel specialisatie (“differentiatie”). Door deze in balans te houden, zal het lichaam voldoende cellen hebben - niet te weinig of te veel - en die cellen zullen van het juiste type zijn en hun juiste functie vervullen, waardoor het lichaam correct werkt. Als een van deze processen wordt verstoord, kan dit tot ziekte leiden. Een heel duidelijk voorbeeld hierbij is kanker, waarbij de celdeling volledig uit de hand loopt.
Addendum

WNT signalering is erg complex: zowel de muis als wij hebben maar liefst 19 verschillende genen die coderen voor WNT-eiwitten. Verschillende celtypen in het lichaam brengen verschillende sets WNT-genen tot expressie. Daarnaast zijn er nog tientallen andere eiwitten bij de signalering betrokken tijdens het ontvangen of verzenden van signalen in de cel als gevolg van WNT-eiwitten. Je kunt je dit voorstellen als niet één rij mensen die een emmertje water doorgeeft naar een brand, maar de rij die verderop opsplitst of juist samenkomt, terwijl ook de politiechef een bericht door laat geven voor de brandweer bij het huis, de ambulance aan de andere kant arriveert, de pers in de weg loopt en de buren belangrijke informatie hebben. Vanwege deze complexiteit hebben we na bijna 40 jaar onderzoek aan WNT-signalering nog steeds grote vraagtekens over de exacte interacties die plaatsvinden in verschillende cellen wanneer ze WNT-eiwitten tegenkomen.

In dit proefschrift hebben we nieuwe experimentele tools ontwikkeld om beter te kunnen visualiseren en volgen hoe WNT-signalering de ontwikkeling en homeostase van cellen en weefsels controleert, en welke eiwit interacties en daaropvolgende genreacties plaatsvinden in cellen die WNT-signalen ontvangen.

Ieder weefsel bestaat uit een complexe 3D-omgeving, opgebouwd uit verschillende celtypen die allemaal hun eigen gespecialiseerde functie hebben. Zo ook borstweefsel: het bevat vetcellen, cellen die de melkkanalen vormen, de melkklieren en ook allerlei soorten ondersteunende celtypen. We weten dat WNT-signalering belangrijk is voor de ontwikkeling en homeostase van borstweefsel, maar we weten ook dat veranderingen in WNT-genexpressie (hoe hard een gen aan staat, of juist uit) moeilijk te vinden zijn bij al deze verschillende celtypen, omdat de veranderingen vaak subtiel van aard zijn. Gevoelige technieken zijn daarom onmisbaar om deze subtiele veranderingen te vinden. Omdat dit bij mensen lastig te bestuderen is, gebruiken we de muis als modelorganisme.

In hoofdstuk 2 gebruiken we een techniek genaamd qRT-PCR voor het bestuderen van subtiele veranderingen in genexpressie tijdens verschillende ontwikkelingsstadia van de borst (ook wel mammary gland genoemd). Om de veranderingen in genexpressie goed te kunnen kwantificeren, vereist dit normalisatie van de data over zogenaamde referentiegenen. Het bleek echter dat de traditioneel gebruikte referentiegenen niet zo stabiel waren als nodig over verschillende stadia van ontwikkeling. Daarom zijn we op zoek gegaan naar nieuwe. Door te zoeken naar stabiele genen in gepubliceerde genexpressie-datasets, hebben we nieuwe referentiegenen weten te vinden. Vervolgens hebben we deze getest en gevalideerd voor qRT-PCR-experimenten van de mammary gland. Met behulp van de nieuwe referentiegenen Prdx1, Phf7 en Ctbp1 zijn we in staat om subtiele veranderingen in de expressie van WNT-genen te detecteren tussen verschillende ontwikkelingsstadia van de borstklier.
Borstweefsel groeit tijdens de puberteit uit, maar ook in een volwassen situatie zijn de cellen in het weefsel onttrettend actief. Elke voortplantingscyclus bereiden de melkkanalen zich voor op een mogelijke zwangerschap door zich uit te breiden. Komt die niet, verdwijnen de kanalen weer. Bij de muis duur zo’n cyclus slechts 4-5 dagen. Je kunt je dus voorstellen dat de celgroei voor deze ontwikkelingen goed gecontroleerd moet worden. Hiervoor zijn speciale cellen, genaamd borststamcellen, die heel veel celltypes in de borst kunnen maken. Wij willen weten waar die stamcellen zich bevinden en hoe ze precies bijdragen aan de opbouw van het borstklierweefsel, zowel tijdens de ontwikkeling en gedurende de cycli. In hoofdstuk 3 beschrijven we een methode om dit te volgen in intacte borstklieren van muizen genaamd lineage tracing. Lineage tracing stelt ons in staat cellen te labelen, waardoor we ze kunnen vinden in het weefsel, en ook hun dochtercellen kunnen volgen na celdeling. In het hoofdstuk bespreken we de voor- en nadelen van twee verschillende genetische technieken om borststamcellen te kunnen volgen.

