Adult food choices depend on sex and exposure to early-life stress

Underlying brain circuitry, adipose tissue adaptations and metabolic responses

DOI
10.1016/j.ynstr.2021.100360

Publication date
2021

Document Version
Final published version

Published in
Neurobiology of Stress

License
CC BY

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 11 Dec 2022
Adult food choices depend on sex and exposure to early-life stress:
Underlying brain circuitry, adipose tissue adaptations and metabolic responses

S.R. Ruigrok a, J.M. Kotah a, J.E. Kuindersma a, E. Speijer a, A.A.S. van Irsen a, S.E. la Fleur b, c, A. Korosi a, *

1. Introduction

Metabolic diseases are increasingly common in the modern society in which high caloric foods are abundant and readily available (Malik et al., 2013). In 2016, worldwide 39% of adults were overweight and 13% were obese (World Health Organization, 2018). Thus, it is key to understand which factors contribute to the development of obesity. The vulnerability to become overweight or obese is heavily influenced by the perinatal environment, during which a metabolic setpoint is likely established (Bouret, 2009; Bouret and Simerly, 2006; Levin, 2006). There is evidence that exposure to early-life adversity increases the risk to develop metabolic diseases, including obesity and diabetes, later in life (Alciati et al., 2013; Balsevich et al., 2019; Bellis et al., 2015; Danese and Tan, 2014) and these effects are potentially sex specific (Boynton-Jarrett et al., 2010; Kozyrskyj et al., 2011; Murphy et al., 2018; Park et al., 2018). Early-life stress (ES) exposure affects many children worldwide. For example, in the United States, it is estimated that 61% of adults experienced some form of ES (e.g. abuse, neglect, parental separation, poverty) (Merrick et al., 2018). It is therefore urgently needed to understand how ES impacts metabolic vulnerability in order to develop strategies to prevent and reduce the incidence of metabolic disorders later in life. Such an early-life-induced setpoint might determine how an organism will respond to its later life nutritional environment, but possibly also the food choices an individual makes in the first place.

To understand ES-induced metabolic vulnerability, it is important to include a metabolic challenge, like the exposure to an unhealthy diet later in life (Maniam et al., 2014; Maniam and Morris, 2010; Murphy et al., 2018; Park et al., 2018). An additional important, yet under investigated, element contributing to the development of obesity in humans is the choice of the food. There is initial evidence that ES leads to altered food choices but a thorough testing on how ES affects the choice of both the fat and sugar component, and if this is similar in males and females, is currently missing. We hypothesize that ES increases the choice for unhealthy foods, while it at the same time also affects the response to such a diet. In a mouse model for ES, in which mice are exposed to limited nesting and bedding material from postnatal day (P)2-P9, we investigated if ES exposure affected i) food choice with a free choice high-fat high-sugar diet (fcHFHS), ii) the response to such a diet, iii) the brain circuits that regulate food intake and food reward and iv) if such ES effects are sex-specific. We show that there are sex differences in food choice under basal circumstances, and that ES increases fat intake in females when exposed to a mild acute stressor. Moreover, ES impacts the physiologic response to the fcHFHS and the brain circuits regulating food intake in sex-specific manner. Our data highlight sex-specific effects of ES on metabolic functioning and food choice.
2. Materials and methods

2.1. Mice and breeding

For these studies, 96 experimental animals (CTL M STD: n = 10; ES M STD: n = 8; CTL F STD: n = 10; ES F STD: n = 13; CTL M HFHS: n = 15; ES M HFHS: n = 11; CTL F HFHS: n = 13; and ES F HFHS: n = 15) were used, originating from 18 litters (9 CTL, 9 ES), each containing five-six pups. Animals were kept under standard housing conditions (temperature 20–22°C, 40–60% humidity, 12/12 h light/dark schedule). Standard chow and water ad libitum were provided, unless noted otherwise. Animals were weaned at postnatal day 21, and group-housed until the dietary choice experiment started. All experimental procedures were conducted under national law and European Union directives on animal experiments, and were approved by the animal welfare committee of the University of Amsterdam.

Experimental animals were bred in house to standardize the
perinatal environment. Eight-ten week old C57Bl/6 J female and male mice were purchased from Invigo Laboratories B.V. (Venray, The Netherlands). After habituation for one-two weeks, two primiparous females were housed together with one adult male to allow for mating, for one week. Females were housed together for another week and were given nesting material (square piece of cotton) to practice. Afterwards, females were housed individually in a standard cage with filtertop and new nesting material, and placed in a ventilated cabinet to provide a standardized and quiet environment. Starting from 18 days after the breeding, females were checked each morning before 09:00 a.m. When a litter was born, the previous day was determined as postnatal day 0.

2.2. Early-life stress paradigm

Early-life stress was induced by providing limited nesting and bedding material from postnatal day (P) 2 to P9, as described previously (Naninck et al., 2015; Rice et al., 2008). To avoid differences in maternal sawdust and one square piece of cotton nesting material (5 cm × 3x3 cm), Techninlab-BMI, Someren, The Netherlands). ES cages consisted of a little amount of sawdust on the bottom, covered with a fine-gauge stainless steel mesh, and half a square piece of cotton nesting material (2.5 cm × 3x3 cm). All cages were covered with a filtertop. At P2 and P9 the pups, dams, and food were weighted. At P9, all litters were moved to new cages containing standard amounts of sawdust, and were left undisturbed until weaning at P21.

2.3. Bodyweight measurements

Bodyweight (BW) was measured throughout development and diet exposure. At P2, P9, P21, P35 BW was assessed in group-house animals. BW gain from P2 to P9 was calculated per litter for each sex, by subtracting the average P2 BW from the average P9 BW of all male and female pups respectively. From P63 onwards, animals were individually housed and weighted weekly until the end of the experiment.

