Search for High-Mass Resonances Decaying to $\tau\nu$ in $pp$ Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

Aaboud, M.; The ATLAS Collaboration

DOI
10.1103/PhysRevLett.120.161802

Publication date
2018

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Aaboud, M., & The ATLAS Collaboration (2018). Search for High-Mass Resonances Decaying to $\tau\nu$ in $pp$ Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector. Physical Review Letters, 120(16), [161802]. https://doi.org/10.1103/PhysRevLett.120.161802
Search for High-Mass Resonances Decaying to $\tau\nu$ in $pp$ Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

M. Aaboud et al.*
(ATLAS Collaboration)

(Received 22 January 2018; published 20 April 2018)

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}=13$ TeV produced by the Large Hadron Collider is presented. Only $\tau$-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy $W'$ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal $G(221)$ model are excluded at the 95% credibility level.

DOI: 10.1103/PhysRevLett.120.161802

Heavy charged gauge bosons ($W'$) appear frequently in theories of physics beyond the standard model (SM). They are often assumed to obey lepton universality, such as in the sequential standard model (SSM) [1], which predicts a $W'_{SSM}$ boson with couplings identical to those of the SM $W$ boson. However, this assumption is not required. In particular, models in which the $W'$ boson couples preferentially to third-generation fermions may be linked to the high mass of the top quark [2–5] or to recent indications of lepton flavor universality violation in $B$ meson decays [6,7]. An example is the nonuniversal $G(221)$ model (NU) [4,5], which exhibits a $SU(2)_L \times SU(2)_R \times U(1)$ gauge symmetry, where $SU(2)_L$ couples to light fermions (first two generations), $SU(2)_R$ couples to heavy fermions (third generation), and $\phi_{NU}$ is the mixing angle between them. The model predicts $W'_{NU}$ and $Z'_{NU}$ bosons which are approximately degenerate in mass and couple only to left-handed fermions. At leading order and neglecting sign, the $W'_{NU}$ couplings to heavy (light) fermions are scaled by cot $\phi_{NU}$ (tan $\phi_{NU}$) relative to those of $W'_{SSM}$. Thus cot $\phi_{NU} > 1$ corresponds to enhanced couplings to tau leptons while cot $\phi_{NU} = 1$ yields $W'_{NU}$ couplings identical to those of $W'_{SSM}$. For $Z'_{NU}$, the coupling to heavy (light) fermions is given by $g \cot \phi_{NU}$ ($g \tan \phi_{NU}$), where $g$ is the SM weak coupling constant. At high values of cot $\phi_{NU}$, the branching fraction of $W'_{NU}$ to a tau lepton ($\tau$) and a neutrino ($\nu$) approaches 26%.

In this Letter, a search for high-mass resonances (0.5–5 TeV) decaying to $\tau\nu$ using proton-proton ($pp$) collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV produced by the Large Hadron Collider (LHC) is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. Only $\tau$ decays with hadrons in the final state are considered; these account for 65% of the total $\tau$ branching fraction. A counting experiment is performed from events that pass a high transverse-mass threshold, optimized separately for each of the signal mass hypotheses.

A direct search for high-mass resonances decaying to $\tau\nu$ has been performed by the CMS Collaboration using 19.7 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=8$ TeV [8]. The search excludes $W'_{SSM}$ with a mass below 2.7 TeV at the 95% credibility level and $W'_{NU}$ with a mass below 2.7–2.0 TeV for cot $\phi_{NU}$ in the range 1.0–5.5. The most stringent limit on $W'_{SSM}$ from searches in the $e\nu$ and $\mu\nu$ final states is 5.1 TeV from ATLAS [9] using 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV.

The ATLAS experiment is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry [10,11]. It consists of an inner detector for charged-particle tracking in the pseudorapidity range $|\eta| < 2.5$, electromagnetic and hadronic calorimeters that provide energy measurements up to $|\eta| = 4.9$, and a muon spectrometer that covers $|\eta| < 2.7$. A two-level trigger system is used to select events [12].

