Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the γγjj final state in pp collisions at √s = 13 TeV with the ATLAS detector

The ATLAS Collaboration

DOI
10.1016/j.physletb.2018.06.011

Publication date
2018

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the $\gamma \gamma jj$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration*

A R T I C L E I N F O

Article history:
Received 28 March 2018
Received in revised form 25 May 2018
Accepted 5 June 2018
Available online 14 June 2018
Editor: W.-D. Schlatter

A B S T R A C T

This Letter presents a search for exotic decays of the Higgs boson to a pair of new (pseudo)scalar particles, $H \rightarrow a a$, where the a particle has a mass in the range $20–60$ GeV, and where one of the a bosons decays into a pair of photons and the other to a pair of gluons. The search is performed in event samples enhanced in vector-boson fusion Higgs boson production by requiring two jets with large invariant mass in addition to the Higgs boson candidate decay products. The analysis is based on the full dataset of pp collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 36.7 fb$^{-1}$. The data are in agreement with the Standard Model predictions and an upper limit at the 95% confidence level is placed on the production cross section times the branching ratio for the decay $H \rightarrow aa \rightarrow \gamma \gamma gg$. This limit ranges from 3.1 pb to 9.0 pb depending on the mass of the a boson.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The discovery or exclusion of the Standard Model (SM) Higgs boson was one of the main goals of the Large Hadron Collider (LHC) physics programme. A Higgs boson with mass of 125 GeV, and with properties compatible with those expected for the SM Higgs boson (H), was discovered by the ATLAS [1] and CMS [2] collaborations. Since its discovery, a comprehensive programme of measurements of the properties of this particle has been underway. These measurements could uncover deviations from branching ratios predicted by the SM or set a limit on the possible branching ratio for decays into new particles beyond the SM (BSM). Existing measurements constrain the branching ratio for such decays (B_{BSM}) to less than 34% at 95% confidence level (CL) [3], assuming that the absolute couplings to vector bosons are smaller than or equal to the SM ones.

Many BSM models predict exotic decays of the Higgs boson [4]. One possibility is that the Higgs boson decays into a pair of new (pseudo)scalar particles, a, which in turn decay to a pair of SM particles. Several searches have been performed for $H \rightarrow aa$ in various final states [5–9].

The results presented in this Letter cover the unexplored $\gamma \gamma jj$ final state in searches for $H \rightarrow aa$, where one of the a bosons decays into a pair of photons and the other decays into a pair of gluons. This final state becomes relevant in models where the fermionic decays are suppressed and the a boson decays only into photons or gluons [4,10]. The ATLAS Run 1 search for $H \rightarrow aa \rightarrow \gamma \gamma jj$ [11] set a 95% CL limit $\sigma_H \times B(H \rightarrow aa \rightarrow \gamma \gamma jj) < 10^{-3} \sigma_{SM}$ for $10 < m_a < 62$ GeV, where σ_{SM} is the production cross-section for the SM Higgs boson. There is currently no direct limit set on $B(H \rightarrow aa \rightarrow \gamma \gamma gg)$; however, in combination with $B_{BSM} < 34\%$, the $H \rightarrow aa \rightarrow \gamma \gamma jj$ result sets an indirect limit on $B(H \rightarrow aa \rightarrow \gamma \gamma gg)$ to less than ~4%. Assuming the same ratio of photon and gluon couplings to the a boson as to the SM Higgs boson, the $H \rightarrow aa \rightarrow \gamma \gamma jj$ decay occurs very rarely relative to the $H \rightarrow aa \rightarrow \gamma \gamma gg$ decay (a typical value for the ratio $B(H \rightarrow aa \rightarrow \gamma \gamma jj)/B(H \rightarrow aa \rightarrow \gamma \gamma gg)$ is 3.8×10^{-3} [10]) making $H \rightarrow aa \rightarrow \gamma \gamma jj$ an excellent unexplored final state for probing these fermion-suppressed coupling models. The branching ratio for $a \rightarrow \gamma \gamma$ can be enhanced in some scenarios. The two searches are therefore complementary, where the $H \rightarrow aa \rightarrow \gamma \gamma jj$ final state is more sensitive to photon couplings with the new physics sector similar to the photon coupling to the SM Higgs boson, while the $H \rightarrow aa \rightarrow \gamma \gamma jj$ final state is more sensitive to scenarios with enhanced photon couplings. In addition, the $H \rightarrow aa \rightarrow \gamma \gamma jj$ final state can probe models inaccessible by the $H \rightarrow aa \rightarrow \gamma \gamma jj$ final state, for example $H \rightarrow a' a' \rightarrow \gamma \gamma jj$ where the a and a' are both (pseudo)scalar particles with similar masses with primary decays to photons and gluons, respectively.

