Combination of the Searches for Pair-Produced Vectorlike Partners of the Third-Generation Quarks at root $\sqrt{s}=13$ TeV with the ATLAS Detector

Aaboud, M.; The ATLAS Collaboration

DOI
10.1103/PhysRevLett.121.211801

Publication date
2018

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Aaboud, M., & The ATLAS Collaboration (2018). Combination of the Searches for Pair-Produced Vectorlike Partners of the Third-Generation Quarks at root $\sqrt{s}=13$ TeV with the ATLAS Detector. Physical Review Letters, 121(21), [211801].
https://doi.org/10.1103/PhysRevLett.121.211801
Combination of the Searches for Pair-Produced Vectorlike Partners of the Third-Generation Quarks at $\sqrt{s} = 13$ TeV with the ATLAS Detector

M. Aaboud et al.
(ATLAS Collaboration)

(Received 9 August 2018; published 20 November 2018)

A combination of the searches for pair-produced vectorlike partners of the top and bottom quarks in various decay channels ($T \rightarrow Zt/Wb/Ht$, $B \rightarrow Zb/Wt/Hb$) is performed using 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. The observed data are found to be in good agreement with the standard model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross section for a range of vectorlike quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vectorlike quarks decay to standard model particles. A singlet $T$ is excluded for masses below 1.31 TeV and a singlet $B$ is excluded for masses below 1.22 TeV. Assuming a weak isospin ($T, B$) doublet and $|V_{Tb}| \ll |V_{ib}|$, $T$ and $B$ masses below 1.37 TeV are excluded.

DOI: 10.1103/PhysRevLett.121.211801

Introduction.—Naturalness arguments [1] suggest there should be a mechanism that cancels out the quadratically divergent contributions to the Higgs boson mass caused by radiative corrections from standard model (SM) particles. Several explanations are proposed in theories beyond the SM. Little Higgs [2,3] and composite Higgs [4,5] models introduce a spontaneously broken global symmetry, with the Higgs boson emerging as a pseudo Nambu-Goldstone boson [6]. Such models predict the existence of vectorlike quarks (VLQs), color-triplet spin-1/2 fermions whose left- and right-handed chiralities transform in the same way under weak isospin [7,8]. In these models, VLQs are expected to couple preferentially to third-generation quarks [7,9] and can have flavor-changing neutral-current decays in addition to charged-current decays. An up-type VLQ $T$ with charge $+2/3$ can decay into $Wb, Zt, or Ht$. Similarly, a down-type quark $B$ with charge $−1/3$ can decay into $Wt, Zb$, or $Hb$. In order to be consistent with results from precision electroweak measurements, the mass-splitting between VLQs belonging to the same SU(2) multiplet is required to be small [10], forbidding cascade decays such as $T \rightarrow WB$. Couplings between the VLQs and the first- and second-generation quarks, although not favored, are not excluded [11,12].

At the Large Hadron Collider (LHC), VLQs with masses below approximately 1 TeV would mainly be pair produced, a process dominated by the strong interaction. The corresponding predicted cross section ranges from 195 to 2.0 fb for quark masses from 800 to 1500 GeV [13] and depends only on the quark mass. Production of single VLQs via the electroweak interaction is also possible, but depends on the strength of the interaction between the new quarks and the weak gauge bosons. Representative Feynman diagrams for $BB$ and $TT$ production and decay are shown in Fig. 1.

The branching ratio ($B$) for each decay mode ($T \rightarrow Wb, Zt, Ht$ and $B \rightarrow Wt, Zb, Hb$) depends on the VLQ mass and weak-isospin quantum numbers, as calculated in Ref. [8]. For a singlet $T$, all three decay modes have sizable branching ratios, while the charged-current decay mode $T \rightarrow Wb$ is absent if $T$ is either in a $(X, T)$ doublet, where $X$ is a VLQ with a charge of $+5/3$, or in a $(T, B)$ doublet with $|V_{Tb}| \ll |V_{ib}|$, where $V_{ij}$ are the elements of a generalized Cabibbo-Kobayashi-Maskawa matrix [8,14,15]. Since the $T$ quark branching ratios are identical in both doublets, no distinction is made between them when referring to the doublet $T$ results. A singlet $B$ will have a sizable branching ratio to all three decay channels, while the branching ratios in the doublet case depend on whether it is in a $(T, B)$ doublet or $(B, Y)$ doublet, where $Y$ is a VLQ with a charge of $−4/3$. For a $(B, Y)$ doublet, only neutral current couplings to SM quarks are allowed at leading order (LO), so the $B \rightarrow Wt$ decay is forbidden. Conversely, for a $(T, B)$ doublet with $|V_{Tb}| \ll |V_{ib}|$, $B \rightarrow Wt$ is the only allowed decay. Therefore, the specific $B$ doublet scenario will be stated when interpreting the results.

