Probing the Quantum Interference between Singly and Dually Resonant Top-Quark Production in pp Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

M. Aaboud et al.

(ATLAS Collaboration)

(Received 13 June 2018; revised manuscript received 6 August 2018; published 12 October 2018)

This Letter presents a novel way to test different models of the interference between $t\bar{t}$ and tWb, using 36.1 fb$^{-1}$ of proton-proton (pp) collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector in 2015 and 2016. The measurement targets the dilepton final state, characterized by a pair of oppositely charged leptons (ee, $\mu\mu$, or $e\mu$) originating from W-boson decays [28], associated with jets containing b-hadrons (b-jets) and missing transverse momentum due to undetected neutrinos. The contributions from doubly and singly resonant amplitudes (and hence also their interference) to the combined cross section depend on the invariant mass of the bW pairs in the event, m_{bW}. In this analysis, the charged lepton is used as a proxy for the W boson and a differential cross section is measured as a function of the invariant mass of a b-jet and a lepton. There is ambiguity in forming this mass, so

$$m_{b\ell}^{\text{minimax}} = \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$$

is used, where the b_i and ℓ_i represent the two b-jets and leptons, respectively. This choice is inspired by the minimax procedure used to construct the transverse mass [29,30] and measure the top mass [31]. At leading order, for doubly resonant events at parton level, $m_{b\ell}^{\text{minimax}} < \sqrt{m_t^2 - m_W^2}$, where m_t and m_W are the top-quark and W-boson masses, respectively. Because of suppression of the doubly resonant contribution, the differential cross section above this kinematic endpoint has increased sensitivity to interference effects.

ATLAS is a multipurpose particle detector designed with nearly full 4π coverage in a solid angle [32]. Lepton and jet reconstruction and identification used in this paper are

Top-quark pair ($t\bar{t}$) production is one of the most widely studied processes at the Large Hadron Collider (LHC) and is a key background to many searches for physics beyond the standard model (BSM). The differential cross section for $t\bar{t}$ has been measured [1–5] and calculated [6–8] across a wide kinematic range with high accuracy. However, all of these results treat the decay of the top quark to a b-quark and W boson in the narrow-width approximation, separating $t\bar{t}$ production from production of a single top quark in association with a W boson and a b-quark (tWb). Because of their identical $WWbb$ final states, processes with one or two timelike top-quark propagators (called singly and doubly resonant, respectively) interfere. Standard ad hoc methods of modeling this interference [9–12] are a significant source of uncertainty for many BSM searches [13–18]. Traditional measurements of production of a single top quark with an associated W boson (tW) are designed to be insensitive to such effects [19–21]. Recent fixed-order calculations of the full next-to-leading-order (NLO) $pp \rightarrow \ell^{-}\nu\ell^{+}\bar{b}b\bar{b}$ process [22–26] include proper treatment of the interference and have set the stage for corresponding predictions matched to a parton shower [27]. However, there are no measurements available to assess the modeling in a region sensitive to interference effects.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
described in Ref. [33] and are briefly summarized in the following. Electrons and muons are required to have transverse momentum \(p_T \) > 28 GeV, pseudorapidity \(\eta \) satisfying \(|\eta| < 2.47 \) (2.5) for electrons (muons), and meet a series of quality criteria [35,36], denoted “tight” in Ref. [33]. Jets are clustered from topologically connected calorimeter cells [37] using the anti-\(k_t \) jet algorithm [38] with radius parameter \(R = 0.4 \) implemented in FASTJET [39] and calibrated to particle level [40]. Jets are identified as originating from \(b \)-quarks with a multivariate classifier using observables sensitive to lifetimes, production mechanisms, and decay properties of \(b \)-hadrons [41]. The tagging efficiency is determined in simulated \(t\bar{t} \) events to be 60% (85%) for the tight (loose) tagging criterion.

