Search for Dark Matter Produced in Association with a Higgs Boson Decaying to $b\bar{b}$ Using 36 fb$^{-1}$ of pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

Aaboud, M.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.119.181804

Publication date
2017

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
https://doi.org/10.1103/PhysRevLett.119.181804
Search for Dark Matter Produced in Association with a Higgs Boson Decaying to $b\bar{b}$ Using 36 fb$^{-1}$ of pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

M. Aaboud et al.*
(ATLAS Collaboration)
(Received 6 July 2017; published 1 November 2017)

Several extensions of the standard model predict associated production of dark-matter particles with a Higgs boson. Such processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a $b\bar{b}$ pair with the ATLAS detector using 36.1 fb$^{-1}$ of pp collisions at a center-of-mass energy of 13 TeV at the LHC. The observed data are in agreement with the standard model predictions and limits are placed on the associated production of dark-matter particles and a Higgs boson.

DOI: 10.1103/PhysRevLett.119.181804

One of the central open questions in physics today is the nature of dark matter (DM) that comprises most of the matter in the Universe [1]. A compelling candidate for DM is a stable electrically neutral particle χ whose nongravitational interactions with standard model (SM) particles are weak. This extension of the SM could be detectable at the scale of electroweak symmetry breaking [2] and accommodate the observed DM relic density [3,4]. Many models predict detectable production rates of such DM particles at the Large Hadron Collider (LHC) [5].

Most collider-based searches for DM rely on the signature of missing transverse momentum E_T^{miss} from DM particles recoiling against one SM particle X radiated off the initial state, denoted by the “$X + E_T^{\text{miss}}$” signature. LHC experiments have searched for this $X + E_T^{\text{miss}}$ signature, where X is a light quark or gluon [7–9], a b or t quark [10–12], a photon [13–17], or a W or Z boson [18–21]. The discovery of the Higgs boson h [22,23] opens a new opportunity through the $h + E_T^{\text{miss}}$ signature [24–26]. Because h radiation off the initial state is Yukawa suppressed, the $h + E_T^{\text{miss}}$ process represents a direct probe of the hard interaction involving DM particles.

This Letter presents a search for DM in association with a Higgs boson decaying to a pair of b quarks, $h \to b\bar{b}$, with a branching ratio $B = 57\%$ [27], using 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector [28,29] in run 2 of the LHC in 2015 and 2016. This search substantially extends the sensitivity relative to previous results at 8 [30,31] and 13 TeV [32–34] in the $h \to b\bar{b}$ and $h \to Z\gamma$ channels.

A type-II two-Higgs-doublet model (2HDM) with an additional $U(1)_{\chi}$ gauge symmetry yielding an additional massive Z' boson provides an $h + E_T^{\text{miss}}$ signature [26] used for the optimization of the search and its interpretation. This model results in five physical Higgs bosons: a light scalar h identified with the SM Higgs boson in the alignment limit [35], a heavy scalar H, a pseudoscalar A, and two charged scalars H^\pm. The $h + DM$ signal in this Z'-2HDM model is produced through $pp \to Z' \to Ah$, where A decays to $\chi\bar{\chi}$ with a large B. Relevant model parameters are the ratio of the vacuum expectation values of the two Higgs fields coupling to the up-type and down-type quarks $\tan\beta$, the Z' gauge coupling $g_{Z'}$, and the masses $m_{Z'}$, m_A, and m_A. The results are also generically interpreted in terms of the production cross section of non-SM events with large E_T^{miss} and a Higgs boson without extra model assumptions.

Monte Carlo (MC) event generators were used to simulate the $h + DM$ signal and all SM background processes, except the multijet background, which was evaluated using data. All MC event samples were processed through a detailed simulation of the ATLAS detector [36] based on GEANT4 [37], and contributions from additional pp interactions (pileup) were simulated using PYTHIA 8.186 [38] and the MSTW2008LO parton distribution function (PDF) set [39].

Signal samples for the $pp \to Z' \to Ah \to \chi\bar{\chi}b\bar{b}$ process were generated at leading order using MadGraph_AMC@NLO 2.2.3 [5,40] interfaced to PYTHIA 8.186, using the NNPDF3.0 PDF set [41]. Samples were generated in the $(m_{Z'}, m_A)$ plane for 0.2 TeV < $m_{Z'}$ < 3 TeV and 0.2 TeV < m_A < 0.8 TeV with $m_A = 100$ GeV, $\tan\beta = 1$, $g_{Z'} = 0.8$, $m_H = m_{H^0} = 300$ GeV [5].