Contributing analyses.—Searches for pair-produced VLQ partners of the third-generation quarks have been performed by ATLAS [16–22] and CMS [23–25] at the...
LHC at $\sqrt{s} = 13$ TeV. This Letter presents the full combination of the ATLAS searches using 36.1 fb$^{-1}$ of data collected in 2015 and 2016. The ATLAS detector is described in Ref. [26]. Below is a brief description of each contributing analysis.

$H(b\bar{b})t + X$ [16]: The primary targets of this analysis are $T\bar{T}$ events with at least one VLQ decaying into $Ht$, with $H \rightarrow b\bar{b}$. Events must have at least six jets [27] and either one lepton (electron [28] or muon [29]) or missing transverse momentum [30] $E_T^{\text{miss}} > 200$ GeV with zero leptons. The analysis uses $b$-tagging [31,32] as well as dedicated top and Higgs jet tagging to classify the events into 22 and 12 search regions for the zero-lepton and one-lepton selections, respectively. The final discriminant is the scalar sum ($S_T$) of the transverse momenta of the selected jets, lepton, and missing transverse momentum. The dominant background is the associated production of a $t\bar{t}$ pair with $b$- and $c$-quark jets, which is modeled via Monte Carlo (MC) simulation and assigned dedicated modeling uncertainties.

$W(\ell\nu)t + X$ [17]: This analysis primarily targets $T\bar{T} \rightarrow Wb\bar{W}b$ events with one $W$ decaying leptonically and the other hadronically. Event selection requires one lepton, $\geq 3$ jets, at least one of them being $b$-tagged, and a hadronically decaying $W$ boson identified using jet substructure techniques [33]. The final discriminant is the reconstructed mass of the $T \rightarrow Wb \rightarrow \ell\nu b$ candidate. The dominant background is from $t\bar{t}$ pair production, which is modeled using MC simulation with dedicated modeling uncertainties.

$W(\ell\nu)t + X$ [18]: Very similar to the $W(\ell\nu)b + X$ analysis, this analysis is optimized to target $B\bar{B}$ signals, especially in the case where $B \rightarrow Wt$. This analysis discriminates between the signal and the dominant $t\bar{t}$ background in the signal regions using either a boosted decision tree discriminant or the reconstructed mass of the $B$ candidate.

$Z(\ell\nu)t + X$ [19]: This analysis targets $T\bar{T} \rightarrow ZtZt$ events with an invisible $Z$ decay. Events must have $E_T^{\text{miss}} > 300$ GeV, one charged lepton from the decay of a top quark, and $\geq 4$ small-radius jets, which are reclustered [34] into large-radius jets. The analysis defines a single-bin signal region that capitalizes on various $E_T^{\text{miss}}$-based variables and requires at least two high-mass large-radius jets due to hadronically decaying top quarks and/or heavy bosons from the VLQ decays. The dominant backgrounds are $t\bar{t}$ + jets, $W+$ jets, and single-top events, which are estimated from MC simulation and normalized using dedicated control regions.

$Z(\ell\ell)t/b + X$ [20]: This analysis searches for $T\bar{T}$ and $B\bar{B}$ events containing a leptonically decaying $Z$ boson ($Z \rightarrow \ell^+\ell^-$) and at least two $b$-jets. The analysis has one trilepton signal region and three dilepton signal regions, depending on the number of large-radius jets (0, 1, or $\geq 2$). The final discriminant depends on the signal region. The dominant backgrounds for the dilepton channels are $Z$ + jets and/or $t\bar{t}$ and diboson, while the trilepton channels are dominated by diboson ($WZ$) and $t\bar{t}Z$ events, each modeled by MC simulation and validated with dedicated control regions.

