Search for Displaced Leptons in √s = 13 TeV pp Collisions with the ATLAS Detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.127.051802

Publication date
2021

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Link to publication

Citation for published version (APA):
Search for Displaced Leptons in $\sqrt{s}=13$ TeV pp Collisions with the ATLAS Detector

G. Aad et al. (ATLAS Collaboration)

(Received 17 November 2020; revised 3 March 2021; accepted 11 June 2021; published 27 July 2021)

A search for charged leptons with large impact parameters using 139 fb^{-1} of $\sqrt{s} = 13$ TeV pp collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton partners (sleptons). For lifetimes of 0.1 ns, selectron, smuon, and stau masses up to 720, 680, and 340 GeV, respectively, are excluded at 95% confidence level, drastically improving on the previous best limits from LEP.

DOI: 10.1103/PhysRevLett.127.051802

Particles with long lifetimes are a feature of the standard model (SM) and many theories beyond the standard model (BSM) including R-parity-conserving supersymmetry (SUSY) [1–7] models like split SUSY [8,9] and gauge-mediated SUSY breaking (GMSB) [10–12], as well as R-parity-violating SUSY models [13,14] and exotic scenarios such as universal extra dimensions [15,16]. However, particle lifetime remains an underexplored parameter of phase space at the Large Hadron Collider (LHC), where detectors and searches for new physics were designed to measure the decay products of short-lived, heavy particles with the assumption that those decay products trace back to the collision point or very close to it [17–21]. BSM particles with lifetimes longer than a few picoseconds produce unconventional signatures, including displaced decay products that do not trace back to the interaction point. This brings technical challenges in almost all aspects of the search; consequently, some models with TeV-scale BSM particles in this lifetime regime remain unexplored. While many dedicated searches for BSM particles in this lifetime regime have been performed by the ATLAS [22–34] and CMS [35–46] Collaborations, signatures with displaced leptons with no visible decay vertex would not be identified by any previous ATLAS search. This Letter addresses that gap in coverage.

This signature brings unique sensitivity to GMSB SUSY models [47–49], where the nearly massless gravitino is the lightest SUSY particle (LSP), and the next-to-lightest SUSY particle (NLSP) becomes long-lived due to the small gravitational coupling to the LSP. Well-motivated versions of this model have a stau ($\tilde{\tau}$) as the single NLSP, or a selectron (\tilde{e}), smuon ($\tilde{\mu}$), and $\tilde{\tau}$ as co-NLSPs [50]. In these models, pair-produced sleptons ($\tilde{\ell}$) of the same flavor decay into an invisible gravitino and a charged lepton of the same flavor as the parent $\tilde{\ell}$. A combination of results from the LEP experiments excluded the superpartners of the right-handed muons and electrons ($\tilde{\mu}_R$ and \tilde{e}_R, respectively) of any lifetime for masses less than 96.3 and 65.8 GeV. The OPAL experiment alone set the best limits for all lifetimes of $\tilde{\tau}_1$, a mixture of the superpartners of the left- and right-handed τ leptons, and excluded masses less than 87.6 GeV [51–55]. A previous search from the CMS experiment [56] selected events with displaced, different-flavor leptons using 19.7 fb^{-1} of 8 TeV data but did not directly target $\tilde{\ell}$ decays. A reinterpretation concluded that OPAL’s constraints remained the most stringent [50]. Additionally, Ref. [57] shows that targeting this signature could help improve the coverage of minimal supersymmetric models with a gravitino LSP. The present search provides mass sensitivity beyond the LEP limits.

To evaluate signal sensitivity, Monte Carlo (MC) events in a simplified GMSB SUSY model were simulated with up to two additional partons at leading order using MADGRAPH5_AMC@NLOv2.6.1 [58] with the NNPDF2.3lo parton distribution function (PDF) set [59] and interfaced to PYTHIA8.230 [60] using the A14 set of tuned parameters (tune) [61]. The sparticle decay was simulated using GEANT4 [62], which does not preserve information about the chirality of the $\tilde{\ell}$. The mixed states of the superpartners of the left- and right-handed τ leptons, $\tilde{\tau}_{1,2}$, were generated with mixing angle $\sin \theta_{\tilde{\tau}} = 0.95$. The impact of multiple interactions in the same and neighboring bunch crossings (pileup) was modeled by overlaying each hard-scattering event with simulated minimum-bias events generated with PYTHIA8.210 [60] using the A3 tune [63] and NNPDF2.3lo PDF set [59]. Signal cross sections were calculated at next-to-leading order in α_s, with soft-gluon emission effects.
added at next-to-leading-logarithm accuracy [64–68]. The nominal cross section and uncertainty were taken from an
evelope of predictions using different PDF sets and
factorization and renormalization scales [69]. The sim-
plified model used for interpretation assumes the super-
partners of the left- and right-handed leptons are mass
degenerate, yielding a cross section of 0.37 ± 0.01 pb for a
single flavor of $\tilde{\ell}$ with mass 100 GeV and 0.059 ± 0.004 fb for a $\tilde{\ell}$ with mass 800 GeV. Simulated events
were generated for $\tilde{e}/\tilde{\mu}$ ($\tilde{\tau}$) masses 50–900 GeV (50–400 GeV) and lifetimes 0.01–10 ns (0.1–1 ns).

This search uses 139 fb$^{-1}$ of data collected by the
ATLAS experiment from pp collisions at $\sqrt{s} = 13$ TeV. The ATLAS detector consists of concentric subdetectors
used together to identify particles [70–73]. Data collection
relies on a two-level trigger system, which uses tracking
information from the inner detector (ID) along with
information from the calorimeters and muon spectrometer
(MS) to make fast, event-level decisions [74]. The typical
lepton selection algorithms used in the trigger select
particles coming from the primary interaction and cannot
be used to select displaced leptons. Instead, triggers
without tracking information are used: Electrons are
identified using only their electromagnetic calorimeter
(EM) signature via photon triggers, and muons are
identified using MS information only. Single-photon
and diphoton triggers select EM signatures with energy
greater than 140 and 50 GeV, respectively, and the muon
trigger selects MS signatures with transverse momentum
(p_T) greater than 60 GeV in the range $|\eta| < 1.05$. These
triggers have an acceptance independent of lepton dis-
placement in the range probed by this search. The
acceptance ranges from 1% to 80% for all flavors,
increasing with $m_{\tilde{\ell}}$ mass, and is lower for $\tilde{\tau}$ than $\tilde{\ell}$ or $\tilde{\mu}$
due to the smaller p_T of the final-state leptons.

After the trigger stage, more complex tracking algo-
rithms are possible, and tracks can be used more exten-
sively for particle identification. Displaced leptons are
identified as those with large transverse impact parameter
(d_0), the distance of closest approach of the particle’s track
to the interaction point in the x–y plane. The $|d_0|$ is
measured relative to the vertex with the highest Σp_T^2
of associated tracks. Tracks are reconstructed by fitting a
series of ID hits to identify those consistent with a particle’s
trajectory. For this search, tracking is performed in two
stages: First, standard tracking reconstructs tracks with
$|d_0| < 10$ mm [75], and then an additional reconstruction
step uses hits not matched to tracks in the previous stage,
adding tracks with $|d_0| < 300$ mm [76]. The extended track
collection is combined with EM energy clusters to recon-
struct electrons or with tracks composed of segments
measured in the MS to reconstruct muons, both in the
range $|\eta| < 2.5$. Standard lepton identification algorithms
[77–79] are modified by removing requirements on $|d_0|$ and
the number of hits matched to the track. Figure 1 shows the
final reconstruction efficiency for displaced electrons
and muons.

Signal leptons must have high transverse momentum,
$p_T > 65$ GeV, and large transverse impact parameter,
3 mm $< |d_0| < 300$ mm, to remove SM backgrounds. To
reduce the background from out-of-time cosmic-ray
muons, a requirement is placed on the MS timing relative
to when a standard model particle is expected to arrive in
the detector (t_0). The average time measured by the muon’s
MS track segments, t_0^{avg}, must have an absolute value less
than 30 ns. In order to reduce the contribution from leptons
from decays of heavy-flavor hadrons, signal leptons are
required to be isolated from nearby activity in the ID and
calorimeters. The sum of the p_T of all tracks near an
electron (muon) must be less than 6% (4%) of the lepton
The number of background events remaining after signal selections is estimated from data while keeping the signal regions blinded. In SR-ee and SR-emu, the dominant background comes from fake leptons, with a smaller contribution from leptons from heavy-flavor hadron decays. Zero events with a cosmic-tagged muon and electron were observed; therefore, the background contribution from untagged cosmic-ray muons in SR-emu is expected to be negligible. Fake electrons typically result from the mismatching of a track to a photon. Fake muons result from the mismatching of an ID track to an MS track and are comparatively rare, since there is less activity and better pointing information in the MS than in the calorimeter. Fake leptons tend to fail quality criteria; as a result, they have poor χ^2 or inconsistent track and lepton p_T. Moreover, these requirements also remove heavy-flavor contributions which tend to have extra energy in their clusters compared to their tracks. As a result, the contribution of these backgrounds is estimated together. The quality criteria in this analysis are uncorrelated between the two leptons in an event, which has been verified in inverted regions in data. Since the variables are uncorrelated, they can be used to estimate the background contribution to the signal regions. The background is estimated with an ABCD method [80] by calculating the ratio of the number of events where lepton 1 passes inverted quality criteria (not including lepton 1 or $|d_0|$) and lepton 2 passes nominal requirements, and vice versa, divided by the number of events where both leptons fail the quality criteria. To estimate the background in SR-ee, where the two leading leptons are electrons, lepton 1 is the leading electron, and lepton 2 is the subleading electron. To estimate the background in SR-emu, where the two leading leptons are an electron and a muon, leptons 1 and 2 are the leading electron and muon, respectively. The same algorithm is used for SR-ee and SR-emu, but, due to statistical limitations in SR-emu, the p_T and $|d_0|$ requirements on the leptons are relaxed to $p_T > 50$ GeV and $|d_0| > 2$ mm. As the p_T and $|d_0|$ distributions are exponentially falling, this results in a conservative background estimate in SR-emu.

In the ABCD method, the phase space is split into four regions: region A, region B, region C, and region D. Region A is the signal region, where all requirements are satisfied, region B is the region where lepton 1 fails quality criteria but lepton 2 passes all lepton requirements, region C is the region where lepton 2 fails quality criteria but lepton 1 passes all requirements, and region D is the region where both leptons fail quality criteria. For an electron, the inverted quality criteria are ID track $\chi^2/n_{d.o.f.} > 2$, $(p_T^{\text{track}} - p_T^e)/p_T^e < -0.5$, and greater than one missing hit after the electron’s innermost hit. For a muon, the inverted quality criteria are ID track $\chi^2/n_{d.o.f.} > 2$, combined MS and ID track $\chi^2/n_{d.o.f.} > 3$, measurements in less than three precision tracking layers of the MS, greater than one missing hit after the muon’s innermost hit, and no high-precision ϕ measurement. The number of events in the signal region is then estimated by the following calculation:

$$N_A^{\text{predicted}} = \frac{N_B \times N_C}{N_D},$$

where $N_A^{\text{predicted}}$ is the predicted number of background events in the signal region (region A), N_B is the number of events in region B, N_C is the number of events in region C, and N_D is the number of events in region D.

$|\eta_{\mu} + \eta_{\text{MS segment}}| < 0.018$ and $|\phi_{\mu} - \phi_{\text{MS segment}} - \pi| < 0.25$, the muon is cosmic tagged. This algorithm has a cosmic rejection efficiency of $> 99\%$.

The number of background events remaining after signal selections is estimated from data while keeping the signal regions blinded. In SR-ee and SR-emu, the dominant background comes from fake leptons, with a smaller contribution from leptons from heavy-flavor hadron decays. Zero events with a cosmic-tagged muon and electron were observed; therefore, the background contribution from untagged cosmic-ray muons in SR-emu is expected to be negligible. Fake electrons typically result from the mismatching of a track to a photon. Fake muons result from the mismatching of an ID track to an MS track and are comparatively rare, since there is less activity and better pointing information in the MS than in the calorimeter. Fake leptons tend to fail quality criteria; as a result, they have poor χ^2 or inconsistent track and lepton p_T. Moreover, these requirements also remove heavy-flavor contributions which tend to have extra energy in their clusters compared to their tracks. As a result, the contribution of these backgrounds is estimated together. The quality criteria in this analysis are uncorrelated between the two leptons in an event, which has been verified in inverted regions in data. Since the variables are uncorrelated, they can be used to estimate the background contribution to the signal regions. The background is estimated with an ABCD method [80] by calculating the ratio of the number of events where lepton 1 passes inverted quality criteria (not including lepton 1 or $|d_0|$) and lepton 2 passes nominal requirements, and vice versa, divided by the number of events where both leptons fail the quality criteria. To estimate the background in SR-ee, where the two leading leptons are electrons, lepton 1 is the leading electron, and lepton 2 is the subleading electron. To estimate the background in SR-emu, where the two leading leptons are an electron and a muon, leptons 1 and 2 are the leading electron and muon, respectively. The same algorithm is used for SR-ee and SR-emu, but, due to statistical limitations in SR-emu, the p_T and $|d_0|$ requirements on the leptons are relaxed to $p_T > 50$ GeV and $|d_0| > 2$ mm. As the p_T and $|d_0|$ distributions are exponentially falling, this results in a conservative background estimate in SR-emu.
Validations of these background estimates are performed, with the heavy-flavor and fake contributions targeted separately. The validation of the heavy-flavor contribution is achieved using the same method as the nominal background estimation but inverting the isolation requirement in all regions. To increase statistics, the requirement on \((p_T^{\text{track}} - p_T^{\ell})/p_T^{\ell}\) is loosened to be greater than \(-0.9\) instead of \(-0.5\), as this distribution exponentially decreases from \(-1\) to \(-0.5\). The fake-lepton contribution is probed by inverting the most powerful fake discriminators by requiring the electron variable \((p_T^{\text{track}} - p_T^{\ell})/p_T^{\ell}\) to be less than \(-0.5\) and the muon’s combined track’s \(\chi^2/n_{\text{d.o.f.}}\) to be greater than 3 and performing the ABCD estimate with the remaining quality criteria. The validation of both estimates is shown in Table I. Even with the loosened requirements of \(p_T > 50\) GeV and \(|d_0| > 2\) mm in VR-ee-fake and VR-ee-heavy-flavor and \((p_T^{\text{track}} - p_T^{\ell})/p_T^{\ell} > -0.9\) in VR-ee-heavy-flavor, the statistics in these validation regions are limited. The background is so small since fake muons are rare, and the requirements on \(p_T\) and \(|d_0|\) on signal leptons render heavy-flavor backgrounds negligible. Nonetheless, the numbers of estimated and observed events were consistent within statistical uncertainties, and uncertainties were assigned to account for small differences between predictions and observations in each validation. The predicted number of background events from fake and heavy-flavor decay leptons is \(0.46 \pm 0.10\) in SR-ee and \(0.007^{+0.019}_{-0.007}\) in SR-ee-\(b\), including all uncertainties.

The dominant background in SR-\(\mu\) comes from mis-measured reconstructed muons from cosmic rays. The fake lepton background is found to be negligible due to the rarity of fake muons. The heavy-flavor background is estimated using an ABCD estimate extrapolating from nonisolated muons to isolated muons with loosened \(p_T\) and \(|d_0|\) requirements to increase statistics \((p_T > 50\) GeV and subleading muon \(|d_0| > 0.5\) mm). This results in a heavy-flavor estimate of \(< 10^{-4}\) events. For a cosmic event to be a background to this search, both \(\mu_t\) and \(\mu_b\) must be reconstructed in the same event, which means their \(p_T^{\text{track}}\) will be near the edges of the allowed range and are likely to have their MS hits associated with the wrong event. This results in reconstructed muons with good quality ID tracks, but poor quality MS signatures, which could present challenges in cosmic tagging one or both muons. An event with a cosmic-ray muon could meet signal region requirements if both muons have missing MS hits and neither is tagged. Cosmic-tagging failures occur not when the muon in question is mismeasured, but when the muon is in the half of the detector opposite to a poorly reconstructed MS track, and no MS segments are found in the tag window. The estimate of this background relies on the assumption that the quality of a muon and its probability to be cosmic tagged are uncorrelated.

All events considered in this estimate have \(\mu_t\) passing all signal requirements, while \(\mu_t\) is either cosmic tagged, fails to satisfy some of the quality criteria, or both. No dimuon events were observed with two muons on the same side of the detector. In events where \(\mu_t\) is cosmic tagged, the ratio of \(\mu_t\) which satisfy the quality criteria to those that do not, \(R_\text{good}\), is measured. This ratio is multiplied by the number of events in which \(\mu_t\) is not cosmic tagged but fails to satisfy at least one of the quality criteria, to estimate the background in SR-\(\mu\mu\). The estimate is validated by redefining the cosmic-tag window to leave more muons untagged, providing a larger sample for studying \(R_\text{good}\). An additional uncertainty is assigned to the background estimate from the validation to account for the \(|d_0|\) dependence of \(R_\text{good}\), which cannot be directly constrained in the nominal estimate due to statistical limitations. Additional validations test other assumptions by varying the quality criteria and reversing the roles of \(\mu_b\) and \(\mu_t\) in the definition of \(R_\text{good}\). Including all uncertainties, \(0.11^{+0.20}_{-0.11}\) events are predicted in SR-\(\mu\mu\).

Signal systematic uncertainties are evaluated to quantify differences between data and simulation and correct the MC events where possible. Differences in signal lepton selection efficiency cannot be compared between data and MC simulation due to the lack of displaced leptons in data, so a conservative systematic uncertainty is derived in three steps. First, trigger, reconstruction, and selection efficiencies are measured for low-\(|d_0|\) leptons resulting from Z boson decays, for which data and simulation can be compared. Scale factors are derived to correct the simulation to match the data. Uncertainties in these scale factors are statistical and less than 5%. Next, the high-\(|d_0|\) tracking efficiency is compared between signal simulation and data with cosmic-tagged muons. After corrections to account for the different physical processes, the tracking efficiency as a function of displacement is compared, and an 8% uncertainty is assigned to each lepton. Finally, the \(|d_0|\) dependence of the lepton reconstruction and selection efficiency is compared with the \(|d_0|\) dependence of the tracking efficiency in simulation only. The variation of the selection efficiency as a function of \(|d_0|\) is taken as an uncertainty to
account for any discrepancies that cannot be studied in data. This uncertainty increases with displacement and is 0.5%–5% (3%–27%) for muons (electrons). It is larger for electrons due to identification challenges introduced by the ambiguity in the detector signatures of electrons, photons, and converted photons. Theoretical uncertainties include cross section uncertainties of 2%–6% and effects of varying the factorization and renormalization scales < 5%. Other uncertainties, including the impact of pileup on signal selection, luminosity uncertainty [81,82], and uncertainty from the filtering selection used for the extended track reconstruction, contribute at < 2%.

Zero events are observed in each of the three signal regions, consistent with the background predictions shown in Table II. As no excess of events is observed, exclusion limits on long-lived selectrons and smuons for various SUSY models with a NLSP, while NLSP and co-NLSP scenarios are treated as correlated across the orthogonal regions. Limits on long-lived selectron production are presented in Fig. 2, where expected and observed exclusion contours as a function of the slepton mass at 95% C.L. for various SUSY models with a NLSP, while NLSP and co-NLSP scenarios are treated as correlated across the orthogonal regions.

Lifetimes of 0.1 ns. This result probes GMSB selectron production for the first time in this lifetime range at the electroweak scale and approaching the TeV scale. Furthermore, as no requirements were made on missing energy, displaced vertices, or jets, this result is model independent and applicable to any BSM model producing high-\(p_T \) displaced leptons.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; Agencia Nacional de Investigación y Desarrollo, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and Committee for Collaboration of the Czech Republic with CERN, Czech Republic; DNR and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; Shota Rustaveli National Science Foundation of Georgia, Giorgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSST, Morocco; NWO, Netherlands; Research Council of Norway, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; Ministry of Education and Science of the Russian Federation, Russian Federation and NRC KI, Russian Federation; Ministry of Education, Science and Technological Development, Serbia; Ministry of Education, Science, Research and Sport, Slovakia; ARRS and Ministry of Education,
Science and Sport, Slovenia; DST/NRF, South Africa; MICINN, Spain; Ministry of Education, Science and Sport, Slovenia and Wallenberg Foundation, Sweden; Secretariat for Education and Research, Switzerland, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC, and IVADO, Canada; Beijing Municipal Science and Technology Commission, China; COST, ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labelx, Investissements d’Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek National Strategic Reference Framework, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Program Generalitat de Catalunya and PROMETEO and GenT Programs Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; and The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDDG (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom) and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [85].

[34] ATLAS Collaboration, Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, Phys. Rev. D 92, 012010 (2015).

[38] CMS Collaboration, Searches for physics beyond the standard model with the M_{T2} variable in hadronic final states with and without disappearing tracks in proton-proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 80, 3 (2020).

[46] CMS Collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at $\sqrt{s} = 8$ TeV, Phys. Rev. D 91, 052012 (2015).

[70] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
PHYSICAL REVIEW LETTERS 127, 051802 (2021)
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Physics Department, Tsinghua University, Beijing, China

Department of Physics, Nanjing University, Nanjing, China

University of Chinese Academy of Science (UCAS), Beijing, China

Institute of Physics, University of Belgrade, Belgrade, Serbia

Department for Physics and Technology, University of Bergen, Bergen, Norway

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA

Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, Colombia

Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia, Colombia

INFN Bologna and Università’ di Bologna, Dipartimento di Fisica, Bologna, Italy

INFN Sezione di Bologna, Bologna, Italy

Physikalisches Institut, Universität Bonn, Bonn, Germany

Department of Physics, Boston University, Boston, Massachusetts, USA

Department of Physics, Brandeis University, Waltham, Massachusetts, USA

Transilvania University of Brasov, Brasov, Romania

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania

National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania

University Politehnica Bucharest, Bucharest, Romania

West University in Timisoara, Timisoara, Romania

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic

Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Physics Department, Brookhaven National Laboratory, Upton, New York, USA

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

California State University, Fresno, California, USA

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, University of Cape Town, Cape Town, South Africa

iThemba Labs, Western Cape, South Africa

Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa

University of South Africa, Department of Physics, Pretoria, South Africa

School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Carleton University, Ottawa, Ontario, Canada

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco

Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco

Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat, Morocco

LPMR, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco

Faculté des sciences, Université Mohammed V, Rabat, Morocco

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington, New York, USA

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Dipartimento di Fisica, Università della Calabria, Rende, Italy

INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy

Physics Department, Southern Methodist University, Dallas, Texas, USA

Physics Department, University of Texas at Dallas, Richardson, Texas, USA

National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece

Department of Physics, Stockholm University, Stockholm, Sweden

Oskar Klein Centre, Stockholm, Sweden
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istanbul University, Dept. of Physics</td>
<td>Istanbul, Turkey</td>
</tr>
<tr>
<td>Instituto de Fisica Teorica, IFT-UAM/CSIC</td>
<td>Madrid, Spain</td>
</tr>
<tr>
<td>TRIUMF, Vancouver, British Columbia, Canada</td>
<td></td>
</tr>
<tr>
<td>Physics Department, An-Najah National University, Nablus, Palestinian Authority</td>
<td></td>
</tr>
<tr>
<td>Physics Department, University of Fribourg, Fribourg, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA</td>
<td></td>
</tr>
<tr>
<td>Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain</td>
<td></td>
</tr>
<tr>
<td>Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel</td>
<td></td>
</tr>
<tr>
<td>Universita di Napoli Parthenope, Napoli, Italy</td>
<td></td>
</tr>
<tr>
<td>Institute of Particle Physics (IPP), Victoria, Canada</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia</td>
<td></td>
</tr>
<tr>
<td>Borough of Manhattan Community College, City University of New York, New York, USA</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, California State University, Fresno, USA</td>
<td></td>
</tr>
<tr>
<td>Department of Financial and Management Engineering, University of the Aegean, Chios, Greece</td>
<td></td>
</tr>
<tr>
<td>Centro Studi e Ricerche Enrico Fermi, Italy</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, California State University, East Bay, USA</td>
<td></td>
</tr>
<tr>
<td>Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain</td>
<td></td>
</tr>
<tr>
<td>Graduate School of Science, Osaka University, Osaka, Japan</td>
<td></td>
</tr>
<tr>
<td>Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany</td>
<td></td>
</tr>
<tr>
<td>University of Chinese Academy of Sciences (UCAS), Beijing, China</td>
<td></td>
</tr>
<tr>
<td>Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan</td>
<td></td>
</tr>
<tr>
<td>CERN, Geneva, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Joint Institute for Nuclear Research, Dubna, Russia</td>
<td></td>
</tr>
<tr>
<td>Hellenic Open University, Patras, Greece</td>
<td></td>
</tr>
<tr>
<td>Center for High Energy Physics, Peking University, China</td>
<td></td>
</tr>
<tr>
<td>The City College of New York, New York, New York, USA</td>
<td></td>
</tr>
<tr>
<td>Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, California State University, Sacramento, USA</td>
<td></td>
</tr>
<tr>
<td>Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria</td>
<td></td>
</tr>
<tr>
<td>Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany</td>
<td></td>
</tr>
<tr>
<td>CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France</td>
<td></td>
</tr>
<tr>
<td>National Research Nuclear University MEPhI, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary</td>
<td></td>
</tr>
<tr>
<td>Giresun University, Faculty of Engineering, Giresun, Turkey</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA</td>
<td></td>
</tr>
</tbody>
</table>