Hadrronic $\tau$ decays are composed of a neutrino and a set of visible decay products ($\tau_{had-vis}$), typically one or three charged pions and up to two neutral pions. The reconstruction of the visible decay products [13] is seeded by jets reconstructed from topological clusters of energy depositions [14] in the calorimeter. The $\tau_{had-vis}$ candidates must have a transverse momentum $p_T > 50$ GeV, $|\eta| < 2.4$.
(excluding $1.37 < |\eta| < 1.52$), one or three associated tracks, and an electric charge of $\pm 1$. Only the candidate with the highest $p_T$ in each event is selected. Hadronic $\tau$ decays are identified using boosted decision trees that exploit calorimetric shower shape and tracking information [15,16]. Loose criteria are used, which offer adequate rejection against quark- and gluon-initiated jets. Very loose criteria, with about one quarter of the rejection power, are used to create control regions. An additional dedicated veto is used to reduce the number of electrons misidentified as $\tau_{\text{had-vis}}$. The total efficiency for $\tau_{\text{had-vis}}$ is $\sim 60\%$ at $p_T = 100$ GeV and decreases to $\sim 30\%$ at $p_T = 2$ TeV, where the large boost and collimation of the decay products cause inefficiencies in the track reconstruction and association.

Events containing electron or muon candidates are rejected. Electron candidates [17–19] must have $p_T > 20$ GeV, $|\eta| < 2.47$ (excluding $1.37 < |\eta| < 1.52$) and must pass a loose likelihood-based identification selection. Muon candidates [20] are required to have $p_T > 20$ GeV, $|\eta| < 2.5$ and to pass a very loose muon identification requirement. The missing transverse momentum, with magnitude $E_T^{\text{miss}}$, is calculated as the negative vectorial sum of the $p_T$ of all reconstructed and calibrated $\tau_{\text{had-vis}}$ candidates and jets [21–23]. A correction that accounts for momentum not associated with these reconstructed objects is calculated using inner-detector tracks that originate from the hard-scattering vertex [23]. The correction contributes no more than 5% on average in signal events.

Events are selected by triggers that require $E_T^{\text{miss}}$ above thresholds of 70, 90, or 110 GeV depending on the data-taking period. To minimize uncertainties in the trigger efficiency, the offline reconstructed $E_T^{\text{miss}}$ is required to be at least 150 GeV. At this threshold the trigger efficiency is 80% and increases to more than 98% above 250 GeV. This behavior is determined by the $E_T^{\text{miss}}$ resolution of the trigger, which is lower than in the offline reconstruction. The events must satisfy criteria designed to reduce backgrounds from cosmic rays, single-beam-induced events and calorimeter noise [24] and they must contain a loose $\tau_{\text{had-vis}}$ candidate. To further suppress single-beam-induced background, the $\tau_{\text{had-vis}}$ must have at least one associated track with $p_T > 10$ GeV. The multijet background is further suppressed by requiring that the $\tau_{\text{had-vis}}$ $p_T$ and the $E_T^{\text{miss}}$ are balanced: $0.7 < p_T^\tau/E_T^{\text{miss}} < 1.3$. The azimuthal angle between the $\tau_{\text{had-vis}}$ and the missing momentum, $\Delta \phi$, is required to be larger than 2.4. Finally, thresholds ranging from 0.25 to 1.8 TeV in steps of 0.05 TeV are placed on the transverse mass, $m_T$, where $m_T^2 = 2p_T E_T^{\text{miss}}(1 - \cos \Delta \phi)$.