Bij lineage tracing wordt gebruik gemaakt van genetisch gemanipuleerde muismodellen, waarbij een muis zowel een zogenaamd "driver-gen" als een "reportergen" in het genoom heeft. Die driver zorgt er voor dat de reporter aan of uit gaat. Wij kunnen de schakelaar aanzetten door de muis een stofje toe te dienen. De reporter bestaat uit een fluorescente eiwit, dat zichtbaar gemaakt kan worden onder een fluorescerende microscoop. Op het moment dat de schakelaar dus aan wordt gezet, lichten de stamcellen op. Omdat dit een permanente "aan" schakelaar betreft (er is geen "uit"), zal de cel de fluorescentie doorgeven aan dochtercellen wanneer zij deelt. Op deze manier is zowel de stamcel als het nageslacht van de stamcel te volgen in een weefsel.

Er zijn al verschillende driver en reporter muislijnen beschikbaar voor lineage tracing. We merkten echter dat de huidige drivers niet echt geschikt waren om stemcellen in de borstklier te bestuderen. Daarom beschrijven we in hoofdstuk 4 een nieuw genetisch muismodel (met de naam Axin2P2A-rtTA3-T2A-3xNLS-SGFP2) waar een dubbele functie in is gebouwd: het dient als driver voor lineage tracing, maar laat ook de stamcellen die WNT-signalen ontvangen direct oplichten via een groen fluorescerend eiwit. Deze dubbele functie stelt ons in staat om cellen die WNT signalen ontvangen door te laten lichten, en tegelijkertijd hun afkomst te volgen lineage tracing. Deze dubbele functie was nog niet beschikbaar voor stemcellen die Axin2 tot expressie brengen, een belangrijk gen dat reageert op WNT signalen in de meeste weefels. We laten zien dat dit nieuwe Axin2 muismodel op een juiste manier WNT signalering rapporteert, en dat we het ook kunnen gebruiken als een driver voor lineage tracing.

Vervolgens hebben we ook een vernieuwde driver lijn gemaakt, zoals beschreven in hoofdstuk 5. Hier ontwikkelen en analyseren we een nieuwe genetische reporter
(genaamd $Rosa_{26}^{PRIME}$). We combineren gewenste eigenschappen van verschillende reeds bestaande modellen met de nieuwst fluorescente eiwitten. Deze reporter bevat de optie zodat één van drie verschillende fluorescerende eiwitten (rood, cyaan en geel) tot expressie komt na het aanzetten van de schakelaar. Hierdoor kunnen we stamcellen die vlak bij elkaar zitten beter uit elkaar houden, omdat ze verschillende kleuren kunnen krijgen. De reporter staat voor het aanzetten van de schakelaar in alle cellen van de muis reeds aan met een ver-rood fluorescerend eiwit. Dit zorgt ervoor dat het weefsel makkelijk te bekijken is onder de microscoop.

