Measurement of the Soft-Drop Jet Mass in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

Aaboud, M.; The ATLAS Collaboration

DOI
10.1103/PhysRevLett.121.092001

Publication date
2018

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of \( \log_{10} \rho^2 \), where \( \rho \) is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb\(^{-1}\) of \( \sqrt{s} = 13 \) TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

DOI: 10.1103/PhysRevLett.121.092001

The dynamics of strong interactions, described by quantum chromodynamics (QCD), are responsible for most of the physical processes occurring in proton-proton (\( pp \)) scattering at the Large Hadron Collider (LHC). The fundamental particles of QCD, quarks and gluons, cannot be observed directly and instead form collimated sprays of particles called jets when produced at high energy. The radiation pattern inside jets has been used extensively for identifying highly Lorentz boosted hadronically decaying massive particles [1]. Many of these techniques were motivated by recent advances in analytical calculations of jet substructure [8]. However, prior to this work, there has never been a direct comparison between collision data and calculations beyond the leading-logarithm (LL) accuracy of parton shower (PS) Monte Carlo (MC) programs [9]. The comparisons presented here begin the field of precision jet substructure, wherein data and calculations in the collinear regime of QCD can be used to test the modeling of final state radiation and maybe even extract fundamental parameters of the SM such as the strong coupling constant or the top quark mass [10]. Such precision understanding will also be essential to maximize the quantitative sensitivity of the LHC and future colliders to physics beyond the standard model.

Of particular importance is the jet mass, defined as the norm of the four-momentum sum of constituents inside a jet. The jet mass is a key jet substructure observable and is the most powerful tool for identifying Lorentz boosted hadronically decaying massive particles. Unlike Lorentz boosted bosons or top quarks, the mass of generic quark and gluon jets is set by the fragmentation of highly virtual partons [11]. A complete prediction for mass or other variables beyond LL has not been possible due to the presence of nonglobal logarithms (NGLs) [12]: resummation terms associated with particles that radiate out of, and then radiate back into, a jet. These terms are formally present at next-to-leading-logarithm (NLL) accuracy and have prevented full comparisons of observables beyond LL. However, using insights from modern analytical methods, the authors of Ref. [13] introduced a new procedure to systematically remove soft and wide-angle radiation from the jet (grooming) that is formally insensitive to NGLs. This procedure was extended in Ref. [14] to form the soft-drop grooming algorithm. The calculation of the masses of jets that have the soft-drop procedure applied is insensitive to NGLs. The distribution of the soft-drop mass has now been calculated at both next-to-leading order (NLO) with NLL [15,16] and leading order (LO) with next-to-next-to-leading-logarithm (NNLL) accuracy [17,18]. These are the most precise calculations for jet substructure at a hadron collider.

The soft-drop procedure acts on the clustering history of a sequential recombination jet algorithm [19]. In these

---

**Measurement of the Soft-Drop Jet Mass in pp Collisions at \( \sqrt{s} = 13 \) TeV with the ATLAS Detector**

M. Aaboud et al.
(The ATLAS Collaboration)

(Received 22 November 2017; revised manuscript received 21 March 2018; published 28 August 2018; corrected 29 June 2020)
algorithms, all inputs to jet-finding start as a proto-jet and
are combined pairwise using a distance metric in $y$-$\phi$ space
[20]. When the smallest distance is above some threshold $R$
(called the jet radius), the algorithm terminates and the
remaining proto-jets are the final jets. The clustering
history is the sequence of pairwise combinations that lead
to a particular jet. Jets at the LHC experiments are usually
clustered using the anti-$k_t$ algorithm [21], which has the
benefit of producing regularly shaped jets in $y$-$\phi$ space.
Even though anti-$k_t$ jets are useful experimentally, their
clustering history does not mimic the angular-ordered PS
[22] used in the related $k_t$ [19,23] and Cambridge-Aachen
[24,25] (C/A) algorithms. The soft-drop algorithm starts
by reclustering an anti-$k_t$ jet’s constituents with the C/A
algorithm. Next, the clustering tree is traversed from the
latest branch to the earliest and at each node the following
criterion is applied to proto-jets $j_1$ and $j_2$:

$$\min(p_{T,j_1}, p_{T,j_2}) > z_{cut} \left( \frac{\Delta R_{12}}{R} \right)^\beta,$$

where $p_T$ is the momentum of a jet transverse to the beam
pipe, $z_{cut}$ and $\beta$ are algorithm parameters, and $\Delta R_{12} = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$ is the distance in $y$-$\phi$ between the proto-
jets. The parameter $z_{cut}$ sets the scale of the energy removed
by the algorithm; $\beta$ tunes the sensitivity of the algorithm to
radiation removed from the jet. In the limit $\beta \to \infty$, the
original jet is untouched. The mass of the resulting jet is
referred to as the soft-drop jet mass, $m^{\text{soft\_drop}}$.