2.4. Food choice

To allow for adequate food intake measurements, animals were housed individually at 9 weeks of age. After one week of acclimatization, animals were randomly divided into the free choice high-fat high-sugar diet (fchFHS) group, or control chow group. The control group had ad libitum access to regular chow (CRM (P), 801722, Standard Diets Services, Essex, United Kingdom, 3.585 kcal/g, where: 22% protein, 9% fat, and 69% carbohydrates) and tap water. fchFHS group had ad libitum access to four different components: regular chow; a bottle of tap water; pellets of beef fat (beef tallow, Vandomooretele, France, 9 kcal/g); 10% sugar water (0.4 kcal/mL) for 5 weeks (Fig. 1). For basal measurements, food intake and body weight was measured on a weekly basis. In addition, food intake was measured in the 24 h following a mild stressor composite of the following disturbances: a 4 h fasting period at the start of the light period and two tail cuts (see below). This intrinsic aspect of our experimental design allowed us to assess the effects of such an exposure on food choice. Fasting is considered stressful and increases glucocorticoid levels in mice (Champy et al., 2004). While generally mice tend to eat mostly during the night, after several weeks of HFHS diet exposure, mice eat equal amounts of fat and sugar during the day and night (Blancas-Velazquez et al., 2016), thus the fasting during the light period as performed in our experiment does disrupt food intake patterns of animals on a HFHS diet and thereby can be considered a stressor in combination with the two tail cuts. We measured food intake in the 24 h prior and following this event.

2.5. Blood collection and fasting

Blood (30–80 μl) was collected via tail cuts at multiple time points by making a small incision at the base of the tail to measure either corticosterone (CORT) or glucose levels (see Fig. 1A). Blood was drawn (without restraint) within 1 min after removing the mouse from its cage. For plasma CORT measurements, blood was collected between 08:00 and 09:00 a.m. from ad libitum fed mice. After this first tail cut, animals were fasted for 4 h to measure blood glucose levels (blood drawn between 12:00 and 01:00 p.m.). In the 24 h following the exposure to this fast and tail cuts, food intake was measured.

2.6. Glucose and corticosterone measurements

Blood was collected in EDTA-coated tubes (Sarstedt, The Netherlands), and centrifuged at 13000 rpm for 15 min. Plasma was stored at −40 °C. CORT levels were measured with a radioimmunoassay kit (MP Biomedicals, The Netherlands). Glucose was measured using a FreeStyle Optium Neo meter (Abbott Laboratories, Abbott Park, IL, USA).

2.7. Tissue collection

After five weeks of diet exposure, at 15 weeks of age, animals were sacrificed to study the adipose tissue and brain. Mice were anaesthetized by an IP injection of pentobarbital (Euthanol 120 mg/kg), and gonadal white adipose tissue was quickly weighted, snap-frozen, and stored at −80 °C. Afterwards, mice were transcardially perfused with 0.9% saline, followed by 4% paraformaldehyde (PFA) in phosphate buffer (PB, 0.1 M, pH 7.4). Brains were post-fixed in 4% PFA overnight at 4 °C, and stored in PB with 0.01% azide (at 4 °C) until slicing. Brains were cryoprotected with sequentially 15% and 30% sucrose solutions, sliced in 40 μm thick coronal sections, and stored in antifreeze (30% ethylene glycol, 20% glycerol, 50% 0.05 M PBS) at −20 °C.

2.8. Real-time PCR

To obtain RNA, adipose tissue was homogenized in TRizol (Invitrogen, Carlsbad, CA, USA) and samples were centrifuged to remove excessive fat. After the addition of chloroform (Sigma Aldrich, Saint Louis, MO, USA) and more centrifuging, the RNA appeared in the upper (aqueous) phase. Next, a RNA clean and concentrator kit with DNase I treatment (ZYMOP Research, Irvine, CA, USA) was used to obtain clean RNA samples. RNA was stored at −80 °C until cDNA was synthesized with Superscript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). cDNA was stored at −20 °C until further use. Relative gene expression was assessed by RT-PCR performed on a QuanStudio (TM) 6 Flex System (Thermo Fisher Scientific, Waltham, MA, USA). Hot FirePol EvaGreen Mastermix (Solis Biodyne, Tartu, Estonia), 150 nM of gene specific forward and reverse primers and 0.135 ng/μl cDNA template were added to the reaction mix. Primers (Eurogentec, Liege, Belgium, Table 1) all had an efficiency between 90 and 110%. Cycling conditions were as follows: 15 min polymerase activation at 95 °C and 40 cycles of replication (15 s at 95 °C, 20 s at 65 °C, and 35 s at 72 °C). ΔΔCt method was used to calculate relative gene expression, and was performed in Qbase + software (Biogazelle, Gent, Belgium). Expression was normalized for two reference genes, which were not affected by experimental conditions and tested for stability in Qbase +.

2.9. Fluorescent immunohistochemistry

To study the brain circuits relevant for food intake, brain slices were immuno-stained with agouti-related protein (AgRP), tyrosine hydroxylase (TH), and glutamate decarboxylase 65 (GAD65). First, free-floating brain slices were washed (3 × 10 min) with 0.05 M tris-buffered saline (TBS, pH 7.6). Slices were incubated in 3% bovine serum albumin (BSA)
and 0.3% Triton-X100 in 0.05 M TBS (blocking buffer) for 1 h, and subsequently incubated in a primary antibody solution containing goat anti-AgRP (Neuromics, Edina, MN, USA, GT15023, 1:1000), rabbit anti-TH (Pel-Freez, Rogers, AR, USA, P40101-150, 1:1000), and mouse anti-GAD65 (Abcam, Cambridge, UK, 26113, 1:2500) in blocking buffer, for 24 h at room temperature (RT). Following another series of washes in TBS (3 × 10 min), sections were again incubated in blocking buffer for 2 h, followed by an incubation with secondary antibodies overnight at 4 ℃ (donkey-α-rabbit 488, Invitrogen A21206; donkey-α-goat 568, Invitrogen A11057; donkey-α-mouse 647, Invitrogen A31571, all 1:500, in blocking buffer). Sections were washed and mounted with a DAPI-containing mounting solution. Negative controls containing no primary antibody in the blocking buffer (but a similar treatment otherwise) were taken along to confirm the specificity of the labelling.