Het maken van genetisch gemanipuleerde muismodellen is een lang en uitdagend proces. De recent ontwikkelde CRISPR/Cas9 genoom editing techniek belooft dat dit sneller kan. Om dat te testen hebben we in hoofdstuk 6 daarom getest wat we kunnen met CRISPR/Cas9. Daarbij beginnend in menselijke en muis cellijnen. We zijn begonnen om het genoom te veranderen voor een gen dat centraal staat in WNT signalering: het gen voor beta-catenine (genaamd $Ctnnb1$). Met hulp van CRISPR/Cas9 kunnen we $Ctnnb1$ in cellen aanpassen, zoals een kleine mutatie aanbrengen waardoor het resulterende eiwit altijd actief is, of zelfs een heel gen voor een fluorescerend eiwit inbouwen waardoor een fusie ontstaat van dat fluorescente eiwit en beta-catenine. Vervolgens zijn we deze techniek ook gaan optimaliseren in muizen embryo’s, zodat we een genetisch gemodificeerde muis kunnen maken. Na verschillende pogingen hebben we een methode gevonden die efficiënt is, waardoor gemiddeld 1 op de 8 muizen de door ons ontworpen genetische modificatie draagt. Op deze manier hebben we muizen gemaakt die een fusie-eiwit dragen van een fluorescerende beta-catenine. Hierdoor kunnen we onder de microscoop precies volgen hoeveel er van is in verschillende cellen, en zo leren wat het daar doet.

Dit proefschrift beschrijft de ontwikkeling van verschillende nieuwe gereedschappen (“tools”) om WNT signalering in het modelorganisme de muis te meten, visualiseren, en volgen op het daadwerkelijke niveau dat het normaal ook in de cel voorkomt. Samen vormen deze tools een sterke basis voor toekomstige generaties wetenschappers om de mechanismen van WNT signalering te bestuderen, en te ontrafelen wat de precieze rol is van WNT signalering in ontwikkeling, homeostase en ziekte.
PhD portfolio

Conference visits and participation

- European Wnt meeting 2018, Heidelberg Germany
 - Poster presentation
- SILS Research Day 2018, Amsterdam
 - Poster presentation
- Congo Symposium 2018, Amsterdam
 - Talk
- SILS Research Day 2017, Amsterdam
 - Poster presentation + organization
- DSCCR meeting 2017, Utrecht
- European Wnt meeting 2016, Brno Czech Republic
 - Talk + flash talk + poster presentation
- OOA Retreat 2016, Renesse
 - Poster presentation
- Dutch Society for Cell Biology (DSCB) meeting 2016, Amsterdam
- ENBDC workshop 2016, Weggis Switzerland
 - Poster presentation + session chair
- SILS Seminar April 2016
 - Talk
- Dutch Stem cell (DSCCR) meeting 2016, Utrecht
- OOA Retreat 2015, Renesse
 - Talk
- Cancer Genomics Meeting 2015, Amsterdam
- SILS Research Day 2015, Amsterdam
 - Poster presentation + organization
- Workshop on Innovative Mouse Models 2015, Leiden
- ENBDC workshop 2015, Weggis Switzerland
 - Talk + poster presentation
- Cancer Genomics Meeting 2014, Amsterdam
- SILS genome Editing Symposium 2014, Amsterdam
 - Talk
- SILS Research Day 2014, Amsterdam
 - Poster presentation + flash talk + organization
Grants and prizes
- **Nikon poster prize** at European Wnt meeting September 2018 in Heidelberg, Germany.
- **Travel grant** from the Genootschap ter Bevordering van de Natuur-, Genees- en Heelkunde for participating in the ENBDC Workshop “Methods in Mammary Gland Biology and Breast Cancer” May 2016 in Weggis, Switzerland.

Teaching
- Supervision of BSc internship: Britt van der Swaan (BSc project Biomedical Sciences)
- Supervision of 3 MSc internships: Saskia de Man (Cell Biology and Advanced Microscopy track), Bastiaan van den Berg (Neurobiology track) and Lotte Hofstee (Cell Biology and Advanced Microscopy track)
- Supervision of 2 MSc literature reviews: Rokus van den Dool (Oncology track) and Yike Huang (Biomolecular Sciences, Vrije Universiteit Amsterdam)
- MSc course Advanced Microscopy (2014, 2015, 2016 and 2017, wetlab practical, tutorials and mini-projects)
- BSc course Frontiers in Medical Biology (2016 and 2017, wetlab practical)
- BSc course Moleculaire Technieken (2014, wetlab practical)
- MSc course Clinical Cell Biology (2014, mini projects)

Courses taken
- Mastering your PhD (FNWI, UvA)
- Teaching skills for PhD candidates (FNWI, UvA)
- Online course “Scientific Writing” (Stanford University)
- Course “How to write high impact papers and what to do when your manuscript is rejected” (OOA Graduate School)
- Course “Transgenesis, gene targeting and in vivo imaging” (OOA Graduate School)
- Workshop on genetically engineered mouse models (Jackson Laboratories)
- Workshop “Scientific Data Visualization” (OOA Graduate School)