The background is divided into events where the selected $\tau_{\text{had-vis}}$ originates from a quark- or gluon-initiated jet (jet background) and those where it does not (nonjet background). The jet background originates primarily from $W/Z$ + jets and multijet production and is estimated using a data-driven technique. The nonjet background is estimated using simulation and originates primarily from $W/Z/\gamma$, $t\bar{t}$, single top-quark, and diboshon ($WW$, $WZ$ and $ZZ$) production (collectively called others).

The event generators and other software packages used to produce the simulated samples are summarized in Table I. The $W/Z/\gamma$ sample is artificially enhanced in high-mass events to improve statistical coverage in the scanned mass range. Particle interactions with the ATLAS detector are simulated with GEANT 4 [25,26] and contributions from additional $pp$ interactions (pileup) are simulated using PYTHIA 8.186 and the MSTW2008LO parton distribution function (PDF) set [27]. Finally, the simulated events are processed through the same reconstruction software as the data. Corrections are applied to account for mismodeling of the momentum scales and resolutions of reconstructed objects, the $\tau_{\text{had-vis}}$ reconstruction and identification efficiency, the electron to $\tau_{\text{had-vis}}$ misidentification rate, and the $E_T^{\text{miss}}$ trigger efficiency.

The simulated samples are normalized using the integrated luminosity of the collected data set and their theoretical cross sections. The $W/Z/\gamma$ cross sections are calculated as a function of the boson mass at next-to-next-to-leading order (NNLO) [49] using the CT14NNLO PDF set, including electroweak corrections at next-to-leading order (NLO) [50] using the MRST2004QED PDF set [51]. Uncertainties are taken from Ref. [52] and include variations of the PDF sets, scale, $\alpha_s$, beam energy, and electroweak corrections. The variations amount to a $\sim 5\%$ total uncertainty in the $W/Z/\gamma$ cross section at low mass, increasing to 34% at 2 TeV. The $t\bar{t}$ and single top-quark production cross sections are

<table>
<thead>
<tr>
<th>Process</th>
<th>Matrix element</th>
<th>Nonperturbative</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W/Z/\gamma$</td>
<td>POWHEG-Box 2, CT10, PHOTOS++ 3.52</td>
<td>PYTHIA 8.186, AZNLO, CTEQ6L1, EVTGEN 1.2.0</td>
<td>[28–36]</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>POWHEG-Box 2, CT10</td>
<td>PYTHIA 6.428, P2012, CTEQ6L1, EVTGEN 1.2.0</td>
<td>[37–39]</td>
</tr>
<tr>
<td>Single top</td>
<td>POWHEG-Box 1, CT10F4, MADSPIN</td>
<td>PYTHIA 6.428, P2012, CTEQ6L1, EVTGEN 1.2.0</td>
<td>[40–43]</td>
</tr>
<tr>
<td>Diboson</td>
<td>SHERPA 2.1.1, CT10</td>
<td>SHERPA 2.1.1</td>
<td>[44–48]</td>
</tr>
</tbody>
</table>
The simulated samples are affected by uncertainties associated with the generation of the events, the detector simulation, and the determination of the integrated luminosity. Uncertainties related to the modeling of the hard scatter, radiation, and fragmentation are at most 2% of the total background estimate. Uncertainties in the detector scatter, radiation, and fragmentation are at most 2% of the simulation, and the determination of the integrated luminosity associated with the generation of the events, the detector uncertainty in the tag events. An additional uncertainty that increases by 20%–25% per TeV is assigned to $\tau_{\text{had-vis}}$ candidates with $p_T > 150$ GeV in accord with studies of high-$p_T$ jets [58]. The uncertainty in the $\tau_{\text{had-vis}}$ energy scale is 2%–3%. The probability for electrons to be misidentified as hadrons is measured with a precision of 3%–14% [16]. The uncertainty in the $E_T^{\text{miss}}$ trigger efficiency is negligible for $E_T^{\text{miss}} > 300$ GeV and can be as large as 10% for $E_T^{\text{miss}} < 300$ GeV. Uncertainties associated with reconstructed electrons, muons, and jets are found to have a very small impact. The uncertainty in the combined 2015 + 2016 integrated luminosity is 2.1%, derived following a methodology similar to that used in Ref. [59], and has a minor impact. The uncertainty related to the simulation of pileup is ~1%.