Backgrounds from top quark pair production and single top quark production were generated at next-to-leading order (NLO) in quantum chromodynamics (QCD) with POWHEG-BOX [42–46] using CT10 PDFs [47], where the parton shower was simulated with PYTHIA 6.428 [48]. The $t\bar{t}$ samples are normalized using calculations at next-to-next-to-leading order (NNLO) in QCD including...
near-to-next-to-leading logarithmic corrections for soft-
gluon radiation [49]. The single-top-quark processes are
normalized with cross sections at NLO in QCD [50–54].
Background processes involving a vector boson
V = W, Z
decaying leptonically in association with jets, V + jets,
were simulated with SHERPA 2.2.1 [55] including mass
effects for b and c quarks and using NNPDF3.0 PDFs. The
perturbative calculations for V + jets were performed at
NLO for up to two partons and at leading order for up to
four partons [56,57], and matched to the parton shower [58]
using the ME+PS@NLO prescription from Ref. [59].
The normalizations are determined at NNLO in QCD [60].
Diboson processes (VV) were simulated at NLO in QCD
with SHERPA 2.1.1 and CT10 PDFs. Backgrounds from
associated Vh production were generated with PYTHIA
8.186 using NNPDF3.0 PDFs for gg → Vh, and POWHEG
interfaced to PYTHIA 8.186 using CT10 PDFs for gg → Vh.

Events are selected by an \(E_{\text{miss}}^{\text{miss}} \) trigger based on
calorimeter information [61]. Its threshold was 110 GeV
for most of the data taking period, and lower in the first
two years. Events are required to have at least one pp
collision vertex reconstructed from at least two inner detector (ID)
tracks with \(p_T > 0.4 \) GeV. The primary vertex (PV) for
each event is the vertex with the highest \(\sum (p_T^{\text{track}})^2 \).

Reconstruction of muons (\(\mu \)) incorporates tracks or track
segments found in the muon spectrometer and matched ID
tracks. Identified muons must satisfy the “loose” quality
criteria [62] and have \(|\eta| < 2.7 \). Electrons (\(e \)) are recon-
structed by matching an ID track to a cluster of energy in
the calorimeter. Electron candidates are identified through a
likelihood-based method [63] and must satisfy the loose
operating point and be within \(|\eta| < 2.47 \). Muon and
electron candidates must have \(p_T > 7 \) GeV and are
required to be isolated by limiting the sum of \(p_T \) for tracks
within a cone in \(\Delta R \) around the lepton direction, as
in Ref. [32].

Jets reconstructed from three-dimensional clusters of
calorimeter cells [64] with the anti-\(k_t \) algorithm [65] are
used to identify the \(h \to \text{bb} \) decay. For small to moderate \(h \)
momenta, the decay products can be resolved using jets with
a radius parameter \(R = 0.4 \) (small-\(R \) jets or \(j \)). The
decay products of high-momenta \(h \) become collimated and
are reconstructed using a single jet with \(R = 1.0 \) (large-\(R \)
jet or \(J \)). Small-\(R \) jets with \(|\eta| < 2.5 \) must satisfy \(p_T > 20 \) GeV
and are called “central,” while those with \(2.5 < |\eta| < 4.5 \)
must have \(p_T > 30 \) GeV and are called “forward.” Small-\(R \) jets are corrected for pileup [66],
and central small-\(R \) jets with \(20 \) GeV < \(p_T < 60 \) GeV and
\(|\eta| < 2.4 \) are additionally required to be identified as
originating from the PV using associated tracks [67].
Small-\(R \) jets closer than \(\Delta R = 0.2 \) to an electron candidate
are rejected. Large-\(R \) jets are reconstructed independently
of small-\(R \) jets and trimmed [68,69] to reduce the effects of
pileup and the underlying event. Furthermore, large-\(R \) jets
must fulfill \(p_T > 200 \) GeV and \(|\eta| < 2.0 \). To improve the
resolution and minimize uncertainties, the mass of large-\(R \)
jets is determined by the resolution-weighted mean of the
mass measured using calorimeter information alone and
the track-assisted jet mass [70]. The latter is obtained by
scaling the mass determined using ID tracks alone by the
ratio of jet \(p_T \) measured in the calorimeter and in the ID.