Other
- Chair of the SILS PhD/PD Council 2014 - 2017, 2018 as active member.
- Guest lecture on CRISPR/Cas9 genome editing at Spinoza Lyceum Amsterdam, December 2016.
List of publications

* These authors contributed equally
Addendum

Curriculum vitae

Anoeska van de Moosdijk was born on 27 April 1989 in Fijnaart, the Netherlands. After obtaining her Gymnasium diploma at the Norbertuscollege in Roosendaal in 2007, she studied Biology at Utrecht University. She conducted her Bachelor research project in the Developmental Biology group of Prof. Sander van den Heuvel under the supervision of Dr Inge The.

After graduating in 2010, she started the Master programme Cancer Genomics and Developmental Biology at the same university. During this master programme, she performed two research internships. The first internship was under the supervision of Dr Sylvia Boj in the lab of Prof. Hans Clevers at the Hubrecht Institute in Utrecht. Here she characterized the expression pattern of the mammalian adult stem cell markers lgr4 and lgr6 in zebrafish. Her second internship was performed at the lab of Prof. Magdalena Zernicka-Goetz at the Gurdon Institute in Cambridge (UK), under the supervision of Dr Ivan Bedzhov. Here she studied cell fate decisions and morphogenesis during the implantation state of the mouse embryo. She obtained her Master’s degree in 2013.

In March 2014, Anoeska started as a PhD candidate under supervision of Dr Renée van Amerongen and Prof. Dorus Gadella in the section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy at the Swammerdam Institute for Life Sciences at the University of Amsterdam. The results of this research project on developing and analysing novel tools to study endogenous WNT signalling in mice are presented in this thesis.

Since April 2018, Anoeska continued her career in the life sciences as management assistant at the Swammerdam Institute for Life Sciences. In this role she works with the institute management to implement efficient and effective organisation at the institute, and keeping the day-to-day processes running.
Acknowledgements

Eindelijk! Het proefschrift is af. Ik heb er een stukje langer over gedaan dan ik verwacht had, maar wat fijn dat het gelukt is. Een hele hoop mensen hebben daaraan bijgedragen. Daarom een dankwoord. Ik ga ongetwijfeld mensen vergeten; bij deze excuses. Dat je dit leest, betekent dat je een bijdrage hebt geleverd aan het tot stand komen van dit proefschrift. Dus ook jij bedankt.

Ik ga beginnen bij mijn copromotor Renée. Zonder jou was ik dit avontuur nooit begonnen, want jij bent degene die mij de kans gaf als eerste PhD in de groep te starten. Dankjewel voor dat vertrouwen. Ik heb ontzettend veel van je geleerd op zowel wetenschappelijk als persoonlijk vlak en heb veel respect voor hoe je als beginnende groepsleider je weg hebt gevonden doorheen alles wat op je afkwam. Van het begeleiden van een team jonge onderzoekers en studenten met alle uitdagingen van dien, een toch-niet-verhuizing, speeddates met kunstenaars, tot het verkrijgen van een pakketje via World Courier. Desondanks was je altijd bereikbaar (oké, misschien niet heel vroeg in de ochtend dan…) en immer bereid te helpen met troubleshooten als experimenten niet leken te werken. Je passie voor het onderzoek werkt inspirerend en wanneer ik het even niet meer zag, wist je me daardoor steeds weer op weg te helpen. Grote dank daarvoor!

Vervolgens wil ik mijn promotor Dorus bedanken dat ik mijn promotieonderzoek in Molecular Cytology kon doen. Er ging een nieuwe, fluorescente, wereld voor me open. Daarnaast was het ook fijn dat iemand het kon waarderen wanneer ik enthousiast meldde dat ik een purperreiger had gezien vanuit de trein.

And of course, thanks to the lab colleagues. Daphne, Lindsay, Marieke, Nathalie, Stephanie: thanks for the amazing fun in the lab, the drinks, the Backstreet Boys, bierpoffertjes, trying to teach me crochet and all your support on both the science and personal side. My time in the lab wouldn’t have been complete without you. En Daphne, bij deze op schrift: sorry dat ik je arm heb gebroken. Ik ga sindsdien niet meer achter op de fiets.