Reference [10] shows that the search for $H \rightarrow \gamma \gamma gg$, where the Higgs boson is produced in association with a vector boson which

* E-mail address: atlas.publications@cern.ch.
decays leptonically, would require approximately 300 fb\(^{-1}\) of LHC data in order to be sensitive to branching ratios less than 4\%. The gluon–gluon fusion (ggF) production mode has a larger cross-section, but is overwhelmed by the \(γγ\) + multi-jet background. The strategy described in this Letter consists in selecting events where vector-boson fusion (VBF) is the dominant Higgs boson production mode. Even though the production rate is lower than that for the ggF mode, the characteristic topology of the jets produced in association with the Higgs boson enables more effective suppression of the background.

2. Data and simulation

The search presented in this Letter is based on the 36.7 fb\(^{-1}\) dataset of proton–proton collisions recorded by the ATLAS experiment at the LHC at \(\sqrt{s} = 13\) TeV during 2015 and 2016. The ATLAS detector [12] comprises an inner detector in a 2 T axial magnetic field, for tracking charged particles and a precise localisation of the interaction vertex, a finely segmented calorimeter, a muon spectrometer and a two-level trigger [13] that accepts events at a rate of about 1 kHz for data storage. Monte Carlo (MC) event generators were used to simulate the \(H \rightarrow aa \rightarrow γγgg\) signal. Signal samples for the ggF and VBF processes were generated at next-to-leading order using POWHEG-Box [14–16] interfaced with \textsc{Pythia} [17] for parton showering and hadronisation using the A2ZLO set of tuned parameters set 18 and the CT10 parton distribution function (PDF) set 19. Samples were generated in the \(m_\text{Z}\) range\(^2\) 20 GeV < \(m_\text{Z}\) < 60 GeV, assuming the a boson to be a (pseudo)scalar. All MC event samples were processed through a detailed simulation [20] of the ATLAS detector based on \textsc{geant4} [21], and contributions from additional pp interactions (pile-up), simulated using \textsc{Pythia} and the MSTW2008LO PDF set [22], were overlaid onto the hard-scatter events.

3. Selection criteria

Events are selected by two diphoton triggers. One trigger path requires the presence in the electromagnetic (EM) calorimeter of two clusters of energy deposits with transverse energy\(^2\) above 35 GeV and 25 GeV for the leading (highest transverse energy) and sub-leading (second-highest transverse energy) clusters, respectively. In the high-level trigger the shape of the energy deposit in both clusters is required to be loosely consistent with that expected from an EM shower initiated by a photon. The other trigger path requires the presence of two clusters with transverse energy above 22 GeV. In order to suppress the additional rate due to the lower transverse energy threshold, the shape requirements for the energy deposits are more stringent.

The photon candidates are reconstructed from the clusters of energy deposits in the EM calorimeter within the range |\(η\)| < 2.37. The energies of the clusters are calibrated to account for energy losses upstream of the calorimeter and for energy leakage outside the cluster, as well as other effects due to the detector geometry and response. The calibration is refined by applying \(η\)-dependent correction factors of the order of ±1\%, derived from \(Z \rightarrow ee\) events [23]. As in the trigger selection, photon candidates are required to satisfy a set of identification criteria based on the shape

\(^{1}\) The diphoton triggers considered for this search do not have acceptance for the lower mass range (\(m_\text{Z} < 20\) GeV), where the two photons are collimated.