Multivariate algorithms are used to identify jets containing
\(b \) hadrons (\(b \) tagging), which are expected in \(h \to \text{bb} \)
decays [69,71]. These algorithms are applied directly to
small-\(R \) jets, while for large-\(R \) jets they are applied to track
jets matched to large-\(R \) jets. Track jets are reconstructed
from ID tracks matched to the PV using the anti-\(k_t \)
algorithm with \(R = 0.2 \), and must fulfill \(p_T > 10 \) GeV
and \(|\eta| < 2.5 \).

The \(E_{\text{miss}}^{\text{miss}} \) observable is calculated as the negative of the
vector sum of the transverse momenta of \(e, \mu \), and jet
candidates in the event. The transverse momenta not
associated with any \(e, \mu \), or jet candidates are accounted
for using ID tracks [72,73]. Similarly, \(p_T^{\text{miss,trak}} \) is defined
as the negative of the vector sum of the transverse momenta of
tracks with \(p_T > 0.5 \) GeV associated with the PV and
within \(|\eta| < 2.5 \).

The signal is characterized by high \(E_{\text{miss}}^{\text{miss}} \), no isolated
e leptons, and an invariant mass of the h candidate \(m_h \)
compatible with the observed Higgs boson mass of
125 GeV [74]. In the signal region (SR) described below,
the dominant backgrounds from Z(\(\nu \bar{\nu} \)) + jets, W + jets,
and \(\tilde{t} \) production contribute, respectively, 30%–60%,
10%–25%, and 15%–50% of the total background, depend-

\(\Delta \phi(E_{\text{miss}}^{\text{miss}}, p_T) > \pi/3 \)
\(|\Delta \eta(E_{\text{miss}}^{\text{miss}}, p_T^{\text{miss,trak}}) | < 0.4 \)
\(p_T^{\text{miss,trak}} > 30 \) GeV

The SR requires \(E_{\text{miss}}^{\text{miss}} > 150 \) GeV, and no isolated \(e \) or
\(\mu \). The multijet background contributes due to mismeasured
jet momenta. To suppress it, additional selections are
required: \(\min \{ \Delta \phi(E_{\text{miss}}, p_T); \Delta \phi(E_{\text{miss}}, p_T^{\text{miss,trak}}) \} > \pi/3 \)
for the highest-\(\Delta \phi \) (leading) small-\(R \) jets, \(\Delta \phi(E_{\text{miss}}, p_T^{\text{miss,trak}}) < \pi/2 \),
and \(p_T^{\text{miss,trak}} > 30 \) GeV for events with fewer than two
central b-tagged small-\(R \) jets. The requirements using
\(p_T^{\text{miss,trak}} \) also reduce noncollision backgrounds.

In the “resolved” regime, defined by \(E_{\text{miss}}^{\text{miss}} < 500 \) GeV,
the h candidate is reconstructed from two leading b-tagged
central small-\(R \) jets, or, if only one b tag is present in the
event, from the b-tagged central small-\(R \) jet and the leading
non-b-tagged central small-\(R \) jet. At least one of the jets
comprising the h candidate must satisfy \(p_T > 45 \) GeV.
A separation in \(\Delta \phi \) between the \(h \) candidate and \(E_{\text{miss}}^{\text{miss}} \) of more
than \(2\pi/3 \) is required following the back-to-back configu-
ration of the Higgs boson recoiling against DM. To improve
the trigger efficiency modeling, events are retained only if
the scalar sum \(H_T \) of the \(p_T \) of the two (three) leading jets
fulfills \(H_{T,2j} > 120 \) GeV (\(H_{T,3j} > 150 \) GeV) if two (more
than two) central jets are present. Further optimization of the event selection described below provides an additional background reduction of up to 60% relative to Ref. [32], for a small signal loss. Events with a hadronic r-lepton candidate, identified either by an algorithm based on a boosted decision tree [75] or as small-R jets containing one to four tracks within the jet core and $\Delta \phi(E_T^{miss}, \vec{p}_T) < \pi/8$, are rejected to reduce the $t\bar{t}$ background, which can enter the SR if at least one top quark decays as $t \to Wb \to \tau\bar{b}$. This background is further reduced by removing events with more than two b-tagged central jets, which typically happens for $t\bar{t}$ events with $t \to Wb \to csb$ decays. Since most of the hadronic activity in a signal event is expected from the $h \to bb$ decay, the scalar sum of the p_T of the two jets forming the h candidate and, if present, the highest-p_T additional jet must be larger than $0.63 \times H_{T,alljets}$. Finally, $\Delta R(\vec{p}_T^{h1},\vec{p}_T^{h2}) < 1.8$ is required for the two jets forming the h candidate.