This Letter presents a measurement of the soft-drop jet
mass using 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $p\bar{p}$ data collected in
2016 by the ATLAS detector, and the first comparison to
predictions of jet substructure that are formally more
accurate than the LL PS approximation.

ATLAS is a particle detector designed to achieve nearly a
full $4\pi$ coverage in solid angle [26]. The inner tracking
detector (ID) is inside a 2 T magnetic field and is designed to
measure charged-particle trajectories up to $|\eta| = 2.5$.
Surrounding the ID are electromagnetic and hadronic calor-
imeters, which use liquid argon and lead, copper, or tungsten
absorber for the electromagnetic and forward ($|\eta| > 1.7$)
hadronic detectors, and scintillator-tile active material with
steel absorber for the central ($|\eta| < 1.7$) hadronic calorimeter.

For this study, jets are clustered using the anti-$k_t$ jet
algorithm with radius parameter $R = 0.8$ implemented in
FASTJET [27]. The inputs are topological calorimeter-
cell clusters calibrated using the local cluster weighting
algorithm [28]. In order to improve the rapidity resolution,
cluster four-vectors are corrected to point toward the
reconstructed primary collision vertex [29]. An overall
jet energy calibration, derived for $R = 0.8$ jets, accounts
for residual detector effects as well as contributions from
pileup (i.e., simultaneous additional $p\bar{p}$ collisions) in order
to make the reconstructed jet energy unbiased (up through
“absolute MC-based calibration” in Ref. [30]). Jets are
required to have $|\eta| < 1.5$ so that their calorimeter-cell
clusters are within the coverage of the ID.

Events were selected online using a two-level trigger
system [31] that is hardware-based at the first level and
software-based for the second level. In this analysis, the full-
luminosity jet trigger with the lowest $p_T$ threshold is nearly
100% efficient for jets with $p_T > 600$ GeV. Events are
required to have a minimum of two jets, at least one of which
has $p_T > 600$ GeV. In addition, a dijet topology is imposed
by requiring that the leading two $p_T$-ordered jets satisfy
$p_{T,1}/p_{T,2} < 1.5$: as the leading two jets are required to have
similar $p_T$, this removes events with additional energetic jets.

The soft-drop algorithm is then run on the leading two
jets in the selected events. Both of these jets are used for
the measurement. Three different values of $\beta \in \{0, 1, 2\}$
are considered. The value of $z_{cut}$ is fixed at 0.1 so that $\log(z_{cut})$
resummation is negligible [15]. The dimensionless mass
$\rho = m^{\text{soft\_drop}}/p_{T,\text{ungroomed}}$ is the observable of interest: as
the soft-drop mass is correlated with $p_{T,\rho}$ is a dimension-
less quantity that only weakly depends on $p_T$. For each $\beta$
value, $\log_{10}(\rho^2)$ is constructed from the jet’s mass after
the soft drop algorithm and its $p_T$ before (referred to as
$p_{T,\text{ungroomed}}$). The ungroomed jet $p_T$ is used because the
groomed version is collinear unsafe when $\beta = 0$ [15]. The
full $\log_{10}(\rho^2)$ distribution is studied, but the focus is on
the resummation region $[-2.9 < \log_{10}(\rho^2) < -1.3]$, where
resummation dominates over nonperturbative or fixed-
order parts of the recent precision calculations; studying the
distribution in log-scale allows this region to be studied
more closely.