Trilepton or same-sign dilepton [21]: This analysis targets $T\bar{T}$ and $B\bar{B}$ decays with multilepton final states, with particular emphasis on events containing a pair of charged leptons with the same electric charge (“same sign”). Eight single-bin signal regions are defined in accord with the number of leptons and $b$-tagged jets. The background composition for this analysis varies between signal regions. Contributions from instrumental backgrounds (fake or nonprompt leptons and electrons with incorrectly measured charge) are estimated using data-driven techniques, while background processes with prompt leptons, originating mostly from $t\bar{t} + W$ and diboson events, are modeled with MC simulations.

Fully hadronic [22]: This analysis focuses on final states with zero leptons, low $E_T^{\text{miss}}$, at least four (small-radius) high-$p_T$ jets, and at least two $b$-tagged jets. This is the only analysis with significant sensitivity to $B\bar{B} \rightarrow Hb\bar{H}b$. Small-radius jets are reclustered into large-radius jets, which may be identified as top quarks, $W/Z$, or $H$ bosons using a multiclass deep neural network [35]. The final discriminant is the distribution of the signal likelihood calculated using the matrix-element method [36]. The dominant background is from multijet production, which is estimated using a data-driven technique.

FIG. 1. Representative leading-order Feynman diagrams for (a) $T\bar{T}$ and (b) $B\bar{B}$ pair production. The studied VLQ decays are also displayed.
TABLE I. The most sensitive decay channel for each analysis entering the combination. A “...” indicates that the analysis was not used for that signal process.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>( T\bar{T} ) decay</th>
<th>( B\bar{B} ) decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>( H(b\bar{b}) + X ) [16]</td>
<td>( HtH\bar{t} )</td>
<td>...</td>
</tr>
<tr>
<td>( W(\ell\nu)b + X ) [17]</td>
<td>( WbW\bar{b} )</td>
<td>...</td>
</tr>
<tr>
<td>( W(\ell\nu)t + X ) [18]</td>
<td>...</td>
<td>( WtW\bar{t} )</td>
</tr>
<tr>
<td>( Z(\nu\nu)t + X ) [19]</td>
<td>( ZtZ\bar{t} )</td>
<td>...</td>
</tr>
<tr>
<td>( Z(\ell\ell)/b + X ) [20]</td>
<td>( ZtZ\bar{t} )</td>
<td>( ZbZ\bar{b} )</td>
</tr>
<tr>
<td>Tril./s.s. dilepton [21]</td>
<td>( HtH\bar{t} )</td>
<td>( WtW\bar{t} )</td>
</tr>
<tr>
<td>Fully hadronic [22]</td>
<td>( HtH\bar{t} )</td>
<td>( HbH\bar{b} )</td>
</tr>
</tbody>
</table>

Most of the analyses were designed to be complementary. While each analysis provides sensitivity to various decay configurations, the most sensitive is shown in Table I. All analyses use consistent definitions for the reconstructed physics objects, so only a few additional selection requirements were needed to suppress overlap. Compared to the standalone analyses, the \( W(\ell\nu)b + X \) and \( Z(\nu\nu)t + X \) analyses removed events with \( \geq 6 \) jets and \( \geq 3 \) \( b \)-jets to avoid overlap with the \( H(b\bar{b})t + X \) selection. The \( Z(\nu\nu)t + X \) analysis also requires \( S_t < 1.8 \) TeV in a control region to mitigate the overlap with a signal region in the \( W(\ell\nu)b + X \) analysis. To reduce overlap with the \( Z(\ell\ell)/b + X \) analysis, the trilepton or same-sign dilepton analysis removed events with more than three leptons or events with a lepton pair having an invariant mass compatible with a \( Z \) boson (\( Z \) veto). This \( Z \) veto is the only added selection requirement with significant impact on the individual analysis sensitivity; however, that sensitivity is recovered by the \( Z(\ell\ell)/t + X \) analysis. After applying these additional selection requirements, the fraction of events falling into more than one analysis region was evaluated to be less than 1% between any two signal regions and less than 3% between any pair of signal or control regions and has negligible impact on the results.