In the “merged” regime, defined by $E_T^{miss} > 500$ GeV, the leading large-R jet represents the h candidate. Further selection optimization reduces backgrounds, primarily $t\bar{t}$ production, by up to 30% relative to Ref. [32], for a small signal loss: events containing r-lepton candidates with $\Delta R(\vec{p}_T, \vec{p}_T^{h}) > 1.0$ are vetoed; no b-tagged central small-R jets with $\Delta R(\vec{p}_T^{b-tag}, \vec{p}_T^{h}) > 1.0$ are allowed in the event; and the scalar sum of p_T of the small-R jets with $\Delta R(\vec{p}_T, \vec{p}_T^{h}) > 1.0$ is required to be smaller than 0.57 times that sum added to p_T^{h}.

The resolution in m_h is improved using muons associated with small-R jets in the resolved regime or with track jets matched to large-R jets in the merged regime [69,76].

Events in the 1μ-CR are identical to the SR, except that exactly one isolated μ candidate with $p_T^{\mu} > 27$ GeV is required, and that p_T^{μ} is added to E_T^{miss} to mimic the behavior of events contaminating the SR when the charged lepton is not detected.

Events in the 2ℓ-CR are collected using a single-e or single-μ trigger, and selected by requiring one pair of isolated e or μ, one of which must have $p_T^{\ell} > 27$ GeV. Events with a Z boson candidate are retained, identified as having 83 GeV $< m_{ee} < 99$ GeV or 71 GeV $< m_{\mu\mu} < 106$ GeV with an opposite-charge requirement in the $\mu\mu$ case. In addition, a measure of the E_T^{miss} significance given by the ratio of the E_T^{miss} to the square root of the scalar sum of p_T of all leptons and small-R jets in the event must be less than 3.5 GeV$^{1/2}$. This requirement separates $Z(\ell\ell') + jets$ processes from $t\bar{t}$ production, as E_T^{miss} originates from finite detector resolution for the former and mainly from neutrinos for the latter. To mimic $Z \to \nu\nu$ decays in the SR, the E_T^{miss} is set to the \vec{p}_T of the dilepton system, which is then ignored in the subsequent analysis. All other selection requirements are identical between the 2ℓ-CR and the SR.

Subdominant backgrounds, including diboson, Vh, single top quark, and multijet production, contribute less than 10% of the total background in the SR. Multijet production is negligible for $E_T^{miss} > 350$ GeV. Its m_h distribution is determined from data in a dedicated multijet-enriched sideband, defined by inverting the min $[\Delta \phi(E_T^{miss}, \vec{p}_T)]$ requirement.

Dominant sources of experimental systematic uncertainty arise from the number of background MC events, the calibration of the b-tagging efficiency and integrated luminosity, as well as the scale and resolution of the energy and the mass of jets. Uncertainties associated with the τ vetoes are found to be negligible. Dominant sources of theoretical systematic uncertainty originate from the modeling of the signal and background processes such as $t\bar{t}$, $V + jets$, Vh, diboson, and multijet production. The few relevant changes in the estimation of systematic uncertainties relative to Ref. [32] encompass the improved calibrations of the b-tagging efficiency using $t\bar{t}$ events [69,71] as well as of the jet energy and mass scales using various in situ methods [70,71]; the reduced uncertainty from the new jet-mass observable [69,70]; and the uncertainty of 3.4% on the integrated luminosity of data collected in 2016. Table I quantifies dominant sources of uncertainty after the fit to data assuming three representative Z'-2HDM scenarios. This search is statistically limited for $E_T^{miss} \geq 300$ GeV.

A fit to the m_h observable based on a binned likelihood approach [78,79] is used to search for a signal. Systematic uncertainties are included in the likelihood function as nuisance parameters with Gaussian or log-normal constraints and profiled [76]. To account for changes in the background composition and to benefit from a higher signal sensitivity with increasing E_T^{miss} and b-tag multiplicity, the data are split into categories that are fit