Followed by a big thank you for all Wntlab members. Dan ga ik starten met Saskia. Je was er in mijn 1e jaar bij als student, waar je een enorm waardevolle bijdrage leverde aan het van de grond krijgen van het CRISPR/CTNNB1 project. Nog belangrijker ben je een hele fijne persoon om mee samen te werken, wetenschappelijk gezien én als leuke collega. Ik was dan ook ontzettend blij dat je terugkeerde om je PhD te doen. Je bent zelf ook al bijna klaar, super goed bezig! Ook
Addendum

dankjewel dat je aan mijn zijde wilt staan als paranimf. Nika, ik denk dat wij het langste samen op dit avontuur zijn geweest. Je was een verbindende stuk in het lab dankzij je luisterende oor, creatieve ideeën en voorstellen voor uitjes, en ik ben blij dat je erbij was. Ook dank voor de opbeurende woorden om de laatste loodjes te volbrengen. We hebben het gehaald! Yorick bedankt dat je het aandurfde om als eerste man in ons lab te komen werken. Je hebt een relaxte kijk op dingen en weet goede ideeën op te brengen, wat goed van pas komt nu je een aantal projecten (of meer letterlijk: muizen) over hebt genomen. Ik denk dat de experimenten bij jou in goede handen zijn. Tanne bedankt voor de energie die je naar het lab brengt. Eerst als student en later (jeej!) als gewaardeerd collega. Katrin: thanks for all your honest advice on science and everything else, and for getting me hooked on cappuccino (even though you don’t even like it). Larissa thanks for your advice and nice discussions and for letting me babysit the kittens when I needed some fluffiness (so cute!).

Bedankt voor alle studenten die hebben bijgedragen aan de experimenten, dit proefschrift en zeker ook de goede sfeer in het lab: Bastiaan, Lotte en Britt (en Saskia natuurlijk, maar je staat hierboven al). Ik hoop dat jullie minstens zo veel geleerd hebben van mij als ik van jullie. Dankjewel voor jullie harde werk en heel veel succes in jullie verdere carrière gewenst.

I want to thank all past & present MolCyto/Wntlab colleagues – including Kobus, Linda, Eelco, Ada, Christiaan, Anna P, Marten, Laura, Anna C, Amber, Ronald, Orry, Sergei, Eike, Franka, Janine, Ingeborg and Thijs – for the cake, advice (from the right microscope buttons to cake recipes), BBQs, borrels in the Polder and of course the legendary Sinterklaas game. And did I mention the cake? Een extra dankjewel voor Joachim, je bent een wandelende encyclopedie over alles met kloneren, FPs en ‘dataviz’. En Mark super bedankt voor het eindeloos geduldig (opnieuw) uitleggen hoe FCS nou ook weer werkte.

Ik wil ook graag iedereen bedanken die betrokken is geweest bij de muizen. In eerste instantie Lona: ontzettend bedankt voor je hulp in het voor elkaar krijgen van de CRISPR en PRIME targeting. Wat begon als ‘gaan we even doen want de CRISPR-constructen werken in cellen’, bleek 2,5 jaar gepuzzel tot een muis, en jouw inzet en doorzettingsvermogen zijn daar ontzettend belangrijk voor geweest. Ook bij de PRIME heb je heel veel bijgedragen, ik weet niet of het gelukt was zonder jou. En natuurlijk ook dankjewel Ivo. Op onze eerste kennismaking waarschuwde je me dat niemand een muis zou moeten maken tijdens hun PhD en ik vrees dat je gelijk had. Maar we hebben toch die mooie nieuwe lijnen kunnen maken dankzij je advies en hulp. Ik vind het hartstikke leuk dat we onze samenwerking op een ander manier voort hebben kunnen zetten bij SILS. Ook dank aan iedereen bij het NKI die betrokken is geweest bij injecties, fok, of verzenden van de muizen, waaronder Fina, Tanya en Rahmen.
Acknowledgements

Chris en Rob: bedankt voor de goede zorg voor de muizen en de fijne gesprekken.

Ook bij deze grote dank en een ode aan de muizen die bijgedragen hebben aan dit proefschrift. Er is veel mogelijk op het gebied van alternatieven voor dierproeven, maar om complexe processen te doorgroden hebben we nog steeds jullie hulp nodig.