The $W'$ signal events are modeled by reweighting the $W$ sample using a leading-order matrix-element calculation. Electroweak corrections for the $W$ cross section and interference between $W$ and $W'$ are not included as they are model dependent. Uncertainties in the $W'$ cross section are estimated in the same way as for $W$ bosons. They are not included in the fitting procedure used to extract experimental cross-section limits, but are instead included when overlaying predicted model cross sections. Uncertainties in the $W'$ acceptance due to PDF, scale, and $\alpha_S$ variations are negligible. In the NU model, the total decay width increases to 35% of the pole mass for large values of $\cot\phi_{\text{NU}}$, which decreases the signal acceptance as more events are produced at low mass. Decays to $WZ$ and $Wh$ are not considered in the calculation of the total $W'_{\text{NU}}$ decay width as their impact is small ($< 7\%$) and model dependent. Values of $\cot\phi_{\text{NU}} > 5.5$ are not considered as the model is nonperturbative in this range.

The jet background contribution is estimated using events in three control regions (CR1, CR2, and CR3). The events must pass the selection for the signal region, except in CR1 and CR3 they must fail loose but pass very loose $\tau_{\text{had-vis}}$ identification and in CR2 and CR3 they must have $E_T^{\text{miss}} < 100$ GeV and the requirement on $p_T^\tau/E_T^{\text{miss}}$ is removed. The low-$E_T^{\text{miss}}$ requirement yields high multijet purity in CR2 and CR3, while the very loose identification preferentially rejects gluon-initiated jets over quark-initiated jets. This produces a similar fraction of quark-initiated jets in all control regions, which ensures minimal correlation between the identification and $E_T^{\text{miss}}$. The estimated jet contribution is defined as $N_{\text{jet}} = N_{\text{CR1}}N_{\text{CR2}}/N_{\text{CR3}}$. The nonjet contamination in CR1 (10%), CR2 (3.7%), and CR3 (0.5%) is subtracted using simulation. The transfer factor, $N_{\text{CR2}}/N_{\text{CR3}}$, is parametrized in $\tau_{\text{had-vis}} p_T$ and track multiplicity and is in the range 0.4–0.7 (0.15–0.3) for 1-track (3-track) $\tau_{\text{had-vis}}$. Systematic uncertainties are assigned to account for any residual correlation between the transfer factor and the $E_T^{\text{miss}}$ and $p_T^\tau/E_T^{\text{miss}}$ selection criteria, which would arise if the jet composition was different in CR1 and CR3. They are evaluated by repeating the jet estimate with the following modified control region definitions: (a) altered very loose $\tau_{\text{had-vis}}$ identification criteria, (b) modified $E_T^{\text{miss}}$ and $p_T^\tau/E_T^{\text{miss}}$ selection, and (c) CR2 and CR3 replaced by alternative control regions rich in $W(\rightarrow \mu\nu)$ + jets events. The corresponding variations define the dominant uncertainty in the jet background contribution, which ranges from 20% at $m_T = 0.2$ TeV to $\pm 200\%$ at $m_T = 2$ TeV, where the jet background is subdominant. The uncertainty due to the subtraction of nonjet contamination in the control regions is negligible.

To reduce the impact of statistical fluctuations in the jet background estimate, a function $f(m_T) = m_T^{a + b \log m_T}$, where $a$ and $b$ are free parameters, is fitted to the estimate in the range $400 < m_T < 800$ GeV and is used to evaluate the jet background in the range $m_T > 500$ GeV. The impact of altering the fit range leads to an uncertainty that increases with $m_T$, reaching 50% at $m_T = 2$ TeV. The statistical uncertainty from the control regions is propagated using pseudoexperiments and also reaches 50% at $m_T = 2$ TeV.