Samples of simulated data are used in the design of the measurement, estimation of the background, and the unfolding procedure. POWHEG-BOX [42] V1 and V2 were used to simulate \(tW \) and \(t\bar{t} \) events, respectively, with PYTHIA 6.428 [43], the five-flavor scheme (5FS) CT10 [44] parton distribution function (PDF) set, and Perugia 2012 [45] collection of tuned parameters. An identical configuration except using PYTHIA 8.183 and POWHEG-BOX-V2 for \(tW \) was included for particle-level comparisons. Alternative samples used POWHEG-BOX-V2 or MADGRAPH5_aMC@NLO (MG5_aMC) 2.2.2 [46], each interfaced to Herwig++ 2.7.1 [47] with the UE-EE-5 set of tuned parameters [48] and CT10 PDF set. The \(t\bar{t} + b\bar{b} \) process [49] was generated using SHERPA 2.1.1 [50] plus OPENLOOPS [51] with the CT10 four-flavor scheme PDF. The \(V \) jets and \(VV + \) jets (\(V = W, Z \)) processes were generated with SHERPA [2.2.1] and the CT10 PDF set. Associated production of \(t\bar{t} \) with a boson (\(t\bar{t}V \)) was generated using MG5_aMC 2.2.2 combined with PYTHIA 8.186 [52], the NNPDF2.3LO PDF set [53] and the A14 set of tuned parameters [54]. All predictions, including \(m_{W\ell}^{\text{minmax}} \), are estimated using events with at least three jets that are \(b \)-tagged according to the tight criterion. Simulated data is used to extrapolate the \(t\bar{t} + \) HF yield measured in this region to the two-\(b \)-tag signal selection, giving a prediction 1.49 ± 0.05(stat) ± 0.20(syst) times larger than the prediction obtained using POWHEG+PYTHIA 6. This is consistent with the results of previous measurements, finding scale factors from 1.1 to 1.7 depending on the selection criteria [62–66]. Figure 1(a) shows the \(m_{W\ell}^{\text{minmax}} \) distribution for events passing the three-\(b \)-tag selection, constructed from the two-\(b \)-jets with largest \(p_T \). The leading two \(b \)-jets are both found to originate from top decays in 60% of simulated \(tt + \) HF events when \(m_{W\ell}^{\text{minmax}} \) is below 160 GeV and less than 10% when above. Good agreement between data and prediction across the distribution demonstrates that the additional jet from heavy flavor is well modeled. The next largest background is from \(Z + \) jets production, which is estimated in an analogous manner from data events with same-flavor leptons satisfying an inverted \(m_{\ell\ell} \) requirement. In both cases, the \(t\bar{t} \) contribution is subtracted before estimating the scale factor. Various checks show that this does not bias the measurement in the signal region phase space. Finally, there is a small contribution from non-prompt and misidentified leptons arising from photon conversions, heavy-flavor hadrons decaying leptonically, and jets misidentified as leptons. Following Ref. [67], this background is estimated using events with same-charge lepton pairs, after subtracting the prompt lepton contribution. Minor contributions from \(t\bar{t} + \) jets and \(VV + \) jets are estimated using simulation. Uncertainties in the simulation-based extrapolations are described below. The \(t\bar{t} + \) \(Wb \) signal
FIG. 1. (a) The $m_{b\ell\ell}$ distribution in the three-b-jets region, constructed from the two b-jets with largest p_T. The predicted $t\bar{t}$ + HF contribution from simulation is scaled to match observed data in this region. The hashed band indicates the uncertainty on the total number of predicted events, where the DR scheme is used to estimate the minor contribution from the tW process. (b) The detector-level $m_{b\ell\ell}$ distribution, with signal selection and background estimation as described in the text. The total predicted events are shown for both the DR and DS definitions of the tW process, with uncertainties on the respective estimates indicated by separate error bars. Uncertainties include all statistical and systematic sources. The rightmost bin of each distribution includes contributions from events beyond the displayed axis limit.

process accounts for 95% of events passing the full selection, with remaining background contributions subtracted from the data before unfolding the signal process to particle level. In Fig. 1(b), the data are compared to the predicted event yields for both the DR and DS schemes.

The unfolding procedure corrects detector-level [68] observables to particle level using a Bayesian method [69] with one iteration, optimized to minimize the average uncertainty per bin. The particle-level selection is defined to be as close as possible to the detector-level selection to minimize simulation-based corrections for acceptance effects and the detector resolution when unfolding. The definitions of particle-level objects are given in Ref. [70] with the following choices and modifications: (1) jets are clustered from all simulated particles with a mean lifetime $\tau > 30$ ps excluding muons and neutrinos to reduce model dependence, (2) jets are identified as b-jets if a b-hadron is found within the jet cone. Particle-level events must pass the same event selection as detector-level events, including the $m_{b\ell\ell}$ requirement. To avoid contamination from $t\bar{t}$ + HF production, events with three or more particle-level b-jets with $p_T > 5$ GeV are rejected.