\(^{2}\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as \(η = −\ln \tan(θ/2)\).
4. Background estimation

The $\gamma\gamma+\text{multi-jet}$ background consists of multi-jet events with two reconstructed photon candidates, originating from isolated EM radiation or from jets. A data-driven estimation based on two-dimensional sidebands is used to predict the background yields. The method consists of using two uncorrelated observables to define four regions labelled A, B, C and D.

The first axis of the A/B/C/D plane separates events in regions C and D with both photons passing the Tight requirement from events in regions A and B with at most one photon passing the Tight requirement and at least one passing the Loose but not the Tight requirement. These regions are referred to respectively as Tight–Tight (C and D) and Tight–Loose (A and B).

The second axis separates events in regions B and D, satisfying $|m_{jj} - m_{\gamma\gamma}| < x_b$, from events in regions A and C, satisfying $|m_{jj} - m_{\gamma\gamma}| > x_b$. The value x_b depends on the $m_{\gamma\gamma}$ regime R to account for the degradation in resolution at higher mass. For $H \rightarrow aa \rightarrow \gamma\gamma gg$ signal events, the a boson candidates have similar masses, the difference $|m_{jj} - m_{\gamma\gamma}|$ tends to be smaller than in the background, as shown in Fig. 1(c). The signal events that lie outside of the range $|m_{jj} - m_{\gamma\gamma}| < x_b$ are due to poor m_{jj} resolution or to incorrect assignment of the jets corresponding to the gluons originating from the a boson decay. Specific x_b values are given in Table 1. In each $m_{\gamma\gamma}$ regime, the boundary for $|m_{jj} - m_{\gamma\gamma}|$ is 0.4 times the central $m_{\gamma\gamma}$ value. An exception is made for the lowest $m_{\gamma\gamma}$ regime, where x_b is larger in order to increase the signal efficiency.

Region D is expected to contain the highest contribution of signal. In this region, 60% of the signal events are produced in the VBF mode and the remaining 40% in the ggF mode. Assuming no correlation in the background events between the two observables used to define the A/B/C/D regions, the number of background events in the signal region D (N_{D}^{bkg}) is related to the number of background events in the control regions A, B and C, denoted by N_{A}^{bkg}, N_{B}^{bkg} and N_{C}^{bkg}, respectively, by the formula

$$N_{D}^{bkg} = \frac{N_{B}^{bkg} N_{C}^{bkg}}{N_{A}^{bkg}}. \quad (1)$$

In the following, the difference between the prediction N_{D}^{bkg} and the actual background yield in region D is referred to as non-closure. The non-closure results from residual correlations between the two observables used to define the A/B/C/D regions, and the uncertainty accounting for this effect is referred to as closure uncertainty. In order to quantify the non-closure, the data-driven estimation as described above is performed with the expectation that the requirement on $m_{\gamma\gamma}$ is inverted. For each $m_{\gamma\gamma}$ regime, the closure uncertainty is defined to be the central value of the non-closure if it is found to be significant ($>1\sigma$) in comparison with its statistical uncertainty; otherwise, the statistical uncertainty of its estimate is used.
Table 2