The VLQ signal samples used by the analyses were generated with the LO generator Protos v2.2 [37] using the NNPDF2.3 LO [38] set of parton distribution functions (PDF) and passed to Pythia 8.186 [39] for parton showering and fragmentation. The samples are normalized using cross sections computed with Top++ v2.0 [13] at next-to-next-to-leading order (NNLO) in QCD, including resummation of next-to-next-to-leading logarithmic soft gluon terms [40–44], and using the MSTW 2008 NNLO [45,46] PDF. Further information about simulated events and details of the background estimations for each analysis can be found in the respective publications.

Statistical analysis.—The statistical analysis is the same as in the individual analyses and is based on a binned likelihood function constructed as the product of the Poisson probabilities of all bins entering the combination. This function depends on the signal-strength parameter \( \mu \), a factor multiplying the theoretical signal cross section \( \sigma \) (\( \mu = \sigma / \sigma_{\text{theory}} \)), and a set of nuisance parameters that encode the effect of the systematic uncertainties on the signal and background expectations. These parameters are included with Gaussian or log-normal constraints. Additional unconstrained nuisance parameters are included to control the normalization of the main backgrounds, following the settings used in the standalone searches. The combination is achieved by performing a fit with all bins from all the regions considered from each analysis.

The analysis is limited by statistical uncertainties, and the precise correlation model for the systematic

![FIG. 2. Observed (solid lines) and expected (dashed line) 95% C.L. upper limits on the \( T\bar{T} \) cross section versus mass for the combination and the standalone analyses in black and colored lines, respectively. The (a) singlet and (b) doublet scenarios are displayed. The shaded bands correspond to \( \pm 1 \) and \( \pm 2 \) standard deviations around the combined expected limit.](211801-3)
uncertainties was found to not significantly affect the results. The detector-related uncertainties are treated as fully correlated across analyses, with the following exceptions. The central values and uncertainties of the $b$-tagging and the luminosity measurement were updated after the publication of the $Z(\nu\nu)t+X$ and $W(\ell\nu)b+X$ analyses. Therefore, to avoid propagating constraints caused by the change in the method, these uncertainties are correlated between the $Z(\nu\nu)t+X$ and $W(\ell\nu)b+X$ analyses, but uncorrelated with the other searches, which are correlated among themselves. The modeling uncertainties and background normalization parameters are treated as uncorrelated between analyses. Although some background processes are common to multiple analyses, the phase space and the techniques used to estimate those backgrounds can be quite different. Residual correlations are therefore expected to be negligible.

Results.—The behavior of the combination is consistent with the fits from the individual analyses. The postfit values of all nuisance parameters are compatible with the standalone analyses, with the constraints generally determined by the analysis most sensitive to the given nuisance parameter. Similarly, the background predictions in each analysis after the combined fit are very close to the results from the standalone analyses. After the combination, no significant excess is observed in the data, so 95% confidence level (C.L.) limits are set on the cross section of a VLQ signal. To increase the applicability and usefulness of this combination, limits are evaluated both for benchmark scenarios with specific

$$\sigma(pp \to B\bar{B}) \begin{array}{c|c|c} \text{Singlet} & \text{Doublet} & \text{Doublet} \\ \hline \text{Theory (NNLO prediction)} & 95\% \text{C.L. combined observed} & 95\% \text{C.L. combined expected limit} \\ \hline \end{array}$$

FIG. 3. Observed (solid lines) and expected (dashed line) 95% C.L. upper limits on the $B\bar{B}$ cross section versus mass for the combination and the standalone analyses in black and colored lines, respectively. The (a) singlet, (b) $(T, B)$ doublet, and (c) $(B, Y)$ doublet scenarios [8] are displayed. The shaded bands correspond to ±1 and ±2 standard deviations around the combined expected limit. The rapidly falling thin red line and band show the theory prediction and corresponding uncertainty [13], respectively.
signal strength, which can be used to interpret the results in
branching ratios and for general combinations of branching
ratios.