After the event selection, the data are unfolded to correct for
detector effects. MC simulations are used to perform the
unfolding and for comparisons with the corrected data. The
unfolding procedure corrects detector-level [32] observables
to particle level. The particle-level selection is defined to
be as close as possible to the detector-level selection in
order to minimize the size of simulation-based corrections
when unfolding. Particle-level jets are clustered from
simulated particles with a mean lifetime $\tau > 30$ ps excluding
muons and neutrinos. These jets are built using the
same algorithm as for detector-level jets, and particle-level
events must pass the same dijet requirement. The experi-
mental resolution of the $\log_{10}(\rho^2)$ distribution depends on
the jet $p_T$, so the $\log_{10}(\rho^2)$ and $p_T$ distributions are
simultaneously unfolded. After correcting for the accept-
cance of the event selection, the full two-dimensional
distribution is unfolded using an iterative Bayesian (IB)
technique [33] with four iterations as implemented in the
RooUnfold framework [34]. The acceptance corrections
are largely independent of $\log_{10}(\rho^2)$, with a small effect below $-3$ due to the $\rho \neq 0$ requirement.

Several MC simulations are used to unfold and compare to the data. Dijet events were generated at LO using PYTHIA [35] 8.186, with the $2 \to 2$ matrix element (ME) convolved with the NNPDF2.3LO parton distribution function (PDF) set [36], and using the A14 [37] set of tuned PS and underlying-event model parameters. Additional radiation beyond the ME was simulated in PYTHIA 8 using the LL approximation for the $p_T$-ordered PS [38]. To provide several comparisons to data, additional dijet samples were simulated using different generators. SHERPA 2.1.1 [39]
generates events using multi-leg $2 \rightarrow 3$ matrix elements, which are matched to the PS following the CKKW prescription [40]. These SHERPA events were simulated using the CT10 LO PDF set [41] and the default SHERPA event tune. HERWIG++, 2.7.1 [42,43] events were generated with the $2 \rightarrow 2$ matrix element, convolved with the CTEQ6.1 PDF set [44] and configured with the UE-E10 tune [45]. Both SHERPA and HERWIG++ use angular ordering in the PS and a cluster model for hadronization [46]. All MC samples use Pythia 8 minimum bias events (MSTW2008LO PDF set [47] and A2 tune [48]) to simulate pileup. They were processed using the full ATLAS detector simulation [49] based on Geant4 [50].

Figure 1 shows the uncorrected data compared with detector-level simulation for Pythia, SHERPA, and HERWIG++ as well as particle-level simulation for Pythia. There are substantial migrations between the detector- and particle-level distributions, which cause large off-diagonal terms in the unfolding matrix especially at low values of $\log_{10}(\rho^2)$.

Various systematic uncertainties impact the soft-drop mass distribution. The sources of uncertainty can be classified into two categories: experimental and theoretical modeling. Experimental uncertainties are due to limitations in the accuracy of the modeling of calorimeter-cell cluster energies and positions as well as their reconstruction efficiency, and are evaluated as follows. Isolated calorimeter-cell clusters are matched to tracks; the mean and standard deviation of the energy-to-momentum ratio ($E/p$) is used for the cluster energy scale and resolution uncertainties, and the standard deviation of the relative position is used for the cluster angular resolution. In the track-momentum range $30 \text{ GeV} < p < 350 \text{ GeV}$, $E/p$ is augmented with information from testbeam studies [51]. For $|\eta| > 0.6$ in that $p$ range or for $p > 350 \text{ GeV}$ (and any $|\eta|$), a flat $10\%$ uncertainty is estimated for both the energy scale and resolution, motivated by earlier studies [52]. The reconstruction efficiency is studied using the fraction of tracks without a matched calorimeter-cell cluster. A series of validation studies are performed to ensure that these uncertainties are valid also for non-isolated clusters. Jets clustered from tracks are geometrically matched to calorimeter jets and the ratio of their $p_T$ and mass is sensitive to the jet energy scale (JES) and jet mass scale. Furthermore, the decomposition method [52–54] is used to propagate the cluster-based uncertainties to an effective JES, which agrees well with the observed in-situ shift for $R = 0.4$ ungroomed jets [30]. Finally, the jet mass scale and resolution are tested using the observed $W$ mass peak in $\ell\ell$ events. The same event selection and level of agreement is observed as in Ref. [55]. These additional studies confirm that the cluster-based uncertainties are valid for $\log_{10}(\rho^2)$.