<table>
<thead>
<tr>
<th>m_{Z} [GeV]</th>
<th>(m_{\gamma \gamma}) regime</th>
<th>Efficiency ((\times 10^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>0.60^{+0.14}_{-0.14}</td>
<td>1.2 \pm 0.4</td>
</tr>
<tr>
<td>25</td>
<td>0.67^{+0.27}_{-0.23}</td>
<td>2.6 \pm 0.5</td>
</tr>
<tr>
<td>25</td>
<td>0.67^{+0.27}_{-0.23}</td>
<td>2.6 \pm 0.5</td>
</tr>
<tr>
<td>30</td>
<td>1.22 \pm 0.34</td>
<td>3.3 \pm 0.9</td>
</tr>
<tr>
<td>35</td>
<td>1.8 \pm 1.1</td>
<td>2.7 \pm 1.2</td>
</tr>
<tr>
<td>35</td>
<td>0.53^{+0.25}_{-0.24}</td>
<td>4.1 \pm 1.2</td>
</tr>
<tr>
<td>40</td>
<td>1.2 \pm 0.9</td>
<td>3.3 \pm 1.0</td>
</tr>
<tr>
<td>45</td>
<td>2.5 \pm 1.0</td>
<td>4.1 \pm 1.3</td>
</tr>
<tr>
<td>45</td>
<td>2.2 \pm 0.9</td>
<td>4.4 \pm 1.4</td>
</tr>
<tr>
<td>50</td>
<td>0.93 \pm 0.30</td>
<td>4.4 \pm 1.2</td>
</tr>
<tr>
<td>55</td>
<td>0.37 \pm 0.11</td>
<td>3.3 \pm 0.9</td>
</tr>
<tr>
<td>55</td>
<td>0.23 \pm 0.16</td>
<td>3.6 \pm 1.0</td>
</tr>
<tr>
<td>60</td>
<td>0.77^{+0.12}_{-0.10}</td>
<td>3.9 \pm 1.0</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>(m_{\gamma \gamma}) regime</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Relative closure uncert.</th>
<th>Predicted background yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>4</td>
<td>28</td>
<td>4</td>
<td>0.50</td>
<td>6.9^{+2}_{-3}</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>6</td>
<td>34</td>
<td>15</td>
<td>0.32</td>
<td>8.5^{+4}_{-4}</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16</td>
<td>29</td>
<td>26</td>
<td>0.20</td>
<td>27^{+12}_{-12}</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>19</td>
<td>38</td>
<td>0.21</td>
<td>27^{+12}_{-12}</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>20</td>
<td>20</td>
<td>36</td>
<td>0.20</td>
<td>66^{+56}_{-28}</td>
</tr>
</tbody>
</table>

5. Results

The efficiency of the event selection for the inclusive \(pp \rightarrow H \rightarrow aa \rightarrow \gamma \gamma gg \) signal in each of the A/B/C/D regions is shown in Table 2, assuming the SM Higgs boson production cross-section and kinematics, in each of the A/B/C/D regions, for different \(m_{Z} \) mass hypotheses. For each \(m_{Z} \) value, all \(m_{\gamma \gamma} \) regimes in which there is no significant signal acceptance loss due to the \(m_{\gamma \gamma} \) requirement are shown.

The low number of observed events is the dominant source of uncertainty for this search. The second largest uncertainty is due to the closure uncertainty, also statistical in nature. Other sources of systematic uncertainty only affect the overall signal normalisation and the amount of signal contamination in control regions A, B and C. Dominant sources of experimental systematic uncertainty arise from the calibration and resolution of the energy of the jets [32,33]. Uncertainties associated with the photon energy calibration and resolution [23], as well as the photon identification and isolation efficiencies [24], are found to be negligible. Uncertainties associated with the estimation of the integrated luminosity and the simulation of pile-up interactions (Lumi and Pile-up) are evaluated by varying the choice of scales used in the generator program and assuming the SM Higgs boson production [34]. It is found to be similar in size to the experimental systematic uncertainty.

Nuisance parameters corresponding to each source of uncertainty are included in the profile likelihood with Gaussian constraints. Their effects on the estimated number of signal events \(\mu_{S} \) are studied using Asimov [35] pseudo-datasets generated for an expected signal corresponding to the 95% CL upper limit obtained in this search and using the values of the background parameters marginalised in the likelihood fit to data which assumes no signal. Table 4 summarises the impact of each source of uncertainty varied by \(\pm 1\sigma \) on the maximum-likelihood estimate for \(\mu_{S} \) in each of the \(m_{\gamma \gamma} \) regimes for an illustrative \(m_{Z} \) hypothesis. The statistical uncertainty is the largest one for all regimes. The best-fit values of the parameters of the likelihood function are given in Table 5. The probability that the data are compatible with the background-only hypothesis is computed for each \(m_{\gamma \gamma} \) regime and no significant excess is observed. The smallest local \(p \)-value, obtained for the \(m_{\gamma \gamma} \) regime 2 (\(m_{\gamma \gamma} \approx 30 \text{ GeV} \)), is of the order of 4%. No significant excess is observed, and an upper limit is derived at 95% CL. The expected and observed exclusion limits on \(\mu_{S} \) are given in Table 6. This is related to the limit on the \(pp \rightarrow H \rightarrow aa \rightarrow \gamma \gamma gg \) cross-section by appropriately normalising to the measured total integrated luminosity and selection efficiencies relative to the inclusive signal production obtained from the ggF and VBF MC samples (Table 2). The limit is also expressed relative to the SM cross-section for the Higgs boson, shown in Fig. 2. Within a \(m_{\gamma \gamma} \) analysis regime, limits are interpolated linearly in between simulated \(m_{\gamma \gamma} \) values. Finally, for each mass point, the \(m_{\gamma \gamma} \) regime that yields the best expected limit is used to provide the observed exclusion limit. The limit is calculated using a frequentist CL_s calculation [36].