For an assumed set of branching ratios, upper limits are
set on the production cross sections for $T^T$ and $B\bar{B}$ as a
function of the VLQ mass using the CL$_S$ method [47,48]
with the asymptotic approximation [49]. Observed and
expected upper limits on the $T^T$ cross sections as a function
of mass are shown in Fig. 2 for the benchmark scenarios of
an isospin singlet or doublet $T$. Analogous limits on the $B\bar{B}$
cross section are shown in Fig. 3. The observed limits from
the individual analyses, after the additional selections
defined in this Letter, are also shown. For a singlet $T$, masses
below 1.31 TeV are excluded, while a $T$ in an
isospin doublet is excluded for masses below 1.37 TeV. A
singlet $B$ is excluded for masses below 1.22 TeV, a $B$ in a
$(T,B)$ doublet is excluded for masses below 1.37 TeV, and
a $B$ in a $(B,Y)$ doublet is excluded for masses below
1.14 TeV.

The combination is significantly more sensitive than any
one analysis. For example, in the case of the SU(2) singlet,
the observed limit on the $T^T$ cross section is improved by
up to a factor of ~1.7, which translates to an increase of
110 GeV in the observed mass limit.

In addition, model-independent lower limits are set on the
VLQ mass for all combinations of branching ratios, assuming $\mathcal{B}(T \rightarrow Ht) + \mathcal{B}(T \rightarrow Zt) + \mathcal{B}(T \rightarrow Wb) = 1$ and
$\mathcal{B}(B \rightarrow Hb) + \mathcal{B}(B \rightarrow Zb) + \mathcal{B}(B \rightarrow Wt) = 1$.
The resulting lower limits on the VLQ mass as a function of
branching ratio are presented in Fig. 4. Limits corresponding
to $\mathcal{B}(T \rightarrow Wb) = 1$ and $\mathcal{B}(B \rightarrow Wt) = 1$ are found to
also be applicable to $Y\bar{Y} \rightarrow WbWb$ and $X\bar{X} \rightarrow WtWt$,
respectively. The high degree of complementarity between
the analyses is clearly demonstrated in Fig. 4. For any
combination of branching ratios, the combined analysis
leads to observed (expected) lower mass limits of 1.31
(1.22) TeV for $T$ and 1.03 (0.98) TeV for $B$. Limits on the
signal strength, which can be used to interpret the results in
scenarios with additional VLQ decays that escape detection
[50], are available in the HEPData repository [51,52].

**Conclusion.**—The ATLAS Collaboration has performed
a combination of seven analyses searching for pair-produced
VLQs. Upper limits on the cross section are
determined and used to set lower limits on the VLQ mass
for various benchmark scenarios and for general combinations
of branching ratios. This combination results in the
most stringent limits to date on VLQ pair production.
Because of the high degree of complementarity between the
analyses, the combination has significantly better sensi-
tivity than the standalone analyses, for the first time
excluding $T$ ($B$) masses below 1.31 (1.03) TeV for any
combination of decays into SM particles.

We thank CERN for the very successful operation of the
LHC, as well as the support staff from our institutions
without whom ATLAS could not be operated efficiently. We
acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia;
ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan;
SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN;
CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;
DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG,
Georgia; BMBF, HGF, and MPG, Germany; GSRT,
Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and
Benoziyo Center, Israel; INFN, Italy; MEXT and
JSPS, Japan; CNRS, Morocco; NWO, Netherlands;
RCN, Norway; MNiSW and NCN, Poland; FCT,
Portugal; MINE/IFA, Romania; MES of Russia and NRC
KI, Russian Federation; JINR; MESTD, Serbia; MSSR,
Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South
Africa; MINECO, Spain; SRC and Wallenberg Foundation,
Sweden; SERI, SNSF and Cantons of Bern and Geneva,
Switzerland; MOST, Taiwan; TAEK, Turkey; STFC,
United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BKDF, the Canada Council, CANARIE, CRC, Compute Canada, FORNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne et Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [53].

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA

Department of Physics, McGill University, Montreal, Quebec, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, University of Michigan, Ann Arbor, Michigan, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus

Group of Particle Physics, University of Montreal, Montréal, Québec, Canada

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Novosibirsk State University Novosibirsk, Russia

Department of Physics, New York University, New York, New York, USA

The Ohio State University, Columbus, Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Konstantinov Nuclear Physics Institute of National Research Center “Kurchatov Institute”, PNPI, St. Petersburg, Russia

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratório de Instrumentação e Física Experimental de Partículas—LIP, Portugal

Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade de Coimbra, Coimbra, Portugal