I also want to thank all fellow (past) members of the SILS PhD/PD Council. Especially Till, Ruy, Ricardo, Marc, Edward, Jihed, Gerrald, Diana and Elisa. Thank you for the fun, it was great having a group of peers to share (non-)scientific experiences with while organizing opportunities to drink beer. It was an honour to serve as walking reminder (also known as “chairperson”) for many of you.

Via the council and borrels I met a lot of SILS PhDs, and even got a bit adopted by the MNS group. That made me feel so at home at SILS that I’m still around, though in a different position. Thank you for all the nice SILS colleagues along the way! I hope we can have a beer in the common room soon again.

En dank aan de mensen die geholpen hebben het fundament te leggen gedurende mijn studie. Sander, wat hebben wij een hoop practica en projecten samen voor elkaar gekregen bij biologie. Ik heb nog steeds de neiging om je een ‘tot morgen’ te wensen als ik je weer eens zie. En ik moet ze noemen: Wim en Adri, docenten van het vak ontwikkelingsbiologie, dank voor het enthousiasme waarmee jullie de wondere wereld van dit prachtige vakgebied introduceerden.

Onderzoek doe je niet alleen. Dat geldt in het lab, maar zeker ook daarbuiten. Voor dat laatste kon ik terecht bij een hele hoop mens...
Delegatie Tullepetaonestad en omstreken. Jullie zijn er al heel lang bij. Vanaf de basisschool mee (Linda), het Norbertus (Maartje & Vera), vanuit de Heks (Jorrit, Erik). Of een beetje later aangeschoven om de groep compleet te maken (Kiria, Martijn en Roy). Het betekent veel voor me dat ik altijd bij jullie terecht kan, en mede daardoor wil ik ook jullie bedanken. Het is fijn dat jullie mijn achtergrond kennen en snappen, die best ver kan staan van de universiteit. Jullie zijn de Brabantse basis waar ik me thuis bij voel. Maartje: dank voor de support postpaketjes als ik het niet meer zag zitten, de onvergetelijke trip om (o.a.) Erik & Kiria te bezoeken in Peru en de avondjes eten/borrelen die steevast compleet uit de hand liepen. Ik zal niet vergeten dat we een filmpjes pakten, één drankje deden (there’s no such thing), de trein misten en diep in de nacht een taxi naar huis nodig hadden. Waar ik na een paar uur slaap mezelf weer uit bed moest slepen om muizen te gaan clippen, om er vervolgens achter te komen dat die krengen echt heel snel zijn als je een kater hebt. Toen ik uren later thuiskwam lagen jij en jouw kater nog steeds in mijn bed, waarbij je niets anders gegeten had dan wat popcorn. Ik weet niet wie zich ellendiger voelde haha! Zo’n avontuur laadde me altijd op om weer aan de slag te gaan. Vera: vanuit je party-roots met de leuke zaterdagavonden, heb je je onttop tot een klankbord van de club. Ik ben het meestal onzichtig eens met je goede adviezen en onderbouwde meningen, en heb het gevoel dat ik met alles bij jou en Jorrit terecht kan. Ook ’s nachts als je weer eens wakker wordt gehouden door Benthe of Meyra… Ook dank voor je hulp met de originele cover. En dan Linda. Wat ben ik trots op wat je allemaal voor elkaar hebt gekregen de afgelopen jaren (en wat aan het doen bent met project Gastel!). Andersom ben je ook beretrots op mij, en steekt dat niet onder stoelen of banken. Thanks voor de positieve support en dat je altijd in me geloof heb. Ik had het nodig toen ik het zelf niet meer deed ;)

Dit begint een duur proefschrift te worden met zo’n lang dankwoord, maar ik heb het geluk heel veel fijne vrienden te hebben. En daar valt deze bende Saboteurs zeker onder. Wat ooit begon bij de Utrechtse Biologen Club en drankjes in ’t Oude Pothuys, leidde via allerlei wilde verhalen over pino’s en steeds duurdere speciaalbiertjes naar een vriendenclub waar moties van wantrouwen en messen in de rug de normaalse zaak van de wereld zijn. Koen, Edwin, Niek, Rascha, Sven en Mandy ofwel de Duvels: jullie weten allemaal als geen ander van dichtbij wat het doen van een PhD betekent. En hebben daar allemaal je eigen weg in gevonden (met eervolle vermelding voor Niek, die als enige verstandig genoeg was om er niet aan te beginnen). Met enige schaamte van mijn kant is het toch gebeurd: ik heb het record langste project. En jullie hebben helemaal gelijk dat het te lang duurde. Maar hé, ik heb het gedaan. En daar moet ik jullie enorm voor bedanken. Bedankt voor het meedenken, interesse tonen, de eerlijke tips om schrijven met een baan te combineren, ongevraagd advies en voorbeeld in hoeveel dagen je prima een
introductie én discussie kunt schrijven. En dat allemaal terwijl geen van jullie een idee had hoe je een muis moest bouwen. Het leek me niet helemaal praktisch om 7 paranimfen te vragen, dus Sven bedankt dat je mij wilt ondersteunen bij het voltooien van het laatste loodje. Ik kan niet wachten tot we weer vaker een live Duvelavond mogen houden, want ik ben eraan toe.

En dan natuurlijk de familie. **Charlie & Nikki:** ook al zien we elkaar eigenlijk soms te weinig, het zit altijd goed als het zo ver is. Bedankt voor het aanhoren van mijn verhalen door de jaren. Ook dank aan **Annemiek, Michael, Joost en Louise.** Jullie hebben enkel de beruchte schrijffase aan moeten horen. Dank voor de interesse en het mee verwachten dat het af zou komen.

En dan Jan en Toos, of eigenlijk gewoon *spa en ‘sma.* Dankjewel voor alles. Jullie hebben mij een basis gegeven waar ik op kon bouwen. Ook al hadden jullie geen idee wat ik nou precies aan het doen was op het lab, dat maakte jullie niet minder trots erop. Jullie hebben me altijd tijd het gevoel gegeven dat jullie me 100% steunden met mijn plannen. Als die te ambitieus bleken, wisten jullie me nuchter te adviseren dat je nu eenmaal niet beter dan je best kunt doen. Ik vond het fijn dat de deur altijd open stond en ik welkom was als ik behoefte had er tussenuit te gaan. Want in Oud Gastel brandt nog licht.

Bart: Eigenlijk heb je de leukste jaren van mijn PhD gemist, want ik leerde je kennen toen ik al fulltime een ‘echte baan’ had, klaar was met de experimenten en ontzettend tegen het schrijfwerk op hikte, of er überhaupt niet over na wilde denken. Dat schrikte je gelukkig niet af (misschien hielp het universum een handje met het Noorderlicht boven dat bevroren meer), en na maanden stilstand wist jij mij zover te krijgen dat ik – aan jouw keukentafel – het schrijven weer op ging pakken. Om vervolgens in dat veel te langzame proces iedere keer als ik het weer niet zag zitten me achter die laptop te zetten, een bakje koffie toe te schuiven en alle klusjes in huis van me af te nemen. Al helemaal toen we abrupt van ieder een eigen plek, naar 24/7 samen en thuiswerken in mijn woonkamer gingen. Tegen onze verwachting in beviel dat zo goed dat we nu een volledig huis hebben gekocht inclusief kantoorzolder! Nu kom je lekker niet meer van me af... Ik moet je wel waarschuwen dat ik nu eindelijk ook in de weekenden van dat bureau af mag komen, weg weekendrust.

Dankjewel voor de onvoorwaardelijke steun die je me geeft en dat je iedere keer als ik een stukje verder kwam meldde hoe trots je op me was. Zonder jou was het niet gelukt. Al had ik dan wel twee keer zoveel toetjes gehad ;)}
I’m going to take this goal.
I’m going to throw this absurd goal as far over the horizon as I can,
And I’m just going to run at it,
And I’m going to run as hard as I can until my legs pump battery acid,
And then whenever I get there,
I’ll find out I have new horizons.

- Tim Finley, Mongol Derby finisher 2016

This will all make sense when I am older

- Olaf, Frozen 2
Developing and analysing novel tools to study endogenous WNT signalling in mice

“As you go through life, you’ll see there is so much that we don’t understand. And the only thing we know is, things don’t always go the way we planned”

SIMBA - THE LION KING