There are two categories of systematic uncertainties in the measurement: experimental and theoretical modeling. These affect the result via the background prediction that is subtracted from data or through the model used to unfold the data to particle level. Experimental uncertainties result from potential mismodeling in the reconstruction and identification of the jets [40], b-jets [71], and leptons [35,36]. The background subtraction introduces uncertainty from the limited number of events in the control regions. A suite of simulation samples with alternative settings are used to assess the theoretical uncertainties in modeling the $t\bar{t}$, tW, $t\bar{t}$ + HF, and $Z +$ jets processes [72,73]. A further uncertainty is assessed by varying the composition of the $t\bar{t}$ + tWb signal according to the uncertainty in the total cross sections of the singly and doubly resonant processes. An additional uncertainty is assessed for $t\bar{t}$ + HF by comparing the prediction obtained using POWHEG +PYTHIA 6 with that using the SHERPA $t\bar{t}$ + $b\bar{b}$ sample. Furthermore, to ensure that the bias from the choice of interference scheme used in the unfolding is small, the procedure is repeated using the DS scheme. Finally, as another test of the unfolding, the particle-level $m_{b\ell\ell}^{\text{minimax}}$ spectrum is reweighted to attain better agreement between the corresponding detector-level distribution and the data. Unfolding this reweighted distribution using the nominal unweighted simulation gives a measure of the method non-closure, which is assessed as an additional uncertainty [74]. The systematic uncertainty due to experimental sources ranges from 1% to 14%, with leading contributions from the jet energy scale and resolution and the b-tagging efficiency. Theoretical uncertainties associated with the modeling of processes with top quarks are generally the most important and range from 1% to 22% of the unfolded yields. The separate uncertainty due to the interference treatment is subdominant (22% in the largest bin of $m_{b\ell\ell}^{\text{minimax}}$, elsewhere 1%–8%), and everywhere much smaller than the raw difference between the DR and DS scheme predictions. The size of the data set leads to statistical uncertainties of up to 20%.

Figure 2 presents the differential cross section observed in data, normalized to the total observed cross section with this selection. Various predictions are also shown, with uncertainties included from varying the PDF set [75] and the renormalization and factorization scales. A χ^2 test statistic is constructed for the various models to assess the level of agreement with the data. Correlations among uncertainties of the unfolded distribution are included, as well as theory uncertainties on the signal predictions. Results of the test are presented in Table I as p values, corresponding to the observed level of agreement over the full distribution as well as the subset $m_{b\ell\ell}^{\text{minimax}} > 160$ GeV where the predicted differences due to interference are largest.

The tWb prediction using the DR scheme gives a better description of the relative normalization of the region $m_{b\ell\ell}^{\text{minimax}} \gtrsim m_t$ than the DS scheme. However, the DS scheme better models the $m_{b\ell\ell}^{\text{minimax}}$ shape over the same range of values. The DR and DS predictions generally bracket the data in the region of large $m_{b\ell\ell}^{\text{minimax}}$, justifying the practice of applying their difference as a systematic uncertainty. The DR2 scheme describes the data well up to the top-quark mass, but significantly underpredicts the data.
will be important for future model development and tuning.

constraint on this interesting region of phase space that quark pair production is presented. This is an original the interference between doubly and singly resonant top-

diverge.

predictions using traditional models of the interference including the region beyond the top-quark mass where

factorization scales. The rightmost bin of the distribution includes contributions from events beyond the displayed axis limit.

In summary, a measurement of a region sensitive to interference treatments with other inputs held constant. The corresponding DR2 calculation to directly compare the two contributions from events beyond the displayed axis limit.

TABLE I. p values comparing data and predictions from events simulated with various models of the interference, all interfaced to PYTHIA 8. Test statistics are constructed from the full $m_{l\ell\nu}^\text{minimax}$ distribution and for the subset $m_{l\ell\nu}^\text{minimax} > 160 \text{ GeV}$.