Figure 1 shows the observed $m_T$ distribution of the data after event selection, including the estimated SM background contributions and predictions for $W'_{\text{SSM}}$ and $W'_{\text{NU}}$ ($\cot\phi_{\text{NU}} = 5.5$) bosons with masses of 3 TeV. The number of observed events is consistent with the expected SM background. Therefore, upper limits are set on the production of a high-mass resonance decaying to $\tau\nu$. The statistical analysis uses a likelihood function constructed as the Poisson probability describing the total number of observed events given the signal-plus-background expectation. Systematic uncertainties in the expected number of events are incorporated into the likelihood via nuisance parameters constrained by Gaussian prior probability density distributions. Correlations between signal and background are taken into account. A signal-strength parameter, with a uniform prior probability density distribution, multiplies the expected signal. The dominant relative uncertainties in the expected signal and background contributions are shown in Fig. 2 as a function of the $m_T$ threshold.

Limits are set at the 95% credibility level (C.L.) using the Bayesian Analysis Toolkit [60]. Figure 3 shows the

...
model-independent upper limits on the visible $\tau\nu$ production cross section, $\sigma(pp\to\tau\nu+X)\mathcal{A}\epsilon$, as a function of the $m_T$ threshold, where $\mathcal{A}$ is the fiducial acceptance (including the $m_T$ threshold) and $\epsilon$ is the reconstruction efficiency. Model-specific limits can be derived by evaluating $\sigma$, $\mathcal{A}$, and $\epsilon$ for the model in question and checking if the corresponding visible cross section is excluded at any $m_T$ threshold. This allows the results to be reinterpreted for a broad range of models, regardless of their $m_T$ distribution. Good agreement between the generated and reconstructed $m_T$ distributions is found, indicating that a reliable calculation of the $m_T$ threshold acceptance can be made at generator level. The reconstruction efficiency depends on $m_T$, $\epsilon(m_T[\text{TeV}]) = 0.633 - 0.313m_T + 0.0688m_T^2 - 0.00575m_T^3$, ranging from 60% at 0.2 TeV to 7% at 5 TeV, and must be appropriately integrated out given the $m_T$ distribution of the model. The relative uncertainty in the parameterized efficiency due to the choice of signal model is $\sim 10\%$. With these inputs the visible cross sections for $W'_{\text{SSM}}$ and $W'_{\text{NU}}$ bosons could be reproduced within 10% using only generator-level information. Data and details to facilitate reinterpretations can be found at Ref. [61].

Limits are also set on benchmark models by selecting the most sensitive $m_T$ threshold for each $W'$ mass hypothesis ($\sim 0.6m_{W'}$ up to a maximum of 1.45 TeV). The chosen threshold is found to have little dependence on the $W'$ width. Figure 4(a) shows the 95% C.L. upper limit on the cross section times branching fraction as a function of $m_{W'}$ in the SSM. Heavy $W'_{\text{SSM}}$ bosons with a mass lower than 3.7 TeV are excluded, with an expected exclusion limit of 3.8 TeV. Figure 4(b) shows the excluded region in the parameter space of the nonuniversal $G(221)$ model. Heavy $W'_{\text{SSM}}$ bosons with a mass lower than 2.2–3.8 TeV are excluded depending on $\cot\phi_{\text{NU}}$, thereby probing a significantly larger region of parameter space than previous searches [8]. The $W'_{\text{NU}}$ limits are typically weaker than the $W'_{\text{SSM}}$ limits as the increased $W'$ width yields lower acceptances, while the enhancement in the decay rate cancels with the suppression in the production via first- and second-generation quarks. Limits from the ATLAS $ee$, $\mu\mu$, and $\tau\tau$ searches [58,62] are