from MC simulation and is varied coherently with \(\mu_{S} \) in the likelihood fit.
Table 4
Maximum fractional impact on the fitted μ_S from sources of systematic uncertainty estimated using Asimov datasets. The signal injected in the Asimov datasets corresponds to the observed upper limit quoted in Table 6.

<table>
<thead>
<tr>
<th>Source of uncert.</th>
<th>$m_{T\gamma}$ regime</th>
<th>m_γ = 20 GeV</th>
<th>m_γ = 30 GeV</th>
<th>m_γ = 40 GeV</th>
<th>m_γ = 50 GeV</th>
<th>m_γ = 60 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.73</td>
<td>0.51</td>
<td>0.89</td>
<td>1.13</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>Closure</td>
<td>0.44</td>
<td>0.27</td>
<td>0.39</td>
<td>0.64</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Modelling</td>
<td>0.35</td>
<td>0.34</td>
<td>0.46</td>
<td>0.42</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Jet</td>
<td>0.58</td>
<td>0.38</td>
<td>0.25</td>
<td>0.90</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Photon</td>
<td>0.06</td>
<td>0.05</td>
<td>0.10</td>
<td>0.12</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Lumi and Pile-up</td>
<td>0.06</td>
<td>0.04</td>
<td>0.27</td>
<td>0.14</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>

6. Conclusions

In summary, a search for exotic decays of the Higgs boson into a pair of new (pseudo)scalar particles, $H \to aa$, in final states with two photons and two jets is conducted using 36.7 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. The search for $H \to aa \to \gamma\gamma gg$ is performed in the mass range $20 < m_a < 60$ GeV and with additional jet requirements to enhance VBF-produced signal while suppressing the $\gamma\gamma$+jets background. No significant excess of data is observed relative to the SM predictions. An upper limit is set for the product of the production cross-section for $pp \to H$ and the branching ratio for the decay $H \to aa \to \gamma\gamma gg$. The upper limit ranges from 3.1 pb to 9.0 pb depending on m_a, and is mostly driven by the statistical uncertainties. These results complement the previous upper limit on $H \to aa \to \gamma\gamma\gamma\gamma$ and further constrains the BSM parameter space for exotic decays of the Higgs boson.

Table 5
Maximum-likelihood fit values for each of the free parameters of the likelihood function in each $m_{T\gamma}$ regime for a relevant signal m_γ hypothesis. The estimated uncertainties in the fit parameters assume that the likelihood function is parabolic around the minimum of the fit.

<table>
<thead>
<tr>
<th>$m_{T\gamma}$ regime</th>
<th>m_γ [GeV]</th>
<th>μ_S</th>
<th>μ_{bkg}</th>
<th>t_b</th>
<th>t_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>-7 ± 18</td>
<td>11 ± 17</td>
<td>0.5 ± 0.4</td>
<td>2.9 ± 3.1</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>8 ± 8</td>
<td>7 ± 0.6</td>
<td>0.68 ± 0.32</td>
<td>4.3 ± 3.1</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>30 ± 80</td>
<td>60 ± 70</td>
<td>0.35 ± 0.19</td>
<td>0.67 ± 0.33</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>22 ± 28</td>
<td>16 ± 23</td>
<td>0.5 ± 0.4</td>
<td>0.9 ± 1.0</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>-290 ± 260</td>
<td>340 ± 340</td>
<td>0.21 ± 0.05</td>
<td>0.24 ± 0.05</td>
</tr>
</tbody>
</table>

Fig. 2. The observed (solid line) and expected (dashed line) 95% CL exclusion upper limit on the $pp \to H \to aa \to \gamma\gamma gg$ cross-section times branching ratio as a function of m_γ, normalised to the SM inclusive $pp \to H$ cross-section [31]. The vertical lines indicate the boundaries between the different $m_{T\gamma}$ analysis regimes. At the boundaries, the $m_{T\gamma}$ regime that yields the best expected limit is used to provide the observed exclusion limit (filled circles); the observed limit provided by the regime that yields the worse limit is also indicated (empty circles).

Table 6
Observed (expected) upper limits at the 95% CL, for each of the m_γ values considered in the search. In each case, the $m_{T\gamma}$ regime used to calculate the limits is also indicated. The limits reflect both the statistical and systematic sources of uncertainty in the fit, and the $\pm 1\sigma$ widths of the expected limit distributions are also indicated.

<table>
<thead>
<tr>
<th>$m_{T\gamma}$ regime</th>
<th>m_γ [GeV]</th>
<th>μ_S</th>
<th>$\sigma_H \times B(H \to aa \to \gamma\gamma gg)$ [pb]</th>
<th>$\sigma_{obs} \times B(H \to aa \to \gamma\gamma gg)$ [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>$10.4^{+4.0}_{-2.5}$</td>
<td>$4.8^{+6.1}_{-3.1}$</td>
<td>$0.086^{+0.022}_{-0.025}$</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>$10.4^{+9.3}_{-2.4}$</td>
<td>$1.9^{+2.0}_{-0.6}$</td>
<td>$0.034^{+0.036}_{-0.008}$</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>$25^{+5.3}_{-2.6}$</td>
<td>$5.1^{+4.7}_{-1.1}$</td>
<td>$0.092^{+0.084}_{-0.019}$</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>$26^{+4.4}_{-1.9}$</td>
<td>$3.1^{+2.6}_{-0.7}$</td>
<td>$0.056^{+0.049}_{-0.012}$</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>$36^{+3.9}_{-1.6}$</td>
<td>$2.7^{+2.2}_{-0.9}$</td>
<td>$0.049^{+0.040}_{-0.011}$</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>$41^{+3.1}_{-1.3}$</td>
<td>$3.2^{+4.0}_{-1.2}$</td>
<td>$0.058^{+0.073}_{-0.025}$</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>$45^{+3.6}_{-1.8}$</td>
<td>$6.3^{+7.5}_{-2.5}$</td>
<td>$0.113^{+0.134}_{-0.020}$</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>$45^{+3.3}_{-1.7}$</td>
<td>$9.2^{+8.4}_{-2.1}$</td>
<td>$0.166^{+0.152}_{-0.036}$</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>$50^{+4.4}_{-2.0}$</td>
<td>$9.0^{+8.8}_{-2.0}$</td>
<td>$0.162^{+0.159}_{-0.027}$</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>$55^{+4.1}_{-2.1}$</td>
<td>$9.7^{+9.1}_{-2.2}$</td>
<td>$0.173^{+0.163}_{-0.027}$</td>
</tr>
<tr>
<td>11</td>
<td>70</td>
<td>$60^{+4.4}_{-2.2}$</td>
<td>$5.5^{+6.8}_{-2.1}$</td>
<td>$0.10^{+0.12}_{-0.04}$</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>$65^{+4.7}_{-2.4}$</td>
<td>$8.0^{+9.5}_{-3.6}$</td>
<td>$0.14^{+0.17}_{-0.05}$</td>
</tr>
</tbody>
</table>
Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNpq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN, CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia, BMBF, BGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC RAS, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRTN, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horiizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [37].

21 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22 Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
23 (a) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna; (b) INFN Sezione di Bologna, Italy
24 Physikalisches Institut, Universität Bonn, Bonn, Germany
25 Department of Physics, Boston University, Boston, MA, United States of America
26 Department of Physics, Brandeis University, Waltham, MA, United States of America
27 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandria Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29 Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
32 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
33 Department of Physics, Carleton University, Ottawa, ON, Canada
34 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques Nucléaires (CNENSET), Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (e) Faculty of the Sciences, Université Mohammed V, Rabat, Morocco
35 CERN, Geneva, Switzerland
36 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America
37 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington, NY, United States of America
39 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
40 (a) Dipartimento di Fisica della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
43 Physics Department, Southern Methodist University, Dallas, TX, United States of America
44 Physics Department, University of Texas at Dallas, Richardson, TX, United States of America
45 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm, Sweden
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
49 Department of Physics, Duke University, Durham, NC, United States of America
50 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
52 INFN – Laboratori Nazionali di Frascati, Frascati, Italy
53 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
54 II. Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
56 (a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova, Italy
57 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
58 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
59 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
60 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America
61 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (a) School of Physics, Shandong University, Jinan; (b) School of Physics and Astronomy, Shanghai Jiao Tong University, KIPPC-Med, SKIPPC, Shanghai, China
62 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
63 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
64 (a) Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong; (b) Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
65 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
66 Department of Physics, Indiana University, Bloomington, IN, United States of America
67 (a) INFN Gruppo Collegato di Udine, Sezione di Udine, Udine; (b) ICTP Trieste; (c) Dipartimento di Chimica, Fisica e Ambienti, Università di Udine, Udine, Italy
68 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
69 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
70 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
71 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
72 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
73 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
74 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
75 (a) INFN-TIFPA, (b) Università degli Studi di Trento, Trento, Italy
76 Institut für Astrot- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
77 University of Iowa, Iowa City, IA, United States of America
78 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States of America
79 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
80 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
81 Graduate School of Science, Kobe University, Kobe, Japan
82 Faculty of Science, Kyoto University, Kyoto, Japan
83 Kyoto University of Education, Kyoto, Japan
84 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
85 Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
86 Physics Department, Lancaster University, Lancaster, United Kingdom
87 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
88 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
89 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Also at Department of Physics and Astronomy, Tufts University, Medford, MA, United States of America.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States of America.

Also at Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden.

Also at Department of Physics, University of Illinois, Urbana, IL, United States of America.

Also at Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia – CSIC, Valencia, Spain.

Also at Department of Physics, University of British Columbia, Vancouver, BC, Canada.

Also at Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.

Also at Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany.

Also at Department of Physics, University of Warwick, Coventry, United Kingdom.

Also at Waseda University, Tokyo, Japan.

Also at Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel.

Also at Department of Physics, University of Wisconsin, Madison, WI, United States of America.

Also at Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany.

Also at Department of Physics, Yale University, New Haven, CT, United States of America.

Also at Yerevan Physics Institute, Yerevan, Armenia.

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Department of Physics, Stanford University, Stanford CA, United States of America.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Department of Physics, University of Michigan, Ann Arbor MI, United States of America.

Also at Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.

Also at Georgian Technical University (GTU), Tbilisi, Georgia.

Also at Giresun University, Faculty of Engineering, Turkey.

Also at Graduate School of Science, Osaka University, Osaka, Japan.

Also at Hellenic Open University, Patras, Greece.

Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.

Also at H. Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.

Also at Instituto Catalana de Recerca i Estudis Avancers, ICREA, Barcelona, Spain.

Also at Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Institute of Particle Physics (IPP), Canada.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.

Also at Louisiana Tech University, Ruston LA, United States of America.

Also at Manhattan College, New York NY, United States of America.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Near East University, Nicosia, North Cyprus, Mersin 10, Turkey.

Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.

Also at School of Physics, Sun Yat-sen University, Guangzhou, China.

Also at The City College of New York, New York NY, United States of America.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.

Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at TRIUMF, Vancouver, BC, Canada.

Also at Universita di Napoli Parthenope, Napoli, Italy.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

Also at Deceased.