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Impact [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>$V + jets$ modeling</td>
<td>5.0</td>
</tr>
<tr>
<td>$t\bar{t}$, single-t modeling</td>
<td>3.2</td>
</tr>
<tr>
<td>SM $Vh(bb)$ normalization</td>
<td>2.2</td>
</tr>
<tr>
<td>Signal modeling</td>
<td>3.9</td>
</tr>
<tr>
<td>MC statistics</td>
<td>4.9</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.2</td>
</tr>
<tr>
<td>b tagging, track jets</td>
<td>1.4</td>
</tr>
<tr>
<td>b tagging, calo jets</td>
<td>5.0</td>
</tr>
<tr>
<td>Jets with $R = 0.4$</td>
<td>1.7</td>
</tr>
<tr>
<td>Jets with $R = 1.0$</td>
<td><0.1</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>10</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>6</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>12</td>
</tr>
</tbody>
</table>
simultaneously. Eight categories are defined for the SR and each of the two CRs: four ranges in $E_{T}^{\text{miss}}/\text{GeV}$ as [150, 200), [200, 350), [350, 500), and [500, ∞), which are each split into two subregions with one and two b tags. In the 1μ-CR, the electric charge of the μ is used to separate $t\bar{t}$ from $V + \text{jets}$ since the former provides an equal number of μ^+ and μ^-, while a prevalence of μ^- is expected from the latter process due to PDFs [80]. Only the total event yield is considered in the 2ℓ-CR due to limited data statistics. The normalizations of $t\bar{t}$, $W + \text{HF}$, and $Z + \text{HF}$ processes are free parameters in the fit, where HF represents jets containing b or c quarks. In the SR, the contribution from $Z + \text{jets}$ is increased by about 50% by the fit relative to theory predictions, staying within uncertainties, while $t\bar{t}$ is reduced by up to 30% at high E_{T}^{miss}. The normalizations of other backgrounds modeled using MC simulations are constrained to theory predictions within uncertainties, as detailed in Ref. [32].

The distributions of m_h for SR events with two b tags provide the highest signal sensitivity and are shown in the four E_{T}^{miss} regions in Fig. 1. No significant deviation from SM predictions is observed.

The results are interpreted as exclusion limits at 95% confidence level (C.L.) on the production cross section of $h + \text{DM}$ events $\sigma_{h + \text{DM}}$ times $B(h \rightarrow b\bar{b})$ with the CL$_s$ formalism [81] using a profile likelihood ratio [82] as test statistic. Exclusion contours in the (m_Z, m_A) plane in the Z'-2HDM scenario are presented in Fig. 2, excluding m_Z up to 2.6 TeV and m_A up to 0.6 TeV, substantially extending previous limits [30–34]. Furthermore, upper limits on $\sigma_{h + \text{DM}} \times B(h \rightarrow b\bar{b})$ are provided under the minimal $h + \text{DM}$ model assumption that a Higgs boson is produced in a generic back-to-back configuration relative to E_{T}^{miss}.
from DM particles. For this, limits are set on \(\sigma_{\text{vis},b(h)} \times \mathcal{A} \times \epsilon \) of \(h(b(b)) + \text{DM} \) events per \(E_T^{\text{miss}} \) bin at detector level, after all SR selections except the requirements on \(b \)-tag multiplicity and \(m_h \) range as used in the fit. The \(\mathcal{A} \times \epsilon \) term quantifies the probability for an event to be reconstructed in the same \(E_T^{\text{miss}} \) bin as generated.

<table>
<thead>
<tr>
<th>Range in (E_T^{\text{miss}}) (GeV)</th>
<th>(\sigma_{\text{vis},b(h)} \times \mathcal{A} \times \epsilon) ([\text{fb}])</th>
<th>(\mathcal{A} \times \epsilon) ([%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>([150, 200))</td>
<td>19.1</td>
<td>15.4</td>
</tr>
<tr>
<td>([200, 350))</td>
<td>13.1</td>
<td>25.5</td>
</tr>
<tr>
<td>([350, 500))</td>
<td>2.4</td>
<td>4.7</td>
</tr>
<tr>
<td>([500, \infty))</td>
<td>1.7</td>
<td>9.0</td>
</tr>
</tbody>
</table>

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [83].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [83].

[6] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the \(z \) axis along the beam pipe. The \(x \) axis
points to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as \(\eta = -\ln \tan(\theta/2) \). The distance between two objects in $\eta-\phi$ space is \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \). Transverse momentum is defined by \(p_T = p \sin \theta \).

[34] CMS Collaboration, Search for associated production of dark matter with a Higgs boson decaying to $\gamma\gamma$ or $\gamma\gamma$ at $\sqrt{s} = 13$ TeV, arXiv:1703.05236.