![FIG. 1. Transverse mass distribution after the event selection. The total impact of the statistical and systematic uncertainties on the SM background is depicted by the hatched area. The ratio of the data to the estimated SM background is shown in the lower panel. The prediction for $W'_{\text{SSM}}$ and $W'_{\text{NU}}$ (cot $\phi_{\text{NU}} = 5.5$) bosons with masses of 3 TeV are superimposed.](image)

![FIG. 2. Dominant relative uncertainties in the expected signal and background contributions as a function of the $m_T$ threshold. For each threshold a $W'_{\text{SSM}}$ boson with a mass of approximately 1.7 times the threshold is chosen. Theory includes uncertainties in the cross sections used to normalize the simulated samples and uncertainties associated with the modeling provided by the event generators. Other is the impact of all other uncertainties added in quadrature.](image)

![FIG. 3. The 95% C.L. upper limit on the visible $\tau\nu$ production cross section as a function of the $m_T$ threshold.](image)
also overlaid, showing that the $\tau\nu$ search is complementary and extends the sensitivity over a large fraction of the parameter space. These results suggest that the $\tau\nu$ searches should be considered when placing limits on nonuniversal extended gauge groups, such as those seeking to explain lepton flavor violation in $\nu\tau$ production, allowing interpretation in a broad range of models. Sequential standard model $W_{SM}$ bosons with masses less than 3.7 TeV are excluded at 95% C.L., while nonuniversal $G(221)$ $W_{NU}$ bosons with masses less than 2.2–3.8 TeV are excluded depending on the model parameters.

In summary, a search for $W' \to \tau\nu$ in $36.1 \text{ fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the LHC is presented. The channel where the $\tau$ decays hadronically is analyzed and no significant excess over the SM expectation is found. Upper limits are set on the visible cross section for $W_{SM}$ production, allowing interpretation in a broad range of models. Sequential standard model $W_{SM}$ bosons with masses less than 3.7 TeV are excluded at 95% C.L., while nonuniversal $G(221)$ $W_{NU}$ bosons with masses less than 2.2–3.8 TeV are excluded depending on the model parameters.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; AU, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICyT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; HERAKLEITOS, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSE, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [66].


[11] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the \(z\) axis along the beam pipe. The \(x\) axis points from the IP to the center of the LHC ring, and the \(y\) axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the \(z\) axis. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln\tan(\theta/2)\).


M. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a $W^-$ or $H^-$, Phys. Rev. D 82, 054018 (2010).


ATLAS Collaboration, HepData entry for this article, https://www.hepdata.net/record/80812.


93Department of Physics and Astronomy, Michigan State University, East Lansing Michigan, USA
94aINFN Sezione di Milano, Milano, Italy
94bDipartimento di Fisica, Università di Milano, Milano, Italy
95B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
96Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of Belarus
97Group of Particle Physics, University of Montreal, Montreal Québec, Canada
98P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
99Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
100National Research Nuclear University MEPhI, Moscow, Russia
101D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
102Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
103Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
104Nagasaki Institute of Applied Science, Nagasaki, Japan
105Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
106aINFN Sezione di Napoli, Napoli, Italy
106bDipartimento di Fisica, Università di Napoli, Napoli, Italy
107Department of Physics and Astronomy, University of New Mexico, Albuquerque New Mexico, USA
108Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
109Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
110Department of Physics, Northern Illinois University, DeKalb Illinois, USA
111Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
112Department of Physics, New York University, New York New York, USA
113Ohio State University, Columbus Ohio, USA
114Faculty of Science, Okayama University, Okayama, Japan
115Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA
116Department of Physics, Oklahoma State University, Stillwater Oklahoma, USA
117Palacký University, RCPTM, Olomouc, Czech Republic
118Center for High Energy Physics, University of Oregon, Eugene Oregon, USA
119LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
120Graduate School of Science, Osaka University, Osaka, Japan
121Department of Physics, University of Oslo, Oslo, Norway
122Department of Physics, Oxford University, Oxford, United Kingdom
123aINFN Sezione di Favia, Italy
123bDipartimento di Fisica, Università di Pavia, Pavia, Italy
124Department of Physics, University of Pennsylvania, Philadelphia Pennsylvania, USA
125National Research Centre “Kurchatov Institute” B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
126aINFN Sezione di Pisa, Pisa, Italy
126bDipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
127Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania, USA
128aLaboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal
128bFaculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
128cDepartment of Physics, University of Coimbra, Coimbra, Portugal
128dCentro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
128eDepartamento de Física, Universidade do Minho, Braga, Portugal
128fDepartamento de Física Teorica y del Cosmos, Universidad de Granada, Granada, Spain
128gDép Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
129Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
130Czech Technical University in Prague, Praha, Czech Republic
131Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
132State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
133Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
134aINFN Sezione di Roma, Roma, Italy
134bDipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
134cINFN Sezione di Roma Tor Vergata, Roma, Italy
135aINFN Sezione di Roma Tre, Roma, Italy
135bDipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
136aINFN Sezione di Roma Tre, Roma, Italy
137aFaculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco
137bCentre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
Deceased.