2.10. Confocal microscopy and analysis

Analysis was done by a researcher blind to experimental conditions. All pictures were taken using a Nikon A1 confocal microscope. For analysis of hypothalamic AgRP, 4 pictures with a 20× objective were taken throughout the arcuate nucleus of the hypothalamus (ARH), between bregma −1.055 and −1.955 (based on Allen Brain Atlas, 2011). For analysis of AgRP in the ventral tegmental area (VTA), also four pictures were obtained with a 20× objective, between bregma −2.48 and −3.68. To obtain a proper representation of the staining throughout each brain section, each picture consisted of a Z-stack with 20 individual photos with a distance of 1 μm, and to achieve a correct representation of the whole brain region (either ARH or VTA), the imaged brain sections had an approximate similar intersection distance. AgRP rapidly diffuses from the cell body into the fibers, and therefore only AgRP fibers were quantified. Fiber density was determined with a thresholding method within a defined region of interest using ImageJ software (Na

Table 1

<table>
<thead>
<tr>
<th>Gene</th>
<th>Pathway/Function</th>
<th>Forward primer (5′-3′)</th>
<th>Reverse primer (5′-3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD36</td>
<td>Fatty acid uptake</td>
<td>GCAAGAACAGCAGGAAAAATC</td>
<td>CATGAGGGCTCAAGATGG</td>
</tr>
<tr>
<td>FABP4</td>
<td>Fatty acid binding protein</td>
<td>GAAATCACCGGAGACGACAG</td>
<td>ATCAACATTTTCACCCAGC</td>
</tr>
<tr>
<td>FASN</td>
<td>Fatty acid synthesis</td>
<td>GGCCTTCTGCTTGTGCTCT</td>
<td>TAGACCCCAGTCTCCTCTCT</td>
</tr>
<tr>
<td>Leptin</td>
<td>Anorexigenic adipokine</td>
<td>AGCTGAAGGTGGCAAGAAGAA</td>
<td>CTGGAATCTGTGGATAGCCA</td>
</tr>
<tr>
<td>PPARY</td>
<td>Fatty acid storage and glucose metabolism</td>
<td>GTCTCAACATGGCATCGAGTT</td>
<td>CAATACTCTTGCAAGGCTC</td>
</tr>
<tr>
<td>CANX</td>
<td>Reference gene</td>
<td>AGAGCCGCTGGTGATCAATCTG</td>
<td>TATGATGTCTCCTCCACAC</td>
</tr>
<tr>
<td>RPL19</td>
<td>Reference gene</td>
<td>TTGCCTCAGTGTCTCCGGC</td>
<td>CCTTAGATCTGCGACGGGG</td>
</tr>
</tbody>
</table>

Data were analysed with SPSS 25.0 (IBM software, Armonk, NY, USA), Graphpad Prism 6 (Graphpad software, San Diego, CA, USA) and R Studio 1.2.1335 (R Core Team, 2018). All data are presented as mean ± standard error of the mean (SEM). When p < 0.05, data was considered statistically significant. For statistical analysis of RT-PCR results log transformed values were used. Firstly, outlier analysis was performed in SPSS, and values that were outside the 1st quartile −3 interquartile range or 3rd quartile +3 interquartile range were excluded. Depending on the measure, this resulted in the exclusion of 0–5 outliers per analysis. For the intake of the different dietary components (chow, fat and sugar), outliers were identified and removed for each individual component (but not for the total caloric intake). If an animal was outlier for one of the components, it was also removed for the total caloric intake measure. For the relative caloric intake of each component (as a percentage of total intake), when an animal was outlier for one of the intakes, that animal was excluded from the analyses of the relative intake of all the other components as well. Because of a priori expectations of sex differences in metabolism as well as in response to ES (Fuente-Martín et al., 2013; Murphy et al., 2017; Naninck et al., 2015), all data were analysed with sex as independent variable. Data with condition (CTL/ES) and sex as predictor variables were analysed with a 2-way or repeated measures 2-way ANOVA. When a 2-way interaction between condition and sex was found, post hoc pairwise comparisons with Bonferroni correction were performed. Data with condition, sex and diet as predicted variables were analysed with a 3-way or repeated measures 3-way ANOVA. When a 3-way interaction between condition, diet and sex was found, the interaction was further explored with simple 2-way interactions, followed by pairwise comparisons with Bonferroni correction. When in a 3-ANOVA, a 2-way interaction was found, because this suggested no contribution of the third predictor to the interaction, we did not explore these 2-way interaction further with pairwise comparisons between each individual experimental group. As multiple mice from one litter were included in these experiments, data are considered nested. We therefore tested for contributing effects of litter and corrected when necessary by performing mixed model analysis with litter as the third predictor.
random factor. To test if estrous cycle influenced the outcome variables across the groups including female mice, we tested for contributing effect of estrous cycle and corrected with mixed model analysis with estrous cycle as random factor when necessary, however estrous cycle did not influence any of the outcome variables.

Correlation plots exclusively showing the significant correlations were generated in R studio 1.2.1335 (R Core Team, 2018) for each individual experimental group using the ggcorrplot package. Pearson correlations were calculated based on complete pairwise cases, and correlation coefficients were tested against critical values on a two-tailed distribution (alpha = 0.05).

3. Results

3.1. Effects of ES on bodyweight

ES exposure reduced bodyweight (BW) gain from P2 to P9 in males and females (F_{condition} (1, 30) = 16.291, p < 0.001) (Fig. 1B). In addition, BW development depended on both condition (F_{time*condition} (1.945, 175.075) = 6.973, p = 0.002) and sex (F_{sex} (1, 90) = 532.483, p < 0.001; F_{time*sex} (1.945, 175.075) = 363.617, p < 0.001) (Fig. 1C). Further analysis revealed that at P21, ES reduced BW (F_{condition} (1, 30.335) = 4.404, p = 0.044) independent of sex. However, these ES effects normalized at P35. In addition, males had a higher BW compared to females at P35 (F_{sex} (1, 92) = 350.971, p < 0.001), P63 (F_{sex} (1, 91) = 608.652, p < 0.001), and P70 (F_{sex} (1, 92) = 607.92, p < 0.001).

3.2. Males and females have different food choice

To investigate whether ES and sex affect caloric intake and/or food choice, food intake was measured in CTL and ES-exposed male and female mice on a weekly basis during the 5-week dietary exposure. Food intake was affected in the following manner: total caloric intake was affected by time, diet and sex (F_{time*condition*sex} (3.023, 220.678) = 3.333, p = 0.02; F_{condition*sex*diet} (1, 73) = 5.235, p = 0.025) (Fig. 2E). Water intake was higher in animals on STD diet compared to those on HFHS diet, and females drank more water compared to males, but this depended on ES exposure and diet. In addition, we analysed the percentage total kcal intake for each diet component based on their average total intake over the 5-week period, specifically for the animals exposed to the fcHFHS (Fig. 2F). Males took relatively more kcal from chow compared to females (F_{sex} (1, 51) = 187.234, p < 0.001), while females took relatively more kcal from fat compared to males (F_{sex} (1, 51) = 42.647, p < 0.001) (Fig. 2F). ES did not modulate choice for any of the components.

3.3. ES-exposed females increase fat intake after a mild stressor (4 h fast and 2 tail cuts)

Palatable foods are considered comforting, and acute stress exposure alters the intake of such foods (Dallman et al., 2004; Rutter et al., 2009). Our experimental design offered the opportunity to test the effects of a mild stressor in the form of a 4 h fast and 2 tail cuts during the 5th week of dietary exposure on food choice. First, as a baseline measurement, we analysed caloric intake in the 24 h directly before the mild stressor (Fig. S1). In the 24 h prior to the mild stressor, total kcal intake per day was higher in animals exposed to the fcHFHS (F_{diet} (1, 78) = 21.153, p < 0.001), and not affected by condition or sex (Fig. S1A). Kcal chow intake per day was lower in the fcHFHS groups, and lower in females when compared to males (F_{diet} (1, 86) = 498.061, p < 0.001; F_{sex} (1, 86) = 7.49, p = 0.008) (Fig. S1B). Fat intake was, as expected, higher in females but not affected by ES exposure (F_{sex} (1, 50) = 4.234, p = 0.045) (Fig. S1C). Kcal sugar intake per 24 h was not significantly affected by ES exposure (F_{diet} (1, 77) = 2466.161, p < 0.001; F_{time*diet} (3.022, 232.693) = 4.456, p = 0.004) (Fig. 2B). Moreover, across the fcHFHS fed groups, males ate more chow compared to females (F_{sex*diet} (1, 77) = 27.507, p < 0.001). Interestingly, while in both sexes, fat and sugar intake increased over time (fat: F_{time} (2.626, 130.295) = 10.544, p < 0.001; sugar: F_{time} (2.629, 107.728) = 20.774, p < 0.001), females had more kcal intake from fat compared to males (F_{sex} (1, 50) = 23.167, p < 0.001) (Fig. 2C), while males had a higher kcal sugar intake compared to females (F_{sex} (1, 41) = 5.099, p = 0.029) (Fig. 2D). ES exposure did not affect chow, fat or sugar intake over the 5-week period in either sex. Water intake over the 5 week period was affected by time, sex, diet and condition (F_{time*condition*sex*diet} (3.023, 220.678) = 3.333, p = 0.02; F_{condition*sex*diet} (1, 73) = 5.235, p = 0.025) (Fig. 2E). Water intake was higher in animals on STD diet compared to those on HFHS diet, and females drank more water compared to males, but this depended on ES exposure and diet.

Fig. 1 A depicts the experimental overview. Animals were exposed to either CTL or ES conditions between P2 and P9, and fed a STD or fcHFHS from P70 to P105. At P104 animals were exposed to a 4 h period of fasting and 2 tail cuts (mild stress exposure). Bodyweight (BW) was measured throughout the experiment, and during the dietary exposure, food intake was measured on a weekly basis as well as in the 24 h after the mild stress exposure.

Correlation plots exclusively showing the significant correlations were generated in R studio 1.2.1335 (R Core Team, 2018) for each individual experimental group using the ggcorrplot package. Pearson correlations were calculated based on complete pairwise cases, and correlation coefficients were tested against critical values on a two-tailed distribution (alpha = 0.05).
affected by sex or condition (Fig. S1D). Thus, ES exposure did not affect intake of any of the components, nor total intake, before the exposure to this mild stress. Subsequently, we analysed the caloric intake of the different components in the 24 h after the mild stressor. Total caloric intake was higher in the fcHFHS groups (F_{diet} (1, 82) = 63.826, p < 0.001) (Fig. 3A), while chow intake was lower in the fcHFHS groups (F_{diet} (1, 83) = 567.452, p < 0.001) (Fig. 3B). Both total and chow intake were unaffected by condition or sex or the interaction of these predictor variables. Fat intake was affected by sex depending on previous ES exposure (F_{sex*condition} (1, 50) = 4.043, p = 0.05) (Fig. 3C). Post hoc analysis revealed that specifically ES-exposed females showed increased fat intake compared to CTL females (p = 0.049), whereas no such ES effects were observed in males (p = 0.39). Moreover, ES females ate more fat than ES males (p = 0.005). Sugar intake was not affected by sex or ES exposure (Fig. 3D).

3.4. ES exposure affects bodyweight gain and adiposity in a sex-dependent manner

Next, we investigated the effects of STD and fcHFHS on BW gain and adiposity (Fig. 4). After 5 weeks of diet exposure, BW gain was higher in fcHFHS fed animals compared to STD fed animals, and while BW gain on STD was higher in females compared to males, BW gain on fcHFHS was higher in males than in females (F_{diet*sex} (1, 86) = 6.66, p = 0.012) (Fig. 4A). ES exposure also affected BW gain depending on sex, so that females exposed to ES had lower BW gain compared to CTL females, while this was not the case in males (F_{condition*sex} (1, 86) = 6.931, p = 0.01). When adjusting for sex differences in body size by taking the BW gain as a percentage of their BW at the start of diet exposure, it was shown that the fcHFHS increased %BW gain (F_{diet} (1, 86) = 40.138, p < 0.001), and that ES reduced the %BW gain in females independent of diet (F_{condition*sex} (1, 86) = 8.538, p = 0.004).

gWAT levels (as percentage of BW) were lower in females compared...
to males, but increased in fcHFHS fed mice in both sexes (F_{sex\times diet} (1, 84) = 21.563, p < 0.001) (Fig. 4C). In addition, there was an interaction between ES exposure and sex in their effect on gWAT levels (F_{condition\times sex} (1, 84) = 6.121, p = 0.015) indicating that ES decreased gWAT levels in females.

3.5. The physiological response to the fcHFHS is dependent on sex

A 5-week exposure to the fcHFHS increased circulating glucose levels in males, but not females (F_{diet\times sex} (1, 84) = 4.265, p = 0.042) (Fig. 5A). CORT levels were higher in animals fed fcHFHS (F_{diet} (1, 77) = 10.309, p = 0.002), and higher in females compared to males (F_{sex} (1, 77) = 15.278, p < 0.001) (Fig. 5B).

3.6. Adipose tissue metabolism-related gene expression is affected by ES exposure and sex

To further understand the effects of ES and sex on the adipose tissue involved in fatty acid metabolism and the adipokine leptin in the gonadal adipose tissue. Expression of CD36, a gene involved in fatty acid uptake, was elevated in animals on fcHFHS compared to those on STD (F_{diet} (1, 77) = 42.85, p < 0.001), and lower in females compared to males (F_{sex} (1, 77) = 36.281, p < 0.001) (Fig. 6A). FABP4, a fatty acid binding protein, was not affected by any of the predictor variables (Fig. 6B). Expression of FASN, involved in fatty acid synthesis, was higher in females fed STD (F_{diet\times sex} (1, 75) = 8.91, p = 0.004) (Fig. 6C). In addition, ES exposure and sex interacted in their effect on FASN expression (F_{condition\times sex} (1, 75) = 5.54, p = 0.021): ES increased FASN expression in females but not males. The gene expression of the adipokine leptin was higher in animals exposed to the fcHFHS (F_{diet} (1, 77) = 71.508, p < 0.001) and higher in males compared to females (F_{sex} (1, 77) = 114.327, p < 0.001) (Fig. 6D). Finally, PPARγ expression, involved in fatty acid storage and glucose metabolism, was unaffected by any of the predictor variables (Fig. 6E).

3.7. ES affects the brain circuits regulating food intake in a sex-dependent manner

We next investigated if the brain circuits that regulate food intake are affected by ES, sex and/or diet. In the ARH, ES, diet, and sex did not affect AgRP fiber density (Fig. 7A and B). In the VTA however, AgRP fiber density was affected depending on ES exposure, diet and sex (F_{condition\times diet\times sex} (1, 83) = 5.434, p = 0.022) (Fig. 7C and D). When further exploring this 3-way interaction by stratifying on sex, we observed a condition by diet interaction effect in males (F (1, 83) = 7.547, p = 0.007), but not females. Pairwise comparisons between the male groups showed that on STD, ES males had lower AgRP fiber density in the VTA compared to CTL males (p = 0.004). In addition, the fcHFHS lowered AgRP fiber density in CTL males (p = 0.006) to a similar level as ES males on fcHFHS (p = 0.407). Finally, even though AgRP in the ARH was not significantly affected by any of the predictor variables, AgRP in the ARH and VTA did correlate (r = -0.27, p = 0.009) (Fig. 7E).

Next, we investigated the number of dopaminergic cells as indicated by TH+ cell bodies in the VTA. TH+ cell density was higher in ES exposed animals compared to CTL animals, but only when fed STD (F_{condition\times diet} (1, 83) = 6.527, p = 0.012) (Fig. 8A and B). Moreover, we investigated the number of inhibitory pre-synapses indicated by GAD65 punctae on TH+ fibers and TH+ cell bodies. There were no effects of ES, diet or sex on GAD65 punctae on cell bodies (Fig. 8C and D). However, ES decreased the number of punctae on fibers (F_{condition} (1, 54) = 6.315, p = 0.015), with no further modulation by diet or sex (Fig. 8E and F).
3.8. Correlations between food intake, brain parameters and physiological response to the fcHFHS

Our experimental design enables us to study the correlations between the assessed parameters across the experimental groups in more detail. This may give insights in how the regulation of food intake and metabolism is affected by early-life condition, sex and diet. Fig. 9 displays the correlation plots for each experimental group showing only the significant correlations: CTL M STD (Fig. 9A), ES M STD (Fig. 9B), CTL F STD (Fig. 9C), ES F STD (Fig. 9D), CTL M HFHS (Fig. 9E), ES M HFHS (Fig. 9F), CTL F HFHS (Fig. 9G), and ES F HFHS (Fig. 9H). The different experimental groups show different correlation patterns between food intake, brain and metabolic measures.

4. Discussion

We investigated if and how ES exposure affects food choice on a fcHFHS, the physiological response to this diet, the feeding-related neuronal circuits, and if sex impacts this. We here show for the first time that i) males compared to females choose to eat more chow and sugar while females eat more fat. ii) ES does not modulate total intake and food choice for any of the components under basal state, however, after exposure to a stressful event (in the form of 4 h a fasting and 2 tail cuts) specifically ES-exposed females increased their fat intake. More over, iii) while as one would expect, the 5-week fcHFHS exposure increased BW gain across groups, ES-exposed females showed lower BW gain compared to CTL females with no such effects in males. iv) Expression of genes important for lipid metabolism in the adipose tissue were affected by the diet in a sex dependent manner. v) Finally, the brain circuits that regulate (palatable) food intake (encompassing AgRP, TH and the inhibitory inputs modulating TH in the VTA) were affected by both ES and diet exposure, partly in a sex-dependent manner. When taking all the data together and exploring the correlations between the various aspects, an interesting overall sexually dimorphic picture emerges (Figs. 9 and 10). Below we will discuss our findings in more detail, starting with the sex differences in food choice, followed by sex-specific modulations by ES on food choice. Next, sex differences in the physiological response to the diet will be discussed, as well as sex-specific effects of ES on these parameters. We will finish by deliberating on the neural circuits that could be involved, and how sex and ES impact these.

4.1. Sex impacts on food choice

We observed a clear sex difference in food choice in males collecting a more carbohydrate-rich diet (chow and sugar) compared to females, and females choosing a more fat-rich diet. To the best of our knowledge, we are the first to address this question with our fcHFHS paradigm, unique in offering the choice between 4 separate components: standard chow, water, fat and sugar water. In fact, very few pre-clinical studies investigated sex differences in food choice, and none with our paradigm. Several studies investigated the effect of physical exercise on food choice in males and females, and showed that running induced avoidance of high-fat diet (HFD) only in males (Lee et al., 2017), or for a longer time period in males compared to females (Yang et al, 2019, 2020). In the sedentary controls in these studies, and in contrast to our findings, there was no sex difference in HFD preference (Yang et al., 2019). However, this diet also contained higher sucrose levels and sedentary control cages were enriched with a locked running wheel, thus a direct comparison of the findings is difficult. In addition, human studies also show sex differences in food intake and choice. For example, women have greater trust in healthy nutrition, and a higher fruit and vegetable intake, while men prefer fatty meals with a strong taste and fat-rich meat (Beardsworth et al., 2002; Grzymislawka et al., 2020; Spinelli et al., 2020). However, food choice in humans is confounded by sociocultural and psychological factors (Grzymislawka et al., 2020). Thus, more research is needed to further increase our understanding in sex differences in food choice.
4.2. Effects of ES on food choice are sex dependent

We did not observe ES effects on food choice under basal circumstances, but importantly, after exposure to a mild acute stressor, ES-exposed females ate more fat, whereas sugar and chow intake were not affected. Previous studies addressing effects of ES on food choice have used different forms of palatable food and/or have not addressed this question in both sexes, making direct comparisons with our data difficult. However, Machado and colleagues showed that female rats exposed to the limited nesting and bedding (LBN) model had increased preference for the palatable food (combined high-fat high-sucrose pellet) during a 4 week choice paradigm, which they did not test in males (Machado et al., 2013). A recent study found that maternal separation (MS) in rats increased the intake of palatable food (consisting of condensed milk, sugar and milk powder) in both males and females during a 7 day exposure in adulthood, whereas exposure to maternal deprivation (MD) in rats had opposite effects in the two sexes (de Lima et al., 2020). In contrast, other studies showed that ES induced by repeated cross fostering or MS followed by social isolation decreased palatable food (chocolate) induced place preference in female mice, and that LBN decreased chocolate intake in male rats (not tested in females) (Bolton et al., 2018b; Sasagawa et al., 2017; Ventura et al., 2013). Moreover, studies in which the choice was given between normal water and sucrose water, next to their standard chow, have shown that ES either reduced sucrose preference (Bolton et al., 2018a), increased sucrose intake but only in males (Michaels and Holtzman, 2007), or had no effect when exposed to a sucrose water option for a prolonged time (12 weeks) (Maniam et al., 2015). Thus, rodent studies show mixed results on the effects of ES on food choice. Diet composition (e.g. combined palatable chow versus multiple component choice diet) and form (solid versus liquid) affect food intake behaviour and should be taken into account in future studies (Michaels and Holtzman, 2007). Importantly, human studies suggest that ES affects food preference (Jackson and Vaughn, 2019; Lussana et al., 2008), which however could be confounded by environmental factors (more exposure to unhealthy foods) and later life stress exposure.

We specifically observed increased fat intake in ES-exposed females after acute stress exposure. Indeed, palatable foods are considered...
comforting and affect the HPA-axis (Dallman et al., 2004): stress exposure increases the intake of comfort foods, which in turn can reduce the HPA-axis response to stress (Pecoraro et al., 2004), and CORT increases the intake of fat but not chow in a dose-response manner (La Fleur et al., 2004). In line, ES exposure increased anxiety-like behaviour in rats, which could be reduced by HFHS feeding (combined pellet with 43% fat and 40% sucrose) (Maniam et al., 2016), and high CORT responsive women eat more comfort foods compared to low responders (Epel et al., 2001) (not investigated in men). Indeed, women might be more prone to comfort feeding: when exposed to a stressful task, women increased chocolate candy intake as compared to women exposed to a non-stressful task, whereas men decreased their snack intake (Zellner et al., 2006, 2007). Our data are thus in line with such increased vulnerability in women/females.

4.3. Sex impacts the physiological response to fcHFHS exposure

Next to a strong sex effect in food choice, we also found a strong sex difference in the physiological responses to the fcHFHS: males had higher gWAT levels upon fcHFHS exposure compared to females, and only males showed fcHFHS-induced increased glucose levels. Increased glucose levels after 4 weeks of fcHFHS has been described before in male rats accompanied by increased insulin levels and decreased glucose tolerance (La Fleur et al., 2011). We now show a similar effect on glucose levels in male, but not female mice after 5 weeks of fcHFHS. Although this sexual dimorphic response to the fcHFHS could partly be mediated by their altered food choice and thus intake, such sex differences in the response to non-choice high-caloric diets have been described before. Compared to females, males fed a HFD have been shown to display higher weight gain, higher fat mass indexes, and more greatly impaired glucose tolerance (Estrany et al, 2011, 2013; Garg et al., 2011; Grove et al., 2010). Both the quantity and functioning of fat depots are different for males and females (Fuente-Martín et al., 2013; Power and Schulkin, 2008). Different fat depots vary in their adipokine production, free fatty acid release, inflammatory response and development of insulin sensitivity in a sex-specific manner (Macotela et al., 2009; Power and Schulkin, 2008; Wajchenberg et al., 2000). These differences in fat depot functioning, together with the fact that fat distribution is different between men and women, thus has functional implications. Indeed, we observed sex differences in adipose tissue gene expression. CD36 and leptin expression, involved in fatty acid uptake and satiety respectively, were higher in males on both STD and fcHFHS, whereas females on STD had higher FASN (fatty acid synthase) expression. Sex differences in gene expression in the different adipose depots

Fig. 8. Effects of ES and fcHFHS on TH + cells and inhibitory input in the VTA. A) Representative images of TH + staining in the VTA. B) ES exposure affects TH + cell numbers depending on diet. C) Representative images of GAD65 puncta on TH + cell bodies. The red arrows indicate counted GAD65 puncta. D) GAD65 puncta on TH + cell bodies was not affected by condition, diet or sex. E) Representative images of GAD65 puncta on TH + fibers. F) GAD65 puncta on TH + fibers was lower in ES-exposed animals. Indicated is mean ± SEM, p < 0.05. * main effect of condition; *# condition by sex interaction effect. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 9. Correlation plots showing significant correlations in CTL M STD (A), ES M STD (B), CTL F STD (C), ES F STD (D), CTL M fCHFHS (E), ES M fCHFHS (F), CTL F fCHFHS (G) and ES F fCHFHS (H). Blue indicates a positive correlation, red indicates a negative correlation, and the larger/darker the dot the stronger the correlation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
have been described before (Estrany et al., 2013; Grove et al., 2010). For example, males responded to a 12-week HFD exposure by upregulating inflammatory gene expression, while females were shown to have higher expression of genes related to insulin signaling and lipid synthesis, independent of diet (Grove et al., 2010). The sympathetic innervation, as well as the projection from the hypothalamus to WAT differ between males and females (Adler et al., 2012) and may underlie some of these differences in metabolic vulnerability between the sexes.

Finally, we found that 5 weeks of fcHFHS increased basal CORT levels in both males and females, and that females had remarkably higher CORT levels than males. Indeed, while comfort foods may reduce the stress response on the short-term (Pecoraro et al., 2004), long-term HFD feeding as well as obesity have been related to increased circulating CORT levels (Cano et al., 2008; van Rossum, 2017), and females have before been shown to have higher CORT levels compared to males in mice (Naninck et al., 2015). CORT is known to increase blood glucose levels (Kuo et al., 2015), however, while females had higher CORT levels compared to males, we observed an opposite sex effect on glucose levels with females having lower glucose levels and being protected from the HFHS-induced increase in glucose. This suggests other factors, such as the above mentioned adipose distribution and quantity, as well as sex hormones (Varlamov et al., 2014) might contribute to higher glucose levels in males.

4.4. The effect of ES on physiological readouts depends on diet and sex

ES exposed females had lower BW gain and gWAT levels compared to controls both on STD and fcHFHS, while for males no such ES effect was
observed, and if any, ES seemed to increase BW gain in males. Previous studies showed that on standard chow diet, ES affected adiposity similarly in both sexes, although the directionality depends on the used ES model. For example, ES induced by MS has been found to be increase adiposity in both sexes (Jaimies-Hoy et al., 2016; Murphy et al., 2018), whereas LBN is shown to decrease adiposity in males and females (Yam et al., 2017). In contrast, when fed a western-style diet with 39.8% fat content for 8 weeks, LBN exposure led to increased fat accumulation in males compared to controls (not performed in females) (Yam et al., 2010), whereas LBN is shown to decrease adiposity in males and females (Yam et al., 2017a). Differences in the used ES model as well as differences in diet composition and duration could contribute to these discrepancies. In our study, the lower BW gain and gWAT levels in ES-exposed females could not be explained by lower food intake, raising the question whether ES increases energy expenditure in females. Literature on the effect of ES on energy expenditure is sparse. We have previously shown that ES increases the expression of a gene critical in heat production in both sexes at P9, but not in adulthood (Yam et al., 2017a). ES has also been reported to affect locomotor activity levels (Aya-Ramos et al., 2017; Hancock and Grant, 2009), as well as the hypothalamic-pituitary-thyroid axis (in both sexes), which is key in regulating metabolic rate (Jaimies-Hoy et al., 2019; Mullar et al., 2014). However, to the best of our knowledge no studies measured effects of ES on metabolic rate itself. It thus remains to be determined what leads to the lower BW gain and gWAT levels in ES-exposed female offspring, and whether there is a role for energy expenditure.

Besides lower adiposity, we also observed higher adipose tissue FASN expression in ES-exposed females. Higher FASN expression has been observed in normoglycemic versus hyperglycemic individuals (Mayas et al., 2010), and dexamethasone (CORT analogue) increases adipose FASN expression in vivo (Wang et al., 2004). A higher FASN expression in females is thus in line with the observed lower glucose and higher CORT in females compared to males, but cannot explain the increased FASN in ES females. Interestingly, while in CTL fCHFSH fed females FASN was negatively associated with BW gain, in ES females on fCHFSH, FASN negatively correlated with fat intake but not with physiological measures such as BW gain or adiposity, suggesting FASN expression might be more sensitive to food intake in ES compared to CTL females.

We did not find effects of ES on glucose levels in both males and females, nor in interaction with the diet. Hyperglycemia is a sign of impaired insulin sensitivity, and previous studies have found ES to either have no effect, increase or decrease (various measures of) insulin sensitivity, partly depending on diet and sex of the animal, with males potentially being more vulnerable to develop insulin insensitivity (Jaimies-Hoy et al., 2019b; Maniam and Morris, 2010; Mela et al., 2012; Murphy et al., 2017). To better understand if ES affects insulin sensitivity it would be important to perform, next to basal glucose and insulin measurements, insulin and glucose tolerance tests.

In addition, we did not observe ES effects on adult basal CORT levels under any of the dietary exposures, in line with Naninck et al. (2015) (Naninck et al., 2015). Other studies did show effects of ES on basal CORT levels (Rice et al., 2008), as well as in response to an acute stressor or upon 12 weeks of HFD feeding (Machado et al., 2013; Murphy et al., 2017). As these studies were performed in rats, the possibility of interspecies differences should not be overlooked. Nonetheless, they also indicate that latent effects of ES on CORT could potentially be unmasked upon an acute challenge or more severe/prolonged HFD.

4.5. ES affects the brain circuits involved in hedonic driven food intake

Similar as previously reported, the fCHFSH did not affect hypothalamic AgRP levels, involved in homeostatic-driven food intake (de Fleur et al., 2010), nor was it different between males and females or affected by ES. However, we did find that AgRP in the VTA was decreased in ES-exposed males on STD compared to their respective controls, and that the fCHFSH also reduced AgRP in CTL males. In contrast, in females no such effects of ES or diet were observed. Studies focusing on AgRP in the VTA are rare, and to the best of our knowledge we are the first to describe modifications of ES, diet and sex on VTA AgRP. It has been shown that hypothalamic AgRP neurons innervate the VTA and determine the reward circuit setpoint by affecting dopamine cell excitability and dopamine levels (Dietrich et al., 2012). Notably, ablating hypothalamic AgRP (thereby also ablating the AgRP projections to the VTA) increases palatable food intake, and has been proposed as a model for comfort feeding (Denis et al., 2015). Despite the absence of a significant effect of ES and/or sex on ARH AgRP, AgRP fiber density in VTA and ARH positively correlated, which might suggest that these alterations in the VTA might partly derive from the ARH. However, additional studies are needed to further understand the origin of the changes in the VTA. Moreover, some interesting sex dependent effects are worth noting. For example, despite a reduction in VTA AgRP specifically in males by ES and diet, we did not observe effects of ES on food choice in males, nor did AgRP levels in the VTA correlate with intake parameters. In contrast, in females, where none of the conditions impacted on VTA AgRP, there was a negative correlation between VTA AgRP and fat intake after acute stress specifically in ES-exposed females, while in CTL females VTA AgRP correlated negatively to Chow intake after acute stress. The emerging picture seems thus to be that the sex-dependent modulation of AgRP by the various conditions (i.e. ES and diet) might be related to the differential food intake exhibited by males and females after a stress exposure, although this hypothesis needs further exploration.

We observed increased TH+ cell numbers (indication of dopamine (DA) cell density) in the VTA of ES-exposed males and females, when fed STD but not when fed fCHFSH. Moreover, independent of diet exposure, we report decreased inhibitory input on TH+ fibers in ES-exposed males and females. The mesocorticolimbic DA circuitry originates from VTA DA neurons that connect to limbic structures and the medial prefrontal cortex. This VTA network senses and links both the internal state and the appraisal of environmental stimuli, and in that way establishes emotional-motivational valuations (Douma and de Kloet, 2020). Palatable foods activate the reward circuitry (De Macedo et al., 2016) and both acute and chronic stress have been shown to affect DA release and DA neuron firing (Belujo and Grace, 2015; Chang and Grace, 2014; Holly and Miczek, 2016; Kauffling, 2019; Rincon-Cortes and Grace, 2017). The dopaminergic reward system continues to mature into adolescence (Kalsbeek et al., 1998; McCutcheon et al., 2012; Teicher et al., 1995; Voorn et al., 1988), and stress during this developmental period can affect its functioning later in life. In fact, ES alters multiple aspects of the reward circuitry. For example, ES exposure increased excitability of putative DA neurons in the VTA (Spyrka et al., 2020), blunted DA outflow in the prefrontal cortex (Ventura et al., 2013), lowered DA transporter sites in the striatum and NAcc (Brake et al., 2004), led to transcriptional changes in the VTA (Penà et al., 2017), and increased neuronal activity in the NAcc core (Bolton et al., 2018a). As most studies only included either males or females, it is unclear whether ES alters reward circuitry functioning in a sexually dimorphic manner.

In our study, the fCHFSH seems to overrule the more subtle ES effects on TH+ cell numbers, although the ES effect on inhibitory input (GABAergic synapses) on TH+ fibers remains. Approximately 30% of cells in the VTA are GABA neurons (the majority of non-DA cells in VTA) (Boschi et al., 2019), and we observed long-term changes in GABAergic inhibition. The VTA GABA neurons synapse mostly on the proximal dendrites of DA neurons, while (inhibitory) inputs from other regions including the ventral pallidum and laterodorsal tegmental synapse onto the cell body (Omelchenko and Sesack, 2005; Omelchenko and Sesack, 2009). Of note, these GABAergic VTA neurons are affected by stress, and (through their inhibition of DA neurons) also regulate reward. Acute stressors directly increase the firing rate of VTA GABA neurons thereby suppressing DA firing (Cohen et al., 2012; Tan et al., 2013).
2012), while over the days following the stress GABAergic plasticity is lost, removing VTA DA neuron inhibition (Niehaus et al., 2010; Polter et al., 2014, 2017). Although speculative, it is possible that the reduction in GABAergic input on TH⁺ fibers in ES animals is at least partly derived from a reduction in VTA GABA input onto these neurons. An ES-induced reduction of inhibitory input on TH⁺ fibers is in line with the previously described higher excitability of DA neurons (Spyrka et al., 2020). It however is important to note that the VTA also receives input from adrenergic and noradrenergic neurons located in e.g. the caudal medulla and locus ceruleus, which express TH as well (Mijals-Aponte et al., 2009). Therefore DA producing neurons will not be the only origin of the TH⁺ fibers in the VTA.

Importantly, VTA DA neurons have been proposed to function differently between males and females. For example, females have higher VTA DA turnover and release (Becker and Epperson, 2019). Moreover, CORT (which in our study was higher in females) directly affects the reward circuitry: adrenalectomy decreases DA release and DA transporters binding in the NAc shell (Sarnyai et al., 1998). We did not observe sex differences in DA cell density or inhibitory input on DA neurons, but AgRP input in the VTA was affected by ES specifically in males, while it correlated with acute-stress induced food intake only in females. Thus, the circuits that regulate comfort feeding are sexually dimorphic, and besides the fact that ES impacts on aspects of this circuitry in both males and females, ES also has some sex-dependent effects. Sex differences in reward system functioning, together with sex differences in CORT, could be involved in the different vulnerability to comfort feeding between males and females.

4.6. General conclusion

We show, for the first time, that males and females make different food choices, and that ES exposure affects food choice after a mild acute stressful event only in females. Moreover, physiologically, males and females respond differently to the diet as well as to ES exposure. Finally, we provide evidence that ES alters the reward circuitry of both male and female mice, partly in a sex-specific manner. Although it remains to be understood how the different elements interact, a different picture emerges in males and females depending on previous ES exposure (Fig. 10). This suggests not only that food choice and metabolism are differently regulated between sexes, but also that ES has a different impact on males and females. Our data highlights the importance of including both sexes in future studies.

Funding

AK is supported by NWO Meerwoud, NWO Food cognition and behavior and JPI NutriCog.

CRediT authorship contribution statement

S.R. Ruigrok: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Visualization, Writing – original draft. J.M. Kotah: Investigation, Methodology, Writing – review & editing. J.E. Kuindersma: Investigation, Methodology. E. Speijer: Investigation, Methodology. A.A.S. van Irsen: Investigation, Methodology, Writing – review & editing. S.E. la Fleur: Conceptualization, Writing – review & editing. A. Korosi: Conceptualization, Funding acquisition, Project administration, Supervision, Writing – original draft, Writing – review & editing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jystr.2021.100360.