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany New York, USA
3Department of Physics, University of Alberta, Edmonton Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Istanbul, Turkey
4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, The University of Texas at Austin, Austin, Texas, USA
12Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14Institute of Physics, University of Belgrade, Belgrade, Serbia
15Department for Physics and Technology, University of Bergen, Bergen, Norway
16Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
17Department of Physics, Humboldt University, Berlin, Germany
18Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20aDepartment of Physics, Bogazici University, Istanbul, Turkey
20bDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20cIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
20dBahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22aINFN Sezione di Bologna, Italy
22bDipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
22cPhysikalisches Institut, University of Bonn, Bonn, Germany
24Department of Physics, Boston University, Boston, Massachusetts, USA
25Department of Physics, Brandeis University, Waltham, Massachusetts, USA
26aUniversidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
26bElectrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
26cFederal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
26dInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27Physics Department, Brookhaven National Laboratory, Upton, New York, USA
28aTransilvania University of Brasov, Brasov, Romania
28bHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
28cDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
28dNational Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
28eUniversity Politehnica Bucharest, Bucharest, Romania
28fWest University in Timisoara, Timisoara, Romania
29Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31Department of Physics, Carleton University, Ottawa, Ontario, Canada
32CERN, Geneva, Switzerland
33Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
34aDepartamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
128. Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal
129. Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
130. Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
131. Czech Technical University in Prague, Prague, Czech Republic
132. Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
133. State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
134. INFN Sezione di Roma, Italy
135. Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
136. INFN Sezione di Roma Tor Vergata, Italy
137. Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
138. INFN Sezione di Roma Tre, Italy
139. Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco
140. Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
141. Faculté des Sciences Semlalia, Université Cadi Ayyad, LPEA-Marrakech, Morocco
142. Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
143. DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
144. Department of Physics, University of Washington, Seattle, Washington, USA
145. Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
146. Department of Physics, Shinshu University, Nagano, Japan
147. Department Physik, Universität Siegen, Siegen, Germany
148. Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
149. SLAC National Accelerator Laboratory, Stanford, California, USA
150. Department of Physics, Royal Institute of Technology, Stockholm, Sweden
151. Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
152. Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
153. Department of Physics, University of Cape Town, Cape Town, South Africa
154. Department of Physics, University of Johannesburg, Johannesburg, South Africa
155. School of Physics, University of the Witwatersrand, Johannesburg, South Africa
156. Department of Physics, Stockholm University, Sweden
157. The Oskar Klein Centre, Stockholm, Sweden
158. Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
159. Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
160. School of Physics, University of Sydney, Sydney, Australia
161. Institute of Physics, Academia Sinica, Taipei, Taiwan
162. Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
163. Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
164. Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
165. International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
166. Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
167. Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
168. Tomsk State University, Tomsk, Russia
169. Department of Physics, University of Toronto, Toronto, Ontario, Canada
170. INFN-TIFPA, Italy
171. University of Trento, Trento, Italy
172. TRIUMF, Vancouver, British Columbia, Canada
173. Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
174. Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
175. Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
176. Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
177. INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
178. ICTP, Trieste, Italy
179. Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
180. Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

181804-19
Department of Physics, University of Illinois, Urbana, Illinois, USA
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

*Deceased.
Also at Department of Physics, King’s College London, London, United Kingdom.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Novosibirsk State University, Novosibirsk, Russia.
Also at TRIUMF, Vancouver, BC, Canada.
Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.
Also at Physics Department, An-Najah National University, Nablus, Palestine.
Also at Department of Physics, California State University, Fresno, CA, USA.
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.
Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
Also at Tomsk State University, Tomsk, Russia.
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
Also at Universita di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at Borough of Manhattan Community College, City University of New York, New York City, USA.
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
Also at Louisiana Tech University, Ruston, LA, USA.
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
Also at Graduate School of Science, Osaka University, Osaka, Japan.
Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.
Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA.
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
Also at CERN, Geneva, Switzerland.
Also at Georgian Technical University (GTU), Tbilisi, Georgia.
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
Also at Manhattan College, New York, NY, USA.
Also at Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile.
Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
Also at The City College of New York, New York, NY, USA.
Also at School of Physics, Shandong University, Shandong, China.
Also at Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal.
Also at Department of Physics, California State University, Sacramento, CA, USA.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.
Also at School of Physics, Sun Yat-sen University, Guangzhou, China.
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Department of Physics, Stanford University, Stanford, CA, USA.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Turkey.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at Department of Physics, Nanjing University, Jiangsu, China.
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.