One of the dominant uncertainties is due to the theoretical modeling of jet fragmentation (QCD modeling). In particular, as dijet simulation is used to unfold the data, the results of the analysis are sensitive to the choice of MC generator used for this procedure. The Pythia generator is used for the nominal sample, and comparisons are made with SHERPA and HERWIG++. The SHERPA and HERWIG++ generators give comparable results, so only the variation with SHERPA is used as a systematic uncertainty. The impact of this uncertainty is assessed by unfolding the data with the alternative response matrix. In addition to directly varying the model used to derive the response matrix, a data-driven nonclosure technique is used to estimate the potential bias from a given choice of prior and the number of iterations in the IB method [56]. The inverse of the response matrix is applied to the particle-level spectrum, which is reweighted until the folded spectrum agrees with data. This modified detector-level distribution is unfolded with the nominal response matrix and the difference between this and the reweighted particle-level spectrum is taken as an uncertainty. Finally, the sensitivity of the unfolding procedure to pileup is assessed by reweighting events to vary the distribution of the number of interactions in the MC simulation by $10\%$: the impact on the measurement is small. This is expected, since the soft-drop algorithm is designed to remove the soft, wide-angle radiation that pileup contributes.

The uncertainties are dominated by QCD modeling and the cluster energy scale. The former are largest ($\lesssim 20\%$) at low $\log_{10}(\rho^2)$ where nonperturbative effects introduce a sensitivity to the $\log_{10}(\rho^2)$ distribution prior, and are $\lesssim 10\%$ for the rest of the distribution. Cluster energy uncertainties are large ($\lesssim 5\%$) at low $\log_{10}(\rho^2)$ where the cluster multiplicity is low and also at high $\log_{10}(\rho^2)$ where the energy of the hard prongs, rather than their opening angle, dominates the mass resolution. Other sources of uncertainty are typically below $5\%$ across the entire distribution. A summary of the relative sizes of the various systematic uncertainties for $\beta = 0$ is shown in Fig. 2. The relative sizes of the different sources of systematic uncertainty are similar for $\beta = 1$ and $\beta = 2$, except that the large uncertainty at low $\log_{10}(\rho^2)$ values spans a larger range.

FIG. 2. The breakdown of systematic and statistical uncertainties as a function of $\log_{10}(\rho^2)$ for $\beta = 0$. 

092001-4
FIG. 3. The unfolded $\log_{10}(p_T^2)$ distribution for anti-$k_T$ $R = 0.8$ jets with $p_T^{\text{had}} > 600$ GeV, after the soft-drop algorithm is applied for $\beta \in \{0, 1, 2\}$, in data compared to PYTHIA, SHERPA, and HERWIG++ particle-level (left), and NLO + NLL (+NP) [15] and LO + NNLL [17,18] theory predictions (right). The LO + NNLL calculation does not have nonperturbative corrections; the region where these are expected to be large is shown in a open marker (but no correction is applied), while regions where they are expected to be small are shown with a filled marker. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma_{\text{resum}}$, measured in the resummation region, $-2.9 < \log_{10}(p_T^2) < -1.3$. The NLO + NLL + NP cross section in this resummation regime is 0.14, 0.19, and 0.21 nb for $\beta = 0, 1, 2$, respectively [15].

The unfolded data are shown in Fig. 3. They are compared to the predictions of the PYTHIA, SHERPA, and HERWIG++ generators, as well as the NLO + NLL prediction from Refs. [15,16] and the LO + NNLL prediction from Refs. [17,18]. The (N)NNLL calculations use NLOJet++ [57,58] (MG5_aMC [59]) with the CT14nlo [60] (MSTW2008LO) PDF set for matrix element calculations. The distributions are normalized to the integrated cross section, $\sigma_{\text{resum}}$, measured in the resummation region, $-2.9 < \log_{10}(p_T^2) < -1.3$. The uncertainties due to the analytical calculation come from independently varying each of the renormalization, factorization, and resummation scales by factors of 2 and 1/2. The NLO + NLL calculation is also given with nonperturbative (NP) corrections based on the average of various MC models with NP effects turned on and off; the envelope of predictions is added as...
an uncertainty [15]. The LO + NNLL predictions do not contain NP effects, but the open makers in Fig. 3 indicate where NP are expected to be large ("large NP effects").

The MC predictions and the analytical calculations are expected to be accurate in different regions of \(\log_{10}(\rho^2)\) [15,17,18]. In general, nonperturbative effects are large for \(\log_{10}(\rho^2) < -2.9\) (where small-angle or soft gluon emissions dominate) and small for \(-2.9 < \log_{10}(\rho^2) < -1.3\) where resummation dominates. Fixed, higher-order corrections are expected to be important for \(\log_{10}(\rho^2) > -1.3\), where large-angle gluon emission may play an important role. This implies that the region \(-2.9 < \log_{10}(\rho^2) < -1.3\) (the resummation region) should have the most reliable predictions for both the MC generators and the LO + NNLL analytical calculation, while the NLO + NLL calculation should also be accurate for \(\log_{10}(\rho^2) > -1.3\). For all values of \(\beta\), the measured and predicted shapes agree well in the resummation region, and the data and NLO + NLL prediction continue to agree well at higher values of \(\log_{10}(\rho^2)\). At more negative values of \(\log_{10}(\rho^2)\), nonperturbative effects lead to distinctly different predictions between the MC generators and the calculations without NP corrections; the data fall below the predictions for all \(\beta\) values. Interestingly, the NNLL calculation is not everywhere a better model of the data than the NLL calculation in the resummation regime and NP effects can also be comparable to the higher order resummation corrections in this regime. Therefore, improved precision for the future will require will require a careful comparative analysis of the different perturbative calculations as well as a deeper and possibly analytic understanding of NP effects.

As \(\beta\) increases, the fraction of radiation removed by soft-drop grooming decreases and the impact of nonperturbative effects grows larger [17,18], so the range over which the analytical calculations are accurate also decreases. The degree of agreement between data and all the calculations for \(\log_{10}(\rho^2) < -3\) does substantially worsen for \(\beta \in \{1, 2\}\), especially when NP corrections are not included. Agreement between the data and the MC generators remains generally within uncertainties for all values of \(\beta\). Digitized versions of the results, along with versions binned in jet \(p_T\) can be found at Ref. [61].

In summary, a measurement of the soft-drop jet mass is reported. The measurement provides a comparison of the internal properties of jets between 32.9 fb\(^{-1}\) of 13 TeV \(pp\) collision data collected by the ATLAS detector at the LHC and precision QCD calculations accurate beyond leading logarithm. Where the calculations are well defined perturbatively, they agree well with the data; in regions where nonperturbative effects are expected to be significant, the calculations disagree with the data and the predictions from MC simulation are better able to reproduce the data. The dijet cross section is presented as a normalized fiducial dijet differential cross section as a function of \(\log_{10}(\rho^2)\) for each jet, allowing the results to be used to constrain future calculations and MC generator predictions.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MEST, Serbia; MSSR, Serbia; AARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partagé le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [62].


[20] ATLAS uses a right-handed coordinate system with its origin at the interaction point in the center of the detector. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam axis. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). The rapidity, differences of which are invariant under longitudinal boosts also for massive particles, is defined as y = 1/2 ln[(E + p_z)/(E − p_z)].


Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

INFN Sezione di Bologna, Bologna, Italy

Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

Physikalisches Institut, University of Bonn, Bonn, Germany

Department of Physics, Boston University, Boston, Massachusetts, USA

Department of Physics, Brandeis University, Waltham, Massachusetts, USA

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil

Federal University of Sao Joao del Rei (UFJS), Sao Joao del Rei, Brazil

Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton, New York, USA

Transilvania University of Brasov, Brasov, Romania

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania

National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania

University Politehnica Bucharest, Bucharest, Romania

West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa, Ontario, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

Departamento de Física, Universidad Técnica Federico Santa Maria, Valparaiso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Department of Physics, Nanjing University, Jiangsu, China

Physics Department, Tsinghua University, Beijing 100084, China

University of Chinese Academy of Science (UCAS), Beijing, China

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China

School of Physics, Shandong University, Shandong, China

Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Tsung-Dao Lee Institute, China

Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

Weizmann Institute of Science, Rehovot, Israel

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Rende, Italy

Dipartimento di Fisica, Università della Calabria, Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas, Texas, USA

Physics Department, University of Texas at Dallas, Richardson, Texas, USA

DESY, Hamburg and Zeuthen, Germany

Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham, North Carolina, USA

SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN e Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova, Genova, Italy

Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia

High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Oskar Klein Centre</td>
<td>Stockholm, Sweden</td>
</tr>
<tr>
<td>Physics Department, Royal Institute of Technology</td>
<td>Stockholm, Sweden</td>
</tr>
<tr>
<td>Department of Physics &amp; Astronomy and Chemistry, Stony Brook University</td>
<td>New York, USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Sussex</td>
<td>Brighton, United Kingdom</td>
</tr>
<tr>
<td>School of Physics, University of Sydney</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Institute of Physics, Academia Sinica</td>
<td>Taipei, Taiwan</td>
</tr>
<tr>
<td>Department of Physics, Technion: Israel Institute of Technology</td>
<td>Haifa, Israel</td>
</tr>
<tr>
<td>Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv</td>
<td>Tel Aviv, Israel</td>
</tr>
<tr>
<td>Department of Physics, Aristotle University of Thessaloniki, Thessaloniki</td>
<td>Greece</td>
</tr>
<tr>
<td>International Center for Elementary Particle Physics and Department of</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Physics, The University of Tokyo</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Graduate School of Science and Technology, Tokyo Metropolitan University</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Department of Physics, Tokyo Institute of Technology</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Tomsk State University</td>
<td>Tomsk, Russia</td>
</tr>
<tr>
<td>Department of Physics, University of Toronto</td>
<td>Toronto, Ontario, Canada</td>
</tr>
<tr>
<td>INFN-TIFPA, Trento, Italy</td>
<td></td>
</tr>
<tr>
<td>University of Trento</td>
<td>Trento, Italy</td>
</tr>
<tr>
<td>TRIUMF, Vancouver BC</td>
<td>Toronto, Ontario, Canada</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, York University</td>
<td>Toronto, Ontario, Canada</td>
</tr>
<tr>
<td>Faculty of Pure and Applied Sciences, and Center for Integrated Research</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>in Fundamental Science and Engineering, University of Tsukuba</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Tufts University</td>
<td>Medford, Massachusetts, USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of California Irvine</td>
<td>Irvine, California, USA</td>
</tr>
<tr>
<td>INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine</td>
<td></td>
</tr>
<tr>
<td>ICTP, Trieste</td>
<td></td>
</tr>
<tr>
<td>Departamento di Chimica, Fisica e Ambiente, Università di Udine, Udine</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Uppsala</td>
<td></td>
</tr>
<tr>
<td>Uppsala, Sweden</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, University of Illinois</td>
<td>Urbana, Illinois</td>
</tr>
<tr>
<td>Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de</td>
<td>Valencia—CSIC, Spain</td>
</tr>
<tr>
<td>Departamento de Fisica y Astronomia, University of British Columbia</td>
<td>Vancouver, British Columbia, Canada</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Victoria</td>
<td>Victoria, British Columbia, Canada</td>
</tr>
<tr>
<td>Department of Physics, University of Warwick</td>
<td>Coventry, United Kingdom</td>
</tr>
<tr>
<td>Waseda University</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Department of Particle Physics, The Weizmann Institute of Science</td>
<td>Rehovot, Israel</td>
</tr>
<tr>
<td>Department of Physics, University of Wisconsin</td>
<td>Madison, Wisconsin, USA</td>
</tr>
<tr>
<td>Fakultät für Physik und Astronomie, Julius-Maximilians-Universität</td>
<td>Würzburg, Germany</td>
</tr>
<tr>
<td>Detmold, Germany</td>
<td></td>
</tr>
<tr>
<td>Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik,</td>
<td></td>
</tr>
<tr>
<td>Bergische Universität Wuppertal, Wuppertal, Germany</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Yale University</td>
<td>New Haven, Connecticut, USA</td>
</tr>
<tr>
<td>Yerevan Physics Institute</td>
<td>Yerevan, Armenia</td>
</tr>
<tr>
<td>Centre de Calcul de l’Institut National de Physique Nucléaire et de</td>
<td></td>
</tr>
<tr>
<td>Physique des Particules (IN2P3), Villeurbanne, France</td>
<td></td>
</tr>
<tr>
<td>Academia Sinica Grid Computing, Institute of Physics, Academia Sinica</td>
<td></td>
</tr>
<tr>
<td>Taipei, Taiwan</td>
<td></td>
</tr>
</tbody>
</table>

1. Deceased.
2. Also at Department of Physics, King’s College London, London, United Kingdom.
3. Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
4. Also at Novosibirsk State University, Novosibirsk, Russia.
5. Also at TRIUMF, Vancouver, British Columbia, Canada.
6. Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.
7. Also at Physics Department, An-Najah National University, Nablus, Palestine.
8. Also at Department of Physics, California State University, Fresno, CA, USA.
9. Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
10. Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
11. Also at Departamento de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
12. Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
13. Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
14. Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
15. Also at Universita di Napoli Parthenope, Napoli, Italy.
16. Also at Institute of Particle Physics (IPP), Canada.
17. Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
18. Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
19. Also at Borough of Manhattan Community College, City University of New York, New York City, USA.