\(^{a}\)Also at Department of Physics, King’s College London, London, United Kingdom.

\(^{b}\)Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

\(^{c}\)Also at Novosibirsk State University, Novosibirsk, Russia.

\(^{d}\)Also at TRIUMF, Vancouver BC, Canada.

\(^{e}\)Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.

\(^{f}\)Also at Physics Department, An-Najah National University, Nablus, Palestine.

\(^{g}\)Also at Department of Physics, California State University, Fresno CA, USA.

\(^{h}\)Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

\(^{i}\)Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.

\(^{j}\)Also at Department de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.

\(^{k}\)Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

\(^{m}\)Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.

\(^{n}\)Also at Universita di Napoli Parthenope, Napoli, Italy.

\(^{o}\)Also at Institute of Particle Physics (IPP), Canada.

\(^{p}\)Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.

\(^{q}\)Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

\(^{r}\)Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

\(^{s}\)Also at Borough of Manhattan Community College, City University of New York, New York City, USA.

\(^{t}\)Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.

\(^{u}\)Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.

\(^{v}\)Also at Louisiana Tech University, Ruston LA, USA.

\(^{w}\)Also at Institut Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.

\(^{x}\)Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.

\(^{y}\)Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.

\(^{z}\)Also at Graduate School of Science, Osaka University, Osaka, Japan.

\(^{aa}\)Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.

\(^{bb}\)Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.

\(^{cc}\)Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

\(^{dd}\)Also at CERN, Geneva, Switzerland.

\(^{ee}\)Also at Georgian Technical University (GTU), Tbilisi, Georgia.

\(^{ff}\)Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.

\(^{gg}\)Also at Manhattan College, New York NY, USA.

\(^{hh}\)Also at Hellenic Open University, Patras, Greece.

\(^{ii}\)Also at The City College of New York, New York NY, USA.

\(^{jj}\)Also at Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada, Spain.

\(^{kk}\)Also at Department of Physics, California State University, Sacramento CA, USA.

\(^{ll}\)Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

\(^{mm}\)Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.

\(^{nn}\)Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.

\(^{oo}\)Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.

\(^{pp}\)Also at School of Physics, Sun Yat-sen University, Guangzhou, China.

\(^{qq}\)Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

\(^{rr}\)Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

\(^{ss}\)Also at National Research Nuclear University MEPhI, Moscow, Russia.

\(^{tt}\)Also at Department of Physics, Stanford University, Stanford CA, USA.

\(^{uu}\)Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

\(^{vv}\)Also at Giresun University, Faculty of Engineering, Turkey.

\(^{ww}\)Also at Department of Physics, Nanjing University, Jiangsu, China.

\(^{xx}\)Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

\(^{yy}\)Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

\(^{zz}\)Also at Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia.