Search for charged-lepton-flavour violation in Z-boson decays with the ATLAS detector

ATLAS Collaboration

DOI
10.1038/s41567-021-01225-z

Publication date
2021

Document Version
Final published version

Published in
Nature Physics

License
CC BY

Citation for published version (APA):
Search for charged-lepton-flavour violation in Z-boson decays with the ATLAS detector

ATLAS Collaboration*

Leptons with essentially the same properties apart from their mass are grouped into three families (or flavours). The number of leptons of each flavour is conserved in interactions, but this is not imposed by fundamental principles. Since the formulation of the standard model of particle physics, the observation of flavour oscillations among neutrinos has shown that lepton flavour is not conserved in neutrino weak interactions. So far, there has been no experimental evidence that this also occurs in interactions between charged leptons. Such an observation would be a sign of undiscovered particles or a yet unknown type of interaction. Here the ATLAS experiment at the Large Hadron Collider at CERN reports a constraint on lepton-flavour-violating effects in weak interactions, searching for Z-boson decays into a τ lepton and another lepton of different flavour with opposite electric charge. The branching fractions for these decays are measured to be less than \(8.1 \times 10^{-6}\) (e) and \(9.5 \times 10^{-6}\) (μτ) at the 95% confidence level using 139 fb\(^{-1}\) of proton-proton collision data at a centre-of-mass energy of \(\sqrt{s} = 13\) TeV and 20.3 fb\(^{-1}\) at \(\sqrt{s} = 8\) TeV. These results supersede the limits from the Large Electron–Positron Collider experiments conducted more than two decades ago.

In the standard model of particle physics (SM)\(^1–4\), three lepton families (flavours) exist. The number of leptons of each family is conserved in weak interactions, and violation of this assumption is known as lepton flavour violation (LFV). No fundamental principles forbid LFV processes in the SM. The phenomenon of neutrino oscillations, where neutrinos (the neutral leptons) of one flavour transform into those of another\(^5–6\), indicates that neutrinos have mass and LFV processes do occur in nature. The mechanisms responsible for neutrinos acquiring mass and weak interactions violating lepton flavour conservation remain unknown. More experimental data are needed to constrain and guide possible generalizations of the SM explaining these phenomena.

An observation of LFV in charged-lepton interactions would be an unambiguous sign of new physics. In particular, decays of the Z boson into a light lepton (electron or muon) and a τ lepton at colliders are of experimental interest. The abundance of Z bosons produced at the Large Hadron Collider (LHC) offers the opportunity to strongly constrain potential LFV Z → eτ or Z → μτ interactions, in particular those proportional to the centre-of-mass energy of the decay\(^7\). Moreover, Z → eτ,μτ decays are less constrained by low-energy experiments than Z → eμ decays. According to current knowledge, these decays can occur via neutrino mixing but are too rare to be detected. Only 1 in approximately \(10^{14}\) Z bosons would decay into a muon and a τ lepton\(^8\). An observation of such decays would therefore require new theoretical explanations. For example, theories predicting the existence of heavy neutrinos\(^9\) provide a fundamental understanding of the observed tiny masses and large mixing of SM neutrinos. In such theories, up to 1 in \(10^7\) Z bosons would be expected to undergo an LFV decay involving τ leptons. The ATLAS experiment can test the predictions of such theories by observing or setting ever more stringent constraints on LFV Z-boson decays.

Constraints on the branching fractions (\(B\)) of the LFV decays of the Z boson involving a τ lepton have been set by the experiments at the Large Electron–Positron Collider (LEP): \(B(Z \rightarrow e\tau) < 9.8 \times 10^{-6}\) (ref. \(^{10}\)) and \(B(Z \rightarrow \mu\tau) < 1.2 \times 10^{-5}\) (ref. \(^{11}\)) at the 95% confidence level (CL). The ATLAS experiment\(^2\) at the LHC has set constraints \(B(Z \rightarrow e\tau) < 5.8 \times 10^{-5}\) at 95% CL using part of the Run 2 data and \(B(Z \rightarrow \mu\tau) < 1.3 \times 10^{-5}\) using the Run 1 data and a subset of the Run 2 data\(^{12}\).

This work uses proton–proton (pp) collision data collected by the ATLAS experiment during Run 2 of the LHC, containing about eight billion Z-boson decays. Only events with a τ lepton that decays hadronically are considered. Neural network (NN) classifiers are used in a novel way for optimal discrimination of signal from background, and to achieve improved sensitivity in the search for LFV effects in the data using a binned maximum-likelihood fit. The result for the μτ channel is combined with a previous LHC Run 1 result to further improve the sensitivity. These results set constraints on LFV Z-boson decays involving τ leptons that supersede the most stringent ones set by the LEP experiments more than two decades ago.

The ATLAS experiment and data sample

To record and analyse the LHC pp collisions, the ATLAS experiment uses a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and a near 4π coverage in solid angle\(^{12,14,15}\). It consists of an inner tracking detector surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer.

The search uses the complete dataset of pp collision events at a centre-of-mass energy of \(\sqrt{s} = 13\) TeV collected by the ATLAS experiment during LHC Run 2. This dataset was recorded using single-electron or single-muon triggers\(^{16}\) and corresponds to an integrated luminosity of 139 fb\(^{-1}\). For the search in the μτ channel, the results are combined with those of a previous similar search using pp collisions at \(\sqrt{s} = 8\) TeV during LHC Run 1, corresponding to an integrated luminosity of 20.3 fb\(^{-1}\) (ref. \(^{17}\)).

Candidates for electrons\(^{18}\), muons\(^{19}\), jets\(^{20–22}\), and visible decay products of hadronic τ-lepton decays (\(τ\rightarrow hadrons\))\(^{23,24}\) are reconstructed from energy deposits in the calorimeters and charged-particle tracks measured in the inner detector and the muon spectrometer.

* A list of authors and their affiliations appears online.
Electron candidates are required to pass the Medium likelihood-based identification requirement and have pseudorapidity $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. Muon candidates are required to pass the Medium identification requirement and have $|\eta| < 2.5$. Both the electron and muon candidates must have transverse momentum $p_T > 30$ GeV and satisfy the ‘tight’ isolation requirement. The lower bounds on the electron and muon transverse momenta are driven by the acceptance of the trigger selection.

Quark- or gluon-initiated particle showers (jets) are reconstructed using the anti-k_T algorithm with the radius parameter $R = 0.4$. Jets fulfilling $p_T > 20$ GeV and $|\eta| < 2.5$ are identified as containing b hadrons if tagged by a dedicated multivariate algorithm.

The $\tau_{had-vis}$ candidates are reconstructed from jets with $p_T > 10$ GeV, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.5$, and one or three associated tracks, referred to as ‘1-prong’ (1P) and ‘3-prong’ (3P), respectively. The $\tau_{had-vis}$ identification is performed by a recurrent NN algorithm, which uses calorimetric shower shapes and tracking information to discriminate true $\tau_{had-vis}$ candidates from fake candidates from quark- or gluon-initiated jets. The $\tau_{had-vis}$ candidates are required to pass the tight identification selection, which has an efficiency of 60% (45%) for true 1P (3P) $\tau_{had-vis}$ candidates, constant in the $\tau_{had-vis}$ candidates’ transverse momentum, and a misidentification rate of 1 in 70 (700) for fake 1P (3P) candidates in dijet events. Dedicated multivariate algorithms are used to further discriminate between $\tau_{had-vis}$ and electrons, and to calibrate the $\tau_{had-vis}$ energy. The $\tau_{had-vis}$ candidate with the largest p_T in each event is the selected candidate and is required to have $p_T > 25$ GeV. Based on simulation, in $Z \to \ell\ell$ decays, the $\tau_{had-vis}$ candidate is expected to be correctly selected 98% of the time.

The missing transverse momentum (E_T^{miss}) is calculated as the negative vectorial sum of the p_T of all fully reconstructed and calibrated physics objects. The calculation also includes inner detector tracks that originate from the vertex associated with the hard-scattering process but are not associated with any of the reconstructed objects. The missing transverse momentum is the best proxy for the total transverse momentum of undetected particles (in particular neutrinos) in an event.

Search strategy

The $Z \to \ell\ell \to \tau\tau$, ℓ (light lepton, e or μ) signal events have a number of key features that can be exploited to separate them from the SM background events. The signal events are characterized by their unique final state, which has exactly one ℓ and one τ lepton, with the invariant mass of the pair being compatible with the Z-boson mass. The ℓ and τ leptons carry opposite electric charges and are emitted approximately back to back in the plane transverse to the proton beam direction. Since the τ lepton is typically boosted due to the large difference between its mass and the mass of its parent Z boson, the neutrino from its decay is usually almost collinear with the visible τ-decay products. The neutrino escapes detection and is reconstructed as part of the E_T^{miss} of the event. In a signal event, this is the only major source of E_T^{miss}.

The major background contributions for this search are as follows: lepton-flavour-conserving $Z \to \tau\tau$, $\tau\tau \to \ell\ell$, 3ℓ decays, where one of the ℓ leptons decays leptonically and the other hadronically; $Z \to \ell\ell$, $\ell\ell$ decays, where one of the light leptons is misidentified as the $\tau_{had-vis}$ candidate; events with a quark- or gluon-initiated jet that is misidentified as the $\tau_{had-vis}$ candidate. The last of these are hereafter referred to as events with ‘fakes’ and are mostly $W(\ell\nu) +$ jets events and purely hadronic multijet events. Other SM processes with a real $\tau_{had-vis}$ final state, such as decays of a top–antitop-quark pair, two gauge bosons or a Higgs boson, and those with a real hadron and a jet misidentified as a light lepton, such as $W(\tau\nu) +$ jets, are considered, although their contribution to the overall background is minor.

The signal and background events are separated by using a set of event selection criteria that help to define a signal-enhanced sample, referred to as the signal region (SR). The main selection criteria are listed in Table 1 and will be explained in the following. They are primarily based on the multiplicity of reconstructed particle candidates and the event topology, in particular the transverse masses (m_T), which are defined as

$$m_T(X, E_T^{miss}) \equiv \sqrt{2p_T(X)E_T^{miss}(1 - \cos(\phi_X - \phi_{E_T^{miss}}))}$$

where X is either a light lepton or a $\tau_{had-vis}$ candidate and ϕ denotes the azimuthal angle. A schematic of the expected signal and background topologies is described in Extended Data Figs. 1 and 2.

Table 1 | Main selection criteria for events in the signal region

<table>
<thead>
<tr>
<th>Main selection criteria</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one $\tau_{had-vis}$ candidate</td>
<td>Select events with $\ell\tau$ pair</td>
</tr>
<tr>
<td>Exactly one isolated light lepton candidate</td>
<td></td>
</tr>
<tr>
<td>Opposite-sign charged $\ell\tau$ pair</td>
<td></td>
</tr>
<tr>
<td>$m_T(\tau_{had-vis}, E_T^{miss}) < 35$ GeV</td>
<td>Reject $Z \to \tau\tau$ and $W +$ jets events</td>
</tr>
<tr>
<td>$m_T(\ell\tau_{had-vis}) > 60$ GeV</td>
<td>Invariant mass of the $\ell\tau_{had-vis}$-pair. Reject events incompatible with $\ell\tau$ pairs from Z-boson decays</td>
</tr>
<tr>
<td>No tagged b-hadron jets</td>
<td>Reject tt and single-top-quark events</td>
</tr>
<tr>
<td>Combined NN output > 0.1 (0.2) for events with 1P (3P) $\tau_{had-vis}$ candidates</td>
<td>Reject background-like events</td>
</tr>
<tr>
<td>NN (optimized for signal versus $Z \to \ell\ell$ output > 0.2)</td>
<td>Ensure orthogonal region for correcting $Z \to \ell\ell$ simulation (ℓ misidentified as 1P $\tau_{had-vis}$ candidate, see section ‘Signal and background predictions’)</td>
</tr>
</tbody>
</table>

The NN outputs from the individual NNs are numbers between 0 and 1 that reflect the probability for an event to be a signal event; they are combined into a final discriminant, hereafter referred to as the ’combined NN output’. The combination is parameterized by weights associated with each individual NN and optimized for discrimination among various background processes distributed differently along the range of combined NN output values, as detailed in Methods. This allows the maximum-likelihood fit to determine the background contributions more precisely, which ultimately improves the sensitivity.

Events classified by the NNs as being background-like are excluded from the SR, as indicated in Table 1. The signal acceptance times selection efficiency in the SR is 2.7% for the $\ell\tau$ channel and 3.0% for the $\mu\tau$ channel, as determined from simulated signal samples.
Signal and background predictions

Predictions for signal and background contributions to the event yield and kinematic distributions in the SR are based partly on Monte Carlo (MC) simulations and partly on the use of data in regions that are enriched in background events and do not overlap with the SR.

The signal events were simulated using PYTHIA 8.28 with matrix elements calculated at leading order (LO) in the strong coupling constant (α_s). Parameter values for initial-state radiation, multiparton interactions and beam remnants were set according to the A14 set of tuned parameters (tune) with the NNPDF 2.3 LO parton distribution function (PDF) set. Nominal signal samples were generated with a parity-conserving $Z\tau\tau$ vertex and unpolarized τ leptons. Scenarios where the decays are maximally parity-violating were considered by reweighting the simulated events using TAUSPINNER. The event weight was computed as the probability of occurrence of each generated signal event, based on its kinematics, when assuming a specific τ-polarization state (left-handed or right-handed).

Background $Z\rightarrow\tau\tau$ events were simulated with the SHERPA 2.2.1 generator using the NNPDF 3.0 NNLO PDF set and next-to-leading-order (NLO) matrix elements for up to two partons.

Fig. 1 | Distributions of the combined NN output in control regions and validation regions. **a, b**, CRZ$\tau\tau$ for the $\mu\tau$ channel with 1P (**a**) and 3P (**b**) $t_{had-vis}$ candidates. **c, d,** Same-sign validation region (VRSS) for the $e\tau$ channel for events with 1P (**c**) and 3P (**d**) $t_{had-vis}$ candidates. The expected contributions are determined in a fit to data (‘Constraints on $B(Z\rightarrow\ell\tau)$’). The panels below each plot show the ratios of the observed yields to the best-fit background yields. The hatched error bands represent a one standard deviation of the combined statistical and systematic uncertainties. The statistical uncertainties on the data are shown as vertical bars. The last bin in each plot includes overflow events. Similarly good agreement is observed in the same-sign validation region for the $\mu\tau$ channel and CRZ$\tau\tau$ for the $e\tau$ channel, which are not shown here.
and LO matrix elements for up to four partons, calculated with the COMIX14 and OPENLOOPS15–17 libraries. They were matched with the SHERPA parton shower18 using the MEPS@NLO prescription18–21, with the default SHERPA tune. This tune follows the recommendations of the SHERPA authors. Background $Z \rightarrow \ell\ell$ events were simulated using the POWHEG-BOX22 generator with NLO matrix elements and interfaced to PYTHIA8 to model the parton showers, hadronization and underlying events. All MC samples include a detailed simulation of the ATLAS detector with GEANT423, to produce predictions that can be compared with the data. Furthermore, simulated inelastic pp collisions, generated with PYTHIA8 using the NNPDF 2.3 LO PDF set and the A3 tune24 were overlaid on the hard-scattering events to model the additional pp collisions occurring in the same proton bunch crossing. All simulated events were processed using the same reconstruction algorithms as used for data.

The simulation of Z-boson production is improved with a correction derived from measurements in data. The simulated p_T spectra of the Z boson are reweighed to match the unfolded distribution measured by ATLAS in ref. 46. This improves the predictions of signal, $Z \rightarrow \tau\tau$ and $Z \rightarrow \ell\ell$ events, which are simulated at different orders in a_T using different generators. It also reduces the uncertainties related to missing higher orders in a_T.

The predicted overall yields of signal and $Z \rightarrow \tau\tau$ events are determined by a binned maximum-likelihood fit to data (see next section) in the SR and in a control region enhanced in $Z \rightarrow \tau\tau \rightarrow \ell_1\ell_2\ell_3$ events (CRZ$\tau\tau$), using an unconstrained fit parameter, which accounts for theoretical uncertainties in the total Z-boson production cross section (σ_T), as well as the experimental uncertainties related to the acceptance of the common $\ell_1\ell_2\ell_3$ final state. The selection criteria for events in the CRZ$\tau\tau$ are the same as those for events in the SR, except that events are required to have $m_T(\ell_1\ell_2\ell_3) > 35$ GeV, $m_T(\ell_1, E_\text{T}^{\text{miss}}) < 40$ GeV and 70 GeV < $m_{n\ell\ell}(\ell, \tau)$ < 110 GeV.

A much smaller contribution to the total background originates from $Z \rightarrow \ell\ell$ events. Their predicted overall yield is based on the measured value of σ_T (ref. 47) times the measured integrated luminosity. The uncertainty in the measurement is taken into account. The predicted rates of misidentifying electrons and muons in $Z \rightarrow \ell\ell$ events as 1P τ_{nadv} candidates are corrected using data in a region enriched in $Z \rightarrow \ell\ell$ events and orthogonal to the SR, where the last selection criterion in Table 1 is inverted and the outputs of the NN classifiers optimized to reject $Z \rightarrow \tau\tau$, and $W +$ jets events are required to be greater than 0.8. The corrections are derived as functions of p_T and $|y|$ of the τ_{nadv} candidate. Statistical uncertainties in the correction are considered.

Events with fakes are one of the dominant contributions to the background, and are estimated from data using the ‘fake-factor method’, which is described in ref. 15. A fake factor is defined as the ratio of the number of events with a fake τ_{nadv} candidate passing the Tight τ_{nadv} identification requirement to those failing it. Four fake factors, one for each of the most important backgrounds with fakes ($W(\rightarrow\ell\nu)$ + jets, multijet, $Z(\rightarrow\ell\ell)+$ jets and $t\bar{t}$ events), are measured in data in four corresponding fakes-enriched regions. Each of these regions has a dominant contribution from one of the four targeted backgrounds with fakes. These regions do not overlap with any of the regions used in the final maximum-likelihood fit. The purity of the multijet-enriched region is improved by introducing two additional selection criteria: events must have a same-sign charged $\ell^-\tau_{\text{nadv}}$ pair and $m_T(\ell, E_\text{T}^{\text{miss}}) < 40$ GeV. The fake factors are measured as functions of the transverse momentum of the τ_{nadv} candidate, separately for $\ell\tau$ and $\mu\tau$ events and for events with 1P or 3P τ_{nadv} candidates.

The number of events with a fake 1P or 3P τ_{nadv} Candidate in a given p_T range in the SR or CRZ$\tau\tau$ is estimated by the number of events with a τ_{nadv} candidate failing the Tight identification requirement, but otherwise satisfying all other selection criteria for that region, multiplied by an average of the fake factors. To calculate this average, the fake factors are summed with weights equal to the expected relative contribution of the corresponding background to the total yield of events in the region with the inverted identification requirement. This approach is used to model the kinetic properties of the events with fakes. The total predicted yields of these events in the SR and CRZ$\tau\tau$ are instead determined by a maximum-likelihood fit to data (see next section), separately for events with 1P and 3P τ_{nadv} candidates. This approach avoids the uncertainties associated with the simulation of events with fakes, and makes full use of the large amount of data collected.

The remaining background processes (summarized as ‘Others’ in the following) have relatively small contributions in the SR and are estimated using simulations. They include events from the production and decays of top quarks, pairs of gauge bosons, the Higgs boson and $W(\rightarrow\tau\nu)$ + jets. The yields of these events are normalized to their theoretical cross-sections.

The modelling of the estimated background is validated using events in regions where a possible contamination from signal is negligible. Especially important to the search is the modelling of the combined NN output distribution of $Z \rightarrow \tau\tau$ events and events with fakes. This is validated by comparing the predicted distributions with data in the CRZ$\tau\tau$ and in a region similar to the SR, but with events that have same-sign charged $\ell^-\tau_{\text{nadv}}$ pairs, as shown in Fig. 1.

Table 2 | Summary of the uncertainties and their impacts on the measured branching fraction $B(Z \rightarrow \ell\tau)$

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty on $B(Z \rightarrow \ell\tau) \times 10^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>±0.4 ±0.1</td>
</tr>
<tr>
<td>Systematic</td>
<td>±2.3 ±1.5</td>
</tr>
<tr>
<td>r leptons</td>
<td>±1.9 ±1.5</td>
</tr>
<tr>
<td>Energy calibration</td>
<td>±1.3 ±1.4</td>
</tr>
<tr>
<td>Jet rejection</td>
<td>±0.3 ±0.3</td>
</tr>
<tr>
<td>Electron rejection</td>
<td>±1.3</td>
</tr>
<tr>
<td>Light leptons</td>
<td>±0.4 ±0.1</td>
</tr>
<tr>
<td>E_T^{miss}, jets and flavour tagging</td>
<td>±0.6 ±0.5</td>
</tr>
<tr>
<td>Z-boson modelling</td>
<td>±0.7 ±0.3</td>
</tr>
<tr>
<td>Luminosity and other minor backgrounds</td>
<td>±0.8 ±0.3</td>
</tr>
<tr>
<td>Total</td>
<td>±4.1 ±3.2</td>
</tr>
</tbody>
</table>

The statistical uncertainties include those in the determination of the yields of the events with fakes and from $Z \rightarrow\ell\tau$ or $Z \rightarrow\tau\tau$ decays. The uncertainties related to light leptons include those in the trigger, reconstruction, identification and isolation efficiencies, as well as energy calibrations. The uncertainties related to jets and E_T^{miss} include those in energy calibration and resolution. The uncertainties related to the Z-boson modelling include those in the correction of the simulated transverse momentum and the measured production cross-section of the Z boson.
candidates, one determines \(\sigma \) times the overall acceptance and reconstruction efficiency of the \(\ell \tau_{\text{had-vb}} \) final state in \(Z \rightarrow \ell \tau \) and signal events, and the last one, the parameter of interest, determines the LFV branching fraction \(B(Z \rightarrow \ell \tau) \) by modifying an arbitrary pre-fit signal yield.

Constrained parameters are also introduced to account for systematic uncertainties in the signal and background predictions. In the case of no significant deviations from the SM background, exclusion limits are set using the CLS method. Systematic uncertainties in this search include uncertainties in simulated events in the modelling of trigger, reconstruction, identification and isolation efficiencies, as well as energy calibrations and resolutions of reconstructed objects. Conservative theory uncertainties ranging between 4% and 20% are also assigned to the predicted cross-sections used for the estimation of minor background processes. These uncertainties are not assigned to events with fakes or \(Z \)-boson decays, whose yields are determined from data. These events constitute only a small fraction of the background events in the SR. The dominant uncertainties in this search are those in the overall yields of events with fakes, which are predominantly of statistical nature, and those in the \(\tau_{\text{had-vb}} \) energy calibration, which are independent between 1P and 3P \(\tau_{\text{had-vb}} \) candidates.
and constrained by the fit of the collinear mass spectrum to the data in the CRZττ. A summary of the uncertainties and their impact on the best-fit LFV branching fraction is provided in Table 2, which shows that the sensitivity of the search is primarily limited by the available amount of data.

The best-fit expected and observed distributions of the combined NN output in the SR are shown in Fig. 2. The best-fit yields of $Z \rightarrow \tau \tau$ and events with fakes are close to the pre-fit predicted values and are determined with a relative precision of 2–4%. Table 3 shows the best-fit expected background and signal yields and the observed number of events in the SR of the $e\tau$ and $\mu\tau$ channels with an additional requirement of a combined NN output > 0.7 to consider the most signal-like events.

The best-fit amount of $Z \rightarrow \ell\tau$ signal corresponds to the branching fractions $B(Z \rightarrow e\tau) = (0.1 \pm 3.5 \text{ (stat)} \pm 2.3 \text{ (syst)}) \times 10^{-6}$ and $B(Z \rightarrow \mu\tau) = (4.3 \pm 2.8 \text{ (stat)} \pm 1.6 \text{ (syst)}) \times 10^{-6}$. The positive best-fit value of $B(Z \rightarrow \mu\tau)$ is related to a small excess of observed events relative to the background-only hypothesis. This excess has a significance of 0.9 standard deviations when the events with $1P$ and $3P$ $\tau_{had} \to \tau_{vis}$ candidates are fitted simultaneously.

No statistically significant deviation from the SM prediction is observed, and upper limits on the LFV branching fractions are set. For the $\mu\tau$ channel, a more stringent upper limit is set by combining the likelihood function of the presented measurement and a similar measurement done with ATLAS Run 1 data. Systematic uncertainties from the two measurements are considered uncorrelated in the combined likelihood function. The upper limits are shown in Table 4 for LFV decays with different assumptions about the r-polarization state. In the scenario where the τ leptons are unpolarized, the observed upper limits at 95% CL on $B(Z \rightarrow e\tau)$ and $B(Z \rightarrow \mu\tau)$ are 8.1×10^{-6} and 9.5×10^{-6}, respectively.

In conclusion, these results from the ATLAS experiment at the LHC set stringent constraints on LFV Z-boson decays involving τ leptons (using only their hadronic decays), superseding the most stringent ones set by the LEP experiments more than two decades ago. The precision of these results is mainly limited by statistical uncertainties.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41567-021-01225-z.

Received: 7 October 2020; Accepted: 11 March 2021; Published online: 1 July 2021

References

45. ATLAS Collaboration The Pythia 8 A3 Tune Description of ATLAS Minimum Bias and Inelastic Measurements Incorporating the Donnachie–Landshoff Diffractive Model ATL-PHYS-PUB-2016-017 (CERN, 2016); https://cds.cern.ch/record/2206965

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021
Methods

Neural network classifiers. Several binary NN classifiers are trained for both the $e\tau$ and $\mu\tau$ channels to discriminate signal from the three major backgrounds: $W+\text{jets}, Z\rightarrow\tau\tau$ and $Z\rightarrow\ell\ell$. They are referred to as NN_{e\tau}, NN_{\mu\tau} and NN_{wZ}, respectively.

The NNs are trained using simulated events selected with the same criteria as those used in the SR, except that the cuts on $m_{\ell\ell}$ (the τ-pair mass) and the NN output are omitted, and real $\tau_{\text{had-vis}}$ candidates from $Z\rightarrow\ell\ell$ and $Z\rightarrow\tau\tau$ are required to pass less stringent identification criteria so as to increase the training sample size. For the $Z\rightarrow\ell\ell$ process, only events where the $\tau_{\text{had-vis}}$ candidate is a misidentified light lepton are used. For the $W+\text{jets}$ process, misidentified jets as $\tau_{\text{had-vis}}$ are modelled by simulations. Different NNs are trained separately for $e\tau$ and $\mu\tau$ events as well as for events with 1P or 3P $\tau_{\text{had-vis}}$ candidates. To increase the signal sample size, the $Z\rightarrow\ell\ell$ and $Z\rightarrow\mu\tau$ samples are combined and used for training in both channels, assuming equivalent event topology when exchanging e and μ. Owing to the low expected yield of $Z\rightarrow\ell\ell$ events with 3P $\tau_{\text{had-vis}}$ candidates, no classifier is trained to discriminate them from background.

A mixture of low-level and high-level kinematic variables are used as input to the NNs. The low-level variables include the four-momenta of the reconstructed ℓ (refs. 18,19), $\tau_{\text{had-vis}}$ candidate, and $E_{\text{T}}^{\text{vis}}$ (refs. 18). To remove known spatial correlations, the lepton are used. For the $W+\text{jets}$ process, jets misidentified as $\tau_{\text{had-vis}}$ are modelled by simulations. Different NNs are trained separately for $e\tau$ and $\mu\tau$ events as well as for events with 1P or 3P $\tau_{\text{had-vis}}$ candidates. To increase the signal sample size, the $Z\rightarrow\ell\ell$ and $Z\rightarrow\mu\tau$ samples are combined and used for training in both channels, assuming equivalent event topology when exchanging e and μ. Owing to the low expected yield of $Z\rightarrow\ell\ell$ events with 3P $\tau_{\text{had-vis}}$ candidates, no classifier is trained to discriminate them from background.

The high-level variables include Δa, which is a kinematic discriminant defined as

$$\Delta a = \frac{m_{\ell\ell}^2 - m_{\ell\ell}^2}{2p^2\times p_{\text{T\text{had-vis}}}} - \frac{p_1^2(\ell)}{p^2(\tau_{\text{had-vis}})}$$

where m_τ and m_ℓ are the nominal masses of the Z boson and τ lepton, respectively, and p denotes four-momentum. It is specifically defined to test the assumptions that the missing momentum of the event is collinear with the $\tau_{\text{had-vis}}$ candidate, and that the ℓ and light leptons in the event are decay products of an on-shell Z boson. For a signal event, where these assumptions are approximately true, it is expected that $\Delta a \approx 0$. Meanwhile, for an SM background event, the value is expected to deviate from zero in general. The other high-level variables are the invariant mass of the $\ell\ell$ system, the collinear mass $m_{\ell\ell}(\ell, \tau)$ and the invariant mass of the light lepton and the track associated with the $\tau_{\text{had-vis}}$ candidate (only used by the $Z\rightarrow\ell\ell$ classifier).

The training and optimization of the NN classifiers are performed using the open-source software package KERAS. All of the NNs used in the analysis share the same architecture. Each NN consists of an input layer, two hidden layers of 20 nodes each, and an output layer with a single node. Each layer is fully connected to the neighbouring layers. Low-level and high-level variables are treated in the same way in the input layer. The hidden-layers nodes use rectified linear activation functions, while the output node uses a sigmoid activation function. The NNs are trained using the Adam algorithm to optimize the binary cross entropy. All the NNs are trained with a batch size of 256 and 200 epochs. The number of hidden nodes is increased until a value of 100 is reached. For a signal event, where these assumptions are approximately true, it is expected that $\Delta a \approx 0$. Meanwhile, for an SM background event, the value is expected to deviate from zero in general. The other high-level variables are the invariant mass of the $\ell\ell$ system, the collinear mass $m_{\ell\ell}(\ell, \tau)$ and the invariant mass of the light lepton and the track associated with the $\tau_{\text{had-vis}}$ candidate (only used by the $Z\rightarrow\ell\ell$ classifier).

For the $\mu\tau$ channel, the likelihood functions of the presented measurement and of the measurement in ref. 17 are combined. As the two measurements are statistically uncorrelated and the productions are based on different methods, NPs in the individual likelihood functions are considered uncorrelated in the combination. The method of combination is the same as in ref. 11.

Data availability

The experimental data that support the findings of this study are available in HEPData with the identifier https://www.hepdata.net/record/96390. The ATLAS software is available at the following link: https://gitlab.cern.ch/atlas/athena.
Acknowledgements

We acknowledge our late colleague, Olga Igonkina (1973–2019), for inspiring and driving this and other searches for lepton flavour violation within the ATLAS experiment. Her curiosity and intelligence remain an inspiration to the ATLAS Collaboration. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFV and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; ME XT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; IJINR, MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, United States. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020; Marie Skłodowska-Curie Actions and COST, EU; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristea programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GeIT Programmes Generalitat Valenciana, Spain; Goran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. 44.

Author contributions

All authors contributed to the publication, being variously involved in the design and the construction of the detectors, in writing software, calibrating subsystems, operating the detectors and acquiring data, and finally analysing the processed data. The ATLAS Collaboration members discussed and approved the scientific results. The manuscript was prepared by a subgroup of authors appointed by the collaboration and subject to an internal collaboration-wide review process. All authors reviewed and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41567-021-01225-z.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41567-021-01225-z.

Correspondence and requests for materials should be addressed to G.A.

Peer review information Nature Physics thanks Michael Schmidt, Roger Wolf and Scott Yost for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
ATLAS Collaboration

Extended Data Fig. 1 | Schematic representation of a typical event selected in the SR. The topology as seen in the plane transverse to the beam line is shown. (a) A signal $Z \rightarrow \ell \tau$ event. (b) A $Z \rightarrow \tau \tau$ event. (c) A W + jets event. The green arrows represent reconstructed light leptons (ℓ). The blue triangles represent the $\tau_{\text{had-vis}}$ candidates. The light blue dashed lines represent neutrinos that escape detection and are reconstructed as (part of) the missing transverse momentum of the event.
Extended Data Fig. 2 | Distributions of $m_T(\tau_{\text{had}}-\text{vis}, E_T^{\text{miss}})$ versus $m_T(\mu, E_T^{\text{miss}})$ of events selected in the SR. (a) Simulated $Z \rightarrow \mu\tau$ events. (b) Simulated $Z \rightarrow \tau\tau$ events. (c) Events measured in data in regions where quark- or gluon-initiated jets are misidentified as $\tau_{\text{had-vis}}$ candidates (events with jet $\rightarrow \tau_{\text{had-vis}}$ fakes, see ‘Signal and background predictions’ section) in the $\mu\tau$ final state. The colour map represents the fraction of events in each bin.