<table>
<thead>
<tr>
<th>Model</th>
<th>All bins</th>
<th>$m_{l\ell\nu}^\text{minimax} > 160 \text{ GeV} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWHEG-BOX $t\bar{t} + tW$ (DR)</td>
<td>0.71</td>
<td>0.40</td>
</tr>
<tr>
<td>POWHEG-BOX $t\bar{t} + tW$ (DS)</td>
<td>0.77</td>
<td>0.56</td>
</tr>
<tr>
<td>MG5_aMC $t\bar{t} + tW$ (DR)</td>
<td>0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>MG5_aMC $t\bar{t} + tW$ (DR2)</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>POWHEG-BOX $\ell^+\ell^-\nu\nu\bar{b}b$</td>
<td>0.92</td>
<td>0.95</td>
</tr>
</tbody>
</table>

The results are presented as a normalized fiducial differential cross section, giving constraints on predictions for the full $t\bar{t} + tWb$ process.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC IK, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [78].

[28] Events involving $W\rightarrow \tau\nu$ decays with a subsequent decay of the τ lepton to either $e\nu$ or $\mu\nu$, are included in the signal.

[34] Pseudorapidity is defined in terms of the angle θ with respect to the beam line as $\eta = -\ln\tan(\theta/2)$.

[59] Although it also interferes with the signal process, the contribution from fully nonresonant WWbb production is treated as background. Its contribution to the selected phase space is negligible compared to processes with top quarks.
[64] CMS Collaboration, Measurement of the cross section ratio $\sigma_{bb\ell}/\sigma_{t\bar{t}\ell}$ in pp collisions at $\sqrt{s} = 8$ TeV, Phys. Lett. B 746, 132 (2015).
[66] CMS Collaboration, Search for $t\bar{t}H$ production in the $\ell\ell H\rightarrow b\bar{b}$ decay channel with leptonic $t\bar{t}$ decays in proton-proton collisions at $\sqrt{s} = 13$ TeV, arXiv:1804.03682.
[67] ATLAS Collaboration, Measurement of the $t\bar{t}$ production cross-section using $\ell\ell$ events with b-tagged jets in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector, Eur. Phys. J. C 74, 3109 (2014); Addendum 76, 642(A) (2016).
[68] Detector level refers to the measured outputs of the detector; particle level refers to the particles which interact with the detector.
[71] ATLAS Collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector using $t\bar{t}$ events at $\sqrt{s} = 13$ TeV, J. High Energy Phys. 08 (2018) 89.
For this calculation, the effect of decaying the top quarks with PYTHIA instead of the default MADSPIN configuration can be up to 20% at high m_{topmax}. However, this change leads to poorer agreement with data and the impact of using MADSPIN for DR2 is consistent with that seen for the corresponding DR prediction. [77] Generated $\mu\mu$ events are reweighted to account for events with same-flavor leptons and fully leptonic tau decays. [78] ATLAS Collaboration. ATLAS Computing Acknowledgements, Report No. ATL-GEN-PUB-2016-002, https://cds.cern.ch/record/2202407.

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Department of Physics, National Technical University of Athens, Zografou, Greece
11Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
13Department of Physics, Bogazici University, Istanbul, Turkey
14Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
15Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
16Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
17Physics Department, Tsinghua University, Beijing, China
18Physics Department, Nanjing University, Nanjing, China
19University of Chinese Academy of Science (UCAS), Beijing, China
20Department of Physics, University of Belgrade, Belgrade, Serbia
21Department for Physics and Technology, University of Bergen, Bergen, Norway
22Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
23Department of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
24 Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
25Department of Physics, Brandeis University, Waltham, Massachusetts, USA
26Transilvania University of Brasov, Brasov, Romania
27Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
28Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
29Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
30National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
31University Politehnica Bucharest, Bucharest, Romania
32West University in Timisoara, Timisoara, Romania
Dipartimento di Fisica, Università di Milano, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
INFN Sezione di Pavia, Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
INFN Sezione di Pisa, Pisa, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
INFN Sezione di Roma, Roma, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
INFN Sezione di Roma Tor Vergata, Roma, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Roma, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
INFN-TIFPA, Trento, Italy
Università degli Studi di Trento, Trento, Italy
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, Dubna, Russia
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJJ), Juiz de Fora, Brazil
Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil
Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Egham, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Fysiska institutionen, Lunds universitet, Lund, Sweden
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany