
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Non-commutative propositional logic with short-circuit evaluation

Bergstra, J.A.; Ponse, A.; Staudt, D.J.C.
DOI
10.1080/11663081.2021.2010954
Publication date
2021
Document Version
Final published version
Published in
Journal of Applied Non-Classical Logics
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Bergstra, J. A., Ponse, A., & Staudt, D. J. C. (2021). Non-commutative propositional logic with
short-circuit evaluation. Journal of Applied Non-Classical Logics, 31(3-4), 234-278.
https://doi.org/10.1080/11663081.2021.2010954

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:19 Aug 2022

https://doi.org/10.1080/11663081.2021.2010954
https://dare.uva.nl/personal/pure/en/publications/noncommutative-propositional-logic-with-shortcircuit-evaluation(29fcba8b-5c08-4864-826e-62b46f255eb9).html
https://doi.org/10.1080/11663081.2021.2010954

JOURNAL OF APPLIED NON-CLASSICAL LOGICS
2021, VOL. 31, NOS. 3–4, 234–278
https://doi.org/10.1080/11663081.2021.2010954

Non-commutative propositional logic with short-circuit
evaluation

Jan A. Bergstra , Alban Ponse and Daan J. C. Staudt

Section Theory of Computer Science, Informatics Institute, Faculty of Science, University of Amsterdam,
Amsterdam, Netherlands

ABSTRACT
Short-circuit evaluation denotes the semantics of propositional con-
nectives in which the second argument is evaluated only if the first
is insufficient to determine the value of the expression. Compound
statements are evaluated from left to right. Short-circuit evaluation
is widely used in programming, with negation and sequential con-
junction and disjunction as primitives. We study the question of
which laws axiomatise short-circuit evaluation. In MSCL (memoris-
ing short-circuit logic), atoms (propositional variables) evaluate to
true or false, and in the evaluation of a compound statement, the
first evaluation result of each atom is memorised. Hence, MSCL is
’Non-commutative propositional logic with short-circuit evaluation’
and atomic evaluations cannot cause a side effect. Next, we consider
the case that atoms can also evaluate to the truth value ’undefined’.
For two- and three-valued MSCL, we present evaluation trees as an
intuitive semantics and provide complete independent equational
axiomatisations.

ARTICLE HISTORY
Received 28 October 2018
Accepted 29 September 2021

KEYWORDS
Non-commutative
conjunction; conditional
composition; sequential
connectives; short-circuit
evaluation; side effect

1. Introduction

This paper is about non-commutative propositional logic, which can be motivated by
two simple examples from the setting of programming under the assumption that
short-circuit evaluation is the evaluation strategy for the Boolean connectives: the sec-
ond argument is evaluated only if the first argument does not suffice to determine the
(evaluation) value of the expression.

(1) Consider the evaluation of a Boolean condition of the form

(f (x) �= 0) ∧ (g(x, y) > 17)

for functions f and g, where it is known (or very likely) that the evaluation of
the first conjunct is easier/faster than that of the second conjunct. This can be a
reason to distinguish this condition from its symmetric counterpart.

CONTACT Alban Ponse a.ponse@uva.nl https://staff.fnwi.uva.nl/a.ponse

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/11663081.2021.2010954&domain=pdf&date_stamp=2021-12-30
http://orcid.org/0000-0003-2492-506X
http://orcid.org/0000-0001-6061-5355
mailto:a.ponse@uva.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 235

(2) Consider the evaluation of the more specific condition

(x �= 0) ∧ (y/x > 17),

where the second conjunct can only be evaluated if the first one is true. This is a
very good reason to distinguish this condition from its symmetric counterpart.

We consider sequential conjunction as the primary connective and sequential
disjunction as a derived connective, and we use the asymmetric notations

∧�� and ∨��

that emphasise their left-to-right interpretation: the small circle indicates that the left
argument must be evaluated first (this notation stems from Bergstra et al. (1995)).
Short-circuit evaluation combines well with negation, and sequential (equational)
versions of De Morgan’s laws are valid, such as

¬(x ∧�� y) = ¬x ∨�� ¬y.

In Section 8, we briefly discuss some other variants of sequential connectives.
A natural question is: Which logical laws axiomatise short-circuit evaluation? There

are different answers to this question, depending on assumptions about the type of
side effects that may occur and the different truth values used. Concerning the latter,
we distinguish the following two cases:

(A) The case in which atoms (propositional variables) always evaluate to either true or
false, thus the case of two-valued propositional logic with sequential connectives.

(B) The case that atoms always evaluate to one of the three truth values true, false, or
undefined (as in the second example).

We first discuss case (A) and briefly recall free short-circuit logic, FSCL for
short (Bergstra & Ponse, 2012; Bergstra et al., 2013; Ponse & Staudt, 2018). In FSCL,
two sequential propositions are identified if and only if they always have the same
evaluation value under short-circuit evaluation. Here ‘always’ refers to any possible
assumption about the truth value of atoms in any evaluation state, and to the side
effects that may occur in the evaluation process: we speak of an atomic side effect if the
evaluation of an atom in a compound expression changes (influences) the evaluation
result of the subsequent atoms that must be evaluated to determine the value of the
expression. For example, in FSCL the sequential proposition a ∧�� a is not equivalent
with a or with a ∧�� (a ∨�� a). So FSCL is a logic for reasoning about sequential proposi-
tions that may have atomic side effects without any restriction, or, stated differently, a
logic that is immune to atomic side effects. In Ponse and Staudt (2018) an equational
axiomatisation of FSCL is provided, three typical axioms are (x ∧�� y) ∧�� z = x ∧�� (y ∧�� z),
F ∧�� x = F, and x ∧�� F = ¬x ∧�� F (where the constant F represents falsehood).

The logic MSCL, memorising short-circuit logic (Bergstra & Ponse, 2012; Bergstra
et al., 2013), is meant for reasoning about sequential propositions with the property
that atomic side effects do not occur: in the evaluation of a compound statement the

236 J. A. BERGSTRA ET AL.

first evaluation result of each atom is memorised. In this logic the sequential connec-
tives are not commutative, for example, a ∧�� F and F ∧�� a are not equivalent (the first
sequential proposition requires evaluation of atom a, the second does not). We provide
a complete equational axiomatisation of MSCL. Some typical MSCL -consequences are
x ∧�� x = x and x ∧�� (y ∧�� x) = x ∧�� y. Also, each FSCL -axiom holds in MSCL (MSCL
comprises FSCL).

The logic SSCL, static short-circuit logic (Bergstra & Ponse, 2012; Bergstra et al., 2013),
is for reasoning about sequential propositions with the property that atomic side
effects do not occur and that the sequential connectives are commutative. Typical
laws for SSCL are those of equational propositional logic, and short-circuit evaluation
is nothing more than a possible evaluation strategy. Of course, SSCL comprises MSCL.

Case (B). In this case, the starting point is that atoms, and therefore sequential
propositions, can evaluate not only to truth and falsehood, but also to a third truth
value undefined. We use the constant U to represent undefinedness. Three typical laws
we adopt come from McCarthy’s three-valued logic (McCarthy, 1963):

U ∧�� x = U and ¬U = U and F ∧�� x = F.

We provide a definition of FSCLU, free short-circuit logic with undefinedness, which is an
extension of FSCL with the constant U that implies the above laws. We present a set
of equational axioms for FSCLU. However, we do not have a completeness result and
leave this as an open question.

Next, we define MSCLU, memorising short-circuit logic with undefinedness, as an
extension of MSCL with the constant U that also implies the three laws mentioned
above. Extending the equational axiomatisation for MSCL with the axiom ¬U = U
provides a complete axiomatisation of MSCLU. Also, MSCLU comprises FSCLU.

The two-valued logic SSCL cannot be extended with the constant U and these three
laws because commutativity of ∧�� implies F = F ∧�� U = U ∧�� F = U.

Structure of the paper and main results. In Section 2, we discuss evaluation trees,
which model the evaluation of a sequential proposition and were introduced
in Staudt (2012). We recall the main results on FSCL, in particular, its equational
axiomatisation EqFSCL for closed terms.

In Section 3, we define ‘memorising evaluation trees’ by a transformation on the
evaluation trees for FSCL, and memorising se-congruence as the equality of such trees.

In Section 4, we provide an (equational) axiomatisation EqMSCL of memorising
se-congruence. Furthermore, we show that the axioms of EqFSCL are derivable from
EqMSCL, and discuss some consequences and an alternative axiomatisation.

In Section 5, we recall the definitions of the short-circuit logics mentioned above.
These definitions stem from Bergstra et al. (2013), Bergstra and Ponse (2012) and
employ the conditional – a ternary connective introduced by Hoare (1985) – as a hidden
operator.

In Section 6, we prove that EqMSCL corresponds with MSCL in the sense that both
define the same equational theory, so EqMSCL is an equational axiomatisation of
MSCL.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 237

In Section 7, we consider the constant U and adjust the definition of evaluation trees
accordingly. We prove that EqMSCLU = EqMSCL ∪ {¬U = U} is a complete axiomati-
sation of memorising se-congruence with U. Then, we provide definitions of FSCLU and
MSCLU and prove that EqMSCLU axiomatises MSCLU.

In Section 8, we discuss some issues related to three-valued logics. Then we pro-
vide an alternative definition of SSCL that is based on four simple axioms for Hoare’s
conditional connective.

In Section 9, we come up with some conclusions and open questions.
Notes. (1) All derivations from equational axiomatisations were checked with the

theorem prover Prover9, and all independence results were found with help of the tool
Mace4, see McCune (2008) for both tools. Detailed yet readable summaries of these
proofs are added as appendices.

(2) Combined with Ponse and Staudt (2018), this paper subsumes most of Bergstra
et al. (2013). Two topics discussed in the last paper are ‘repetition-proof’ and ‘contrac-
tive’ short-circuit logic; we aim to cover these topics in a future paper.

2. Evaluation trees and axioms for short-circuit evaluation

In this section, we summarise the main results of Ponse and Staudt (2018): evaluation
trees and an axiomatisation of their equality are presented.

Given a non-empty, countable set A of atoms, we first define evaluation trees.

Definition 2.1: The set TA of evaluation trees over A with leaves in { T, F} is defined
inductively by

T ∈ TA, F ∈ TA, (X � a � Y) ∈ TA for any X , Y ∈ TA and a ∈ A.

The operator _ � a � _ is called tree composition over a. In the evaluation tree X � a �
Y , the root is represented by a, the left branch by X and the right branch by Y.

The depth d : TA → N of an evaluation tree is defined by d(T) = d(F) = 0 and
d(Y � a � Z) = 1 + max(d(Y), d(Z)).

The leaves of an evaluation tree represent evaluation results (so we use the con-
stants T and F for true and false). Next to the formal notation for evaluation trees, we
also use a more pictorial representation. For example, the tree

F � b � (T � a � F)

can be represented as follows, where � yields a left branch, and � a right branch:

In order to define a short-circuit semantics for negation and the sequential connec-
tives, we first define the leaf replacement operator, ‘replacement’ for short, on trees in

238 J. A. BERGSTRA ET AL.

TA as follows. For X ∈ TA, the replacement of T with Y and F with Z in X, denoted

X[T �→ Y , F �→ Z]

is defined recursively by

T[T �→ Y , F �→ Z] = Y ,

F[T �→ Y , F �→ Z] = Z,

(X1 � a � X2)[T �→ Y , F �→ Z] = X1[T �→ Y , F �→ Z] � a � X2[T �→ Y , F �→ Z].

We note that the order in which the replacements of leaves of X is listed is irrele-
vant and adopt the convention of not listing identities inside the brackets, e.g. X[F �→
Z] = X[T �→ T, F �→ Z]. By structural induction, it follows that repeated replacements
satisfy

X[T �→ Y1, F �→ Z1][T �→ Y2, F �→ Z2]

= X[T �→ Y1[T �→ Y2, F �→ Z2], F �→ Z1[T �→ Y2, F �→ Z2]].

We define the set SA of closed (sequential) propositional statements over A by the
following grammar (a ∈ A):

P ::= T | F | a | ¬P | P ∧�� P | P ∨�� P,

where T is a constant for the truth value true and F for false, and refer to its signature
by

�SCL(A) = {∧�� , ∨�� , ¬, T, F, a | a ∈ A}.
We interpret propositional statements in SA as evaluation trees by a function se (abbre-
viating short-circuit evaluation).

Definition 2.2: The unary short-circuit evaluation function se : SA → TA is defined as
follows, where a ∈ A:

se(T) = T, se(¬P) = se(P)[T �→ F, F �→ T],

se(F) = F, se(P ∧�� Q) = se(P)[T �→ se(Q)],

se(a) = T � a � F, se(P ∨�� Q) = se(P)[F �→ se(Q)].

The overloading of the symbol T in se(T) = T will not cause confusion (and
similarly for F). As a simple example we derive the evaluation tree for ¬b ∧�� a:

se(¬b ∧�� a) = se(¬b)[T �→ se(a)] = (F � b � T)[T �→ se(a)]

= F � b � (T � a � F),

which can be visualised as in (Picture 1). Also, se(¬(b ∨�� ¬a)) = F � b � (T � a � F).
An evaluation tree se(P) represents short-circuit evaluation in a way that can be com-
pared to a truth table for propositional logic, in that every possible evaluation of P
is represented. However, there are some important differences with truth tables: in

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 239

Table 1. EqFSCL , a set of axioms for se-congruence.

F = ¬ T (F1)
x ∨�� y = ¬(¬x ∧�� ¬y) (F2)
¬¬x = x (F3)
T ∧�� x = x (F4)
x ∨�� F = x (F5)
F ∧�� x = F (F6)
(x ∧�� y) ∧�� z = x ∧�� (y ∧�� z) (F7)
¬x ∧�� F = x ∧�� F (F8)
(x ∧�� F) ∨�� y = (x ∨�� T) ∧�� y (F9)
(x ∧�� y) ∨�� (z ∧�� F) = (x ∨�� (z ∧�� F)) ∧�� (y ∨�� (z ∧�� F)) (F10)

se(P), the sequentiality of P’s evaluation is represented, and the same atom can occur
multiple times in se(P).

Definition 2.3: The binary relation se-congruence, notation =se, is defined on SA by

P =se Q ⇐⇒ se(P) = se(Q).

In Staudt (2012), Ponse and Staudt (2018), it is proved that the axioms in Table 1
constitute an equational axiomatisation of se-congruence:1

Fact 2.4: For all P, Q ∈ SA, EqFSCL � P = Q ⇐⇒ P =se Q.

This implies that the axioms in Table 1 axiomatise free short-circuit logic
FSCL (defined in Section 5) for closed terms, and for this reason, this set of axioms
is named EqFSCL. Some comments: axioms (F1)–(F3) imply sequential versions of
De Morgan’s laws, and thus a sequential variant of the duality principle. Axioms
(F4)–(F6) define how the constants T and F interact with the sequential connectives,
and axiom (F7) defines the associativity of ∧�� .

Axiom (F8) defines a typical property of a logic that characterises immunity for side
effects: not only are the evaluation results of x ∧�� F and ¬x ∧�� F always false, but for
any P ∈ SA the evaluations of P and ¬P accumulate the same side effects.

Axiom (F9) expresses another property that concerns possible side effects: because
the evaluation result of x ∧�� F is always false, y is always evaluated in (x ∧�� F) ∨�� y and
determines the evaluation result, which is also the case in (x ∨�� T) ∧�� y. Note that the
evaluations of P ∨�� T and P ∧�� F accumulate the same side effects.

Axiom (F10) defines a restricted form of right-distributivity of ∨�� and (by duality) of
∧�� : if x evaluates to true, both sides further evaluate y ∨�� (z ∧�� F), and if x evaluates
to false, z ∧�� F determines the further evaluation result (which is then false, and by
axiom (F6), y ∨�� (z ∧�� F) is not evaluated in the right-hand side).

The dual of P ∈ SA, notation Pdl, is defined as follows (for a ∈ A):

Tdl = F, adl = a, (P ∧�� Q)dl = Pdl ∨�� Qdl,

Fdl = T, (¬P)dl = ¬Pdl, (P ∨�� Q)dl = Pdl ∧�� Qdl.

The duality mapping ()dl : SA → SA is an involution, that is, (Pdl)dl = P. Setting xdl =
x for each variable x, the duality principle extends to equations, e.g. the dual of

240 J. A. BERGSTRA ET AL.

axiom (F7) is (x ∨�� y) ∨�� z = x ∨�� (y ∨�� z). From (F1)–(F3) it easily follows that EqFSCL sat-
isfies the duality principle, that is, for all terms s, t over �SCL(A),

EqFSCL � s = t ⇐⇒ EqFSCL � sdl = tdl.

We conclude this section with two properties of EqFSCL that were proved in Ponse
and Staudt (2018).

Fact 2.5: Let EqFSCL− = EqFSCL \ {(F1), (F3)}. Then,

EqFSCL− \ {(F8), (F10)} � (F1), (F3), and thus EqFSCL− � EqFSCL,

and the axioms of EqFSCL− are independent if A contains at least two atoms.

We kept (F1) and (F3) in EqFSCL because omitting them hinders intuition too much.

3. Evaluation trees for memorising short-circuit evaluation

In this section, we introduce memorising evaluation trees and ‘memorising se-
congruence’.

A short-circuit evaluation is memorising if in the evaluation of a compound state-
ment the first evaluation result of each atom is memorised. Typically, the following
sequential version of the absorption law holds under memorising evaluations:

x ∧�� (x ∨�� y) = x. (Abs)

Equation (Abs) can be explained as follows: if x evaluates to false, then x ∧�� (x ∨�� y)

evaluates to false as a result of the evaluation of the left occurrence of x (and (x ∨�� y) is
not evaluated); if x evaluates to true, the second evaluation of x in the subterm (x ∨�� y)

also results in true (because it is memorising) and therefore y is not evaluated.
A perhaps less obvious property of memorising evaluations is the following:

(x ∨�� y) ∧�� z = (¬x ∧�� (y ∧�� z)) ∨�� (x ∧�� z). (Mem)

If x evaluates to true, then z determines the evaluation result of both expressions
because the evaluation result of x is memorised; if x evaluates to false, the evaluation
result of both expressions is determined by y ∧�� z because the right disjunct (x ∧�� z) of
the right-hand side also evaluates to false.

Below we define the memorising evaluation function as a transformation on evalu-
ation trees. This transformation implements the characteristic of memorising evalua-
tions starting at the root of an evaluation tree and removes each second occurrence of
a label a according to its first evaluation result. Intuitively, memorising evaluations are
those of propositional logic, except that the sequential connectives are not commu-
tative. For example, a ∧�� b and b ∧�� a represent different evaluations, and thus are not
equivalent.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 241

Definition 3.1: The unary memorising evaluation function

mse : SA → TA

yields memorising evaluation trees and is defined by

mse(P) = m(se(P)).

The auxiliary function m : TA → TA is defined as follows (a ∈ A):

m(T) = T,

m(F) = F,

m(X � a � Y) = m(La(X)) � a � m(Ra(Y)).

For a ∈ A, the auxiliary functions La : TA → TA (‘Left a-reduction’) and
Ra : TA → TA (‘Right a-reduction’) are defined by

La(T) = T,

La(F) = F,

La(X � b � Y) =
�

La(X) if b = a,

La(X) � b � La(Y) otherwise,

and

Ra(T) = T,

Ra(F) = F,

Ra(X � b � Y) =
�

Ra(Y) if b = a,

Ra(X) � b � Ra(Y) otherwise.

As an example we depict se(a ∧�� (b ∧�� a)) and the memorising evaluation tree
mse(a ∧�� (b ∧�� a)):

From a more general point of view, a memorising evaluation tree is a decision tree,
that is, a labelled, rooted, binary tree with internal nodes labelled from A and leaves
labelled from { T, F} such that for any path from the root to a leaf, the internal nodes
receive distinct labels (cf. Moret, 1982). We note that the number of semantically differ-
ent formulas is bounded by a function on |A|, which is an essential difference with the
short-circuit logic FSCL. For |A| = n (recall n > 0), the number of memorising evaluation
trees is Tn = n(Tn−1)2 + 2 with T0 = 2 (so the first few values are 6, 74, 16430).2

Equality of memorising evaluation trees defines a congruence on SA.

242 J. A. BERGSTRA ET AL.

Definition 3.2: Memorising se-congruence, notation =mse, is defined on SA by

P =mse Q ⇐⇒ mse(P) = mse(Q).

In the remainder of this section, we prove that =mse is indeed a congruence, and we
start with some auxiliary results.

Lemma 3.3: For all a, b ∈ A, f , f ′ ∈ {L, R}, and X , Y ∈ TA,

(1) If b �= a then fa(f ′
b(X)) = f ′

b(fa(X)),
(2) fa(m(fa(X))) = fa(m(X)),
(3) fa(m(X)) = m(fa(X)),
(4) m(fa(X[T �→ F, F �→ T])) = m(fa(X))[T �→ F, F �→ T],
(5) fa(X[T �→ Y]) = fa(X)[T �→ fa(Y)],
(6) If m(X) = m(Y) then m(fa(X)) = m(fa(Y)),
(7) m(fa(m(X))) = m(fa(X)).

Proof: See Appendix A.1. �

Definition 3.4: On TA, define the auxiliary functions

∼¬X = X[T �→ F, F �→ T],

X �∧�� Y = X[T �→ Y],

X �∨�� Y = X[F �→ Y].

Hence, ∼¬(se(P)) = se(¬P), se(P) �∧�� se(Q) = se(P ∧�� Q), and se(P) �∨�� se(Q) = se(P ∨��
Q).

Lemma 3.5: The relation =mse is a congruence on SA.

Proof: It suffices to show that for X , Y ∈ TA, if m(X) = m(X ′) and m(Y) = m(Y ′), then
m(∼¬X) = m(∼¬X ′), m(X �∧�� Y) = m(X ′ �∧�� Y ′), and m(X �∨�� Y) = m(X ′ �∨�� Y ′).

The case for m(∼¬X follows by case distinction on the form of X. The base cases X ∈
{ T, F} are trivial, and if X = X1 � a � X2, then m(X) = m(X ′) implies that X ′ = X ′

1 �
a � X ′

2 for some X ′
1, X ′

2 ∈ TA, and

m(La(X1)) = m(La(X ′
1)) and m(Ra(X2)) = m(Ra(X ′

2)). (Aux1)

Write [neg] for the leaf replacement [T �→ F, F �→ T] and derive

m(∼¬X) = m((X1 � a � X2)[neg])

= m(La(X1[neg])) � a � m(Ra(X2[neg]))

= m(La(X ′
1[neg])) � a � m(Ra(X ′

2[neg])) by La.3.3.4 and (Aux1)

= m(∼¬X ′).

The case for m(X �∧�� Y) = m(X ′ �∧�� Y ′): for readability we split the proof obligation into
two parts.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 243

(A) m(X �∧�� Y) = m(X ′ �∧�� Y). This follows by induction on the depth of X. The base
cases X ∈ { T, F} are simple (note that if X = T and m(X) = m(X ′), then X ′ = T and we
are done).

If X = X1 � a � X2 and m(X) = m(X ′), then it must be the case that X ′ = X ′
1 � a �

X ′
2 for some X ′

1, X ′
2 ∈ TA, and m(La(X1)) = m(La(X ′

1)) and m(Ra(X2)) = m(Ra(X ′
2)), thus

(Aux1) holds. Derive

m(X �∧�� Y) = m((X1 � a � X2) �∧�� Y)

= m(X1[T �→ Y] � a � X2[T �→ Y])

= m(La(X1[T �→ Y])) � a � m(Ra(X2[T �→ Y]))

= m(La(X1)[T �→ La(Y)]) � a � m(Ra(X2)[T �→ Ra(Y)]) by La.3.3.5

= m(La(X1) �∧�� La(Y)) � a � m(Ra(X2) �∧�� Ra(Y))

= m(La(X ′
1) �∧�� La(Y)) � a � m(Ra(X ′

2) �∧�� Ra(Y)) by IH and (Aux1)

= · · · = m(X ′ �∧�� Y).

(B) m(X �∧�� Y) = m(X �∧�� Y ′). This follows by induction on the depth of X. The base cases
X ∈ { T, F} are trivial. If X = X1 � a � X2 derive

m(X �∧�� Y) = m((X1 � a � X2) �∧�� Y)

= m(X1[T �→ Y] � a � X2[T �→ Y])

= m(La(X1[T �→ Y])) � a � m(Ra(X2[T �→ Y]))

= m(La(X1)[T �→ La(Y)]) � a � m(Ra(X2)[T �→ Ra(Y)]) by La.3.3.5

= m(La(X1) �∧�� La(Y)) � a � m(Ra(X2) �∧�� Ra(Y))

= m(La(X1) �∧�� La(Y ′)) � a � m(Ra(X2) �∧�� Ra(Y ′)) by La.3.3.6 and IH

= · · · = m(X �∧�� Y ′).

The proof for the case m(X �∨�� Y) = m(X ′ �∨�� Y ′) is similar. �

4. Axioms for memorising se-congruence

In this section, we provide an axiomatisation of memorising se-congruence. Further-
more, we provide a number of convenient consequences of this axiomatisation and
briefly discuss an alternative axiomatisation.

In Table 2, we present a set of equational axioms for =mse and we call this set EqM-
SCL (this is a simplified version of EqMSCL as introduced in Bergstra & Ponse, 2012;
Bergstra et al., 2013). To enhance readability, we renamed the EqFSCL-axioms used:
(F1) → (Neg), (F2) → (Or), and (F4) → (Tand).

Theorem 4.1: For all P, Q ∈ SA, EqMSCL � P = Q ⇒ P =mse Q.

Proof: By Lemma 3.5, the relation =mse is a congruence on SA, so it suffices to show
that all closed instances of the EqMSCL-axioms satisfy =mse. We first prove this for

244 J. A. BERGSTRA ET AL.

Table 2. EqMSCL, a set of axioms for memorising
se-congruence.

F = ¬ T (Neg)
x ∨�� y = ¬(¬x ∧�� ¬y) (Or)
T ∧�� x = x (Tand)
x ∧�� (x ∨�� y) = x (Abs)
(x ∨�� y) ∧�� z = (¬x ∧�� (y ∧�� z)) ∨�� (x ∧�� z) (Mem)

axiom (Abs). It suffices to show that for all X , Y ∈ TA, m(X �∧�� (X �∨�� Y)) = m(X), which
follows by structural induction on X. The base cases are trivial. If X = X1 � a � X2 we
use a simple consequence of Lemma 3.3.5:

For all a ∈ A and X , Y , Z ∈ TA, La(X[T �→ (Y � a � Z)]) = La(X[T �→ Y])

and Ra(X[T �→ (Y � a � Z)) = Ra(X[T �→ Z]). (Aux2)

Derive

m((X1 � a � X2) �∧�� ((X1 � a � X2) �∨�� Y))

= m(X1[T �→ B] � a � X2[T �→ B]) with B = (X1 � a � X2)[F �→ Y]

= m(La(X1[T �→ B])) � a � m(Ra(X2[T �→ B]))

= m(La(X1[T �→ (X1[F �→ Y])])) � a � m(Ra(X2[T �→ (X2[F �→ Y])])) by (Aux2)

= m(La(m(X1[T �→ (X1[F �→ Y])]))) � a�
m(Ra(m(X2[T �→ (X2[F �→ Y])]))) by La.3.3.7

= m(La(m(X1 �∧�� (X1 �∨�� Y)))) � a � m(Ra(m(X2 �∧�� (X2 �∨�� Y))))

= m(La(m(X1))) � a � m(Ra(m(X2))) by IH

= m(La(X1)) � a � m(Ra(X2)) by La.3.3.7

= m(X1 � a � X2).

In a similar way, it easily follows that all closed instances of the first three axioms (Neg),
(Or), and (Tand) satisfy =mse. The case for axiom (Mem) is a bit more complex, in
Appendix A.2, we provide a detailed proof. �

Before we prove that EqMSCL is a complete axiomatisation of memorising se-
congruence (Theorem 4.9), we discuss some consequences of EqMSCL. The next
theorem implies that se-congruence is subsumed by memorising se-congruence.

Theorem 4.2: EqMSCL � EqFSCL.

Proof: With help of the theorem prover Prover9, see Appendix A.3. �

In the proof of Theorem 4.2, the EqFSCL-axioms are derived in a particular order to
obtain useful intermediate results. The double negation shift ¬¬x = x (F3) is derived
first, which justifies the use of the duality principle in subsequent derivations. For easy
reference, we mention here some auxiliary results that are used in Section 6.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 245

Fact 4.3: The following equations are derivable from EqMSCL (see Appendix A.3):

x
(Abs)= x ∧�� (x ∨�� F)

(F5)= x ∧�� x, (Idempotence)

x ∧�� y = (x ∧�� F) ∨�� (x ∧�� y), (Ar1)

x ∨�� y = (¬x ∧�� y) ∨�� x. (Ar2)

We note that x ∨�� F
(F5)= x easily follows from EqMSCL, and so do the auxiliary results

(Ar1) and (Ar2).
Also, the following two equations are derivable from EqMSCL:

(x ∧�� y) ∨�� (¬x ∧�� z) = (¬x ∨�� y) ∧�� (x ∨�� z), (M1)

(x ∧�� y) ∨�� (¬x ∧�� z) = (¬x ∧�� z) ∨�� (x ∧�� y). (M2)

With memorising evaluations, these terms express ‘if x then y else z’.

A typical EqMSCL-consequence is x ∧�� (y ∧�� x) = x ∧�� y (cf. the last example on
memorising evaluation trees). First derive

¬x ∧�� F
(F8)= x ∧�� F

(Ar2)′
= (¬x ∨�� F) ∧�� x

(F5)= ¬x ∧�� x, (C1)

where (Ar2)′ is the dual of (Ar2). Hence,

x ∧�� y = (¬x ∨�� y) ∧�� x by (Ar2) ′

= (x ∧�� (y ∧�� x)) ∨�� (¬x ∧�� x) by (Mem), (F3)

= (x ∧�� (y ∧�� x)) ∨�� (¬x ∧�� F) by (C1)

= (¬x ∧�� F) ∨�� (x ∧�� (y ∧�� x)) by (M2)

= x ∧�� (y ∧�� x). by (F8), (Ar1) (C2)

Another convenient result on EqMSCL, used in Section 6, is the following.

Theorem 4.4: The following equations are derivable from EqMSCL, where (LD) abbrevi-
ates left-distributivity of ∧�� :

x ∧�� (y ∨�� z) = (x ∧�� y) ∨�� (x ∧�� z), (LD)

((x ∧�� y) ∨�� (¬x ∧�� z)) ∧�� u = (x ∧�� (y ∧�� u)) ∨�� (¬x ∧�� (z ∧�� u)). (M3)

Proof: With help of the theorem prover Prover9, see Appendix A.4. �

In order to prove the completeness of EqMSCL, we use normal forms.

Definition 4.5: Memorising SCL Normal Forms (mSNFs) are inductively defined:

• T and F are mSNFs , and
• (a ∧�� P) ∨�� (¬a ∧�� Q) is an mSNF if a ∈ A, and P and Q are mSNFs that do not

contain a.

246 J. A. BERGSTRA ET AL.

We write MSNF for the set of all mSNFs .

The following functions on MSNF are used to compose mSNFs .

Definition 4.6: For a ∈ A, the function Ta : MSNF → MSNF is defined by

Ta(T) = T, Ta(F) = F,

Ta((b ∧�� P1) ∨�� (¬b ∧�� P2)) =
�

P1 if b = a,

(b ∧�� Ta(P1)) ∨�� (¬b ∧�� Ta(P2)) otherwise.

For a ∈ A, the function Fa : MSNF → MSNF is defined by

Fa(T) = T, Fa(F) = F,

Fa((b ∧�� P1) ∨�� (¬b ∧�� P2)) =
�

P2 if b = a,

(b ∧�� Fa(P1)) ∨�� (¬b ∧�� Fa(P2)) otherwise.

So, Ta removes the a-occurrences in an mSNF under the assumption that a eval-
uates to T (and Fa does this under the assumption that a evaluates to F). Note that
for each P ∈ MSNF , both Ta(P) and Fa(P) are also mSNFs . In order to compose
mSNFs , we use the following lemma (for proof see Appendix A.5).

Lemma 4.7: For all a ∈ A, P ∈ SA, and Q ∈ MSNF ,

(1) EqMSCL � a ∧�� (P ∧�� Q) = a ∧�� (P ∧�� Ta(Q)),
(2) EqMSCL � ¬a ∧�� (P ∧�� Q) = ¬a ∧�� (P ∧�� Fa(Q)),
(3) EqMSCL � a ∧�� (P ∨�� Q) = a ∧�� (P ∨�� Ta(Q)),
(4) EqMSCL � ¬a ∧�� (P ∨�� Q) = ¬a ∧�� (P ∨�� Fa(Q)).

Lemma 4.8: For each P ∈ SA there is P′ ∈ MSNF such that EqMSCL � P = P′.

Proof: We first prove three auxiliary results on mSNFs .

(1) For each mSNF P, there is Q ∈ MSNF such that EqMSCL � ¬P = Q. This follows
by induction on the structure of P. If P ∈ { T, F} this is trivial, and otherwise P =
(a ∧�� P1) ∨�� (¬a ∧�� P2). Now derive from EqMSCL

¬((a ∧�� P1) ∨�� (¬a ∧�� P2)) = (a ∧�� ¬P1) ∨�� (¬a ∧�� ¬P2).

By induction, there are mSNFs Qi such that EqMSCL � ¬Pi = Qi and that clearly
do not contain a. Let Q = (a ∧�� Q1) ∨�� (¬a ∧�� Q2), then EqMSCL � ¬P = Q.

(2) If P, Q ∈ MSNF , then there is R ∈ MSNF such that EqMSCL � P ∧�� Q = R. This fol-
lows by induction on the structure of P. If P ∈ { T, F} this is trivial, and otherwise
P = (a ∧�� P1) ∨�� (¬a ∧�� P2). Now apply Equation (M3):

((a ∧�� P1) ∨�� (¬a ∧�� P2)) ∧�� Q = (a ∧�� (P1 ∧�� Q)) ∨�� (¬a ∧�� (P2 ∧�� Q)).

By induction, there are mSNFs Ri such that EqMSCL � Pi ∧�� Q = Ri. Let R = (a ∧��
Ta(R1)) ∨�� (¬a ∧�� Fa(R2)), then by Lemma 4.7.1-2, R is the mSNF that satisfies
EqMSCL � P ∧�� Q = R.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 247

(3) If P, Q ∈ MSNF , then there is R ∈ MSNF such that EqMSCL � P ∨�� Q = R. This
also follows by induction on the structure of P. If P ∈ { T, F} this is trivial, and
otherwise, P = (a ∧�� P1) ∨�� (¬a ∧�� P2). Now derive from EqMSCL

((a ∧�� P1) ∨�� (¬a ∧�� P2)) ∨�� Q = (a ∧�� (P1 ∨�� Q)) ∨�� (¬a ∧�� (P2 ∨�� Q)).

By induction, there are mSNFs Ri such that EqMSCL � Pi ∨�� Q = Ri. Let R = (a ∧��
Ta(R1)) ∨�� (¬a ∧�� Fa(R2)), then by Lemma 4.7.3-4, EqMSCL � P ∨�� Q = R.

Next, we prove the lemma by induction on the structure of P. If P ∈ { T, F} this
follows immediately. If P = a, then

EqMSCL � a = (a ∧�� F) ∨�� a by idempotence and (Ar1)

= (¬a ∧�� F) ∨�� (a ∧�� T) by (F8) and (F5)′

= (a ∧�� T) ∨�� (¬a ∧�� F) by (M2).

If P = ¬Q1, P = Q1 ∧�� Q2, or P = Q1 ∨�� Q2, then by induction there are mSNFs Ri with
EqMSCL � Qi = Ri. Now apply the appropriate auxiliary result. �

Theorem 4.9: For all P, Q ∈ SA, EqMSCL � P = Q ⇐⇒ P =mse Q.

Proof: (⇒) This is Theorem 4.1.
(⇐) By Lemma 4.8 there are P′, Q′ ∈ MSNF such that EqMSCL � P = P′, Q = Q′, and

thus by Theorem 4.1, P =mse P′ and Q =mse Q′. Because =mse is a congruence, P′ =mse

Q′. We show by structural induction on P′ that P′ = Q′, and thus EqMSCL � P = Q. The
base cases are trivial, and if P′ = (a ∧�� P1) ∨�� (¬a ∧�� P2), then it must be the case that
Q′ = (a ∧�� Q1) ∨�� (¬a ∧�� Q2). Furthermore,

mse(P′) = m(se((a ∧�� P1) ∨�� (¬a ∧�� P2)))

= m(se(a ∧�� P1)[F �→ se(¬a ∧�� P2)])

= m(se(P1) � a � se(¬a ∧�� P2))

= m(La(se(P1))) � a � m(Ra(se(¬a ∧�� P2)))

= m(se(P1)) � a � m(Ra(F � a � se(P2))) (a does not occur in P1)

= mse(P1) � a � mse(P2), (a does not occur in P2)

and mse(Q′) = mse(Q1) � a � mse(Q2) follows in a similar way. By induction, Pi = Qi,
and hence P′ = Q′. �

Theorem 4.10: The axioms of EqMSCL are independent.

Proof: By Theorem 7.12 (which states that a superset of EqMSCL is independent). �

We end this section by mentioning two alternatives for EqMSCL.

248 J. A. BERGSTRA ET AL.

Proposition 4.11: Replacing axiom (Mem) in EqMSCL by (M1), and either (M3) or

((x ∧�� y) ∨�� (¬x ∧�� z)) ∧�� u = (¬x ∧�� (z ∧�� u)) ∨�� (x ∧�� (y ∧�� u))

(thus, (M3)’s commutative variant) constitutes an alternative for EqMSCL.

Both these sets of axioms are independent (by Mace4, McCune, 2008). With Prover9
(McCune, 2008), derivations of (Ar1), (Ar2), (M2), and (Mem), respectively, are sim-
ple. Furthermore, associativity of ∧�� (F7) follows easily (in contrast to the proof of
Theorem 4.2):

(x ∧�� y) ∧�� z = ((¬x ∧�� F) ∨�� (x ∧�� y)) ∧�� z by (Ar1), (F8)

= (¬x ∧�� (F ∧�� z)) ∨�� (x ∧�� (y ∧�� z)) by (M3), (F3)

= ((x ∧�� F) ∨�� (x ∧�� (y ∧�� z))) by (F6), (F8)

= x ∧�� (y ∧�� z). by (Ar1)

5. The conditional connective and three short-circuit logics

In this section, we consider Hoare’s conditional, a ternary connective that can be used
for defining the sequential connectives of �SCL(A). Then, we recall the definitions of
free short-circuit logic (FSCL), memorising short-circuit logic (MSCL), and static short-
circuit logic (SSCL) that were published earlier.

In 1948, Church introduced (in Church, 1948) the conditioned disjunction connective
[p, q, r], which, following the author, may be read ‘p or r according as q or not q’. Church
showed that the conditioned disjunction together with constants t and f for truth en
falsehood, form a complete set of independent primitive connectives for the proposi-
tional calculus. Finally, he also noted that for propositional variables p, q, r, the dual of
[p, q, r] is simply [r, q, p], so that

to dualize an expression of the propositional calculus in which the only connectives occur-
ring are conditioned disjunction, t, and f, it is sufficient to write the expression backwards
and at the same time to interchange the letters t and f.3

Apparently unaware of Church’s conditioned disjunction, Hoare introduced the
ternary conditional connective

p � q � r

(in Hoare, 1985) that has the same truth table as [p, q, r] and provided eleven equa-
tional axioms to show that the conditional and two constants for truth and falsehood
characterise the propositional calculus. We adhere to Hoare’s notation.

A more common expression for the conditional x � y � z is ‘if y then x else z’,
which emphasises that y is evaluated first, and depending on the outcome of this
partial evaluation, either x or z is evaluated, which then determines the evaluation
result. So, the evaluation strategy prescribed by this form of if-then-else is a prime
example of a sequential evaluation strategy. In Hoare (1985), an equational axioma-
tisation of propositional logic is provided that only uses the conditional. Furthermore,

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 249

Table 3. The set CP of axioms for proposition algebra.

x � T � y = x (CP1)
x � F � y = y (CP2)
T � x � F = x (CP3)
x � (y � z � u) � v = (x � y � v) � z � (x � u � v) (CP4)

it is described how the sequential connectives and negation are expressed in this set-
up, although the sequential nature of the conditional’s evaluation is not discussed in
this paper. Hoare’s axiomatisation over the signature

�CP(A) = {_ � _ � _ , T, F, a | a ∈ A}

consists of eleven axioms, including those in Table 3. In Section 8, we present a concise
and simple alternative for this axiomatisation.4

We extend the definition of the function se (Definition 2.2) to closed terms over
�CP(A) by adding the clause

se(P � Q � R) = se(Q)[T �→ se(P), F �→ se(R)]. (addedClause)

The four axioms in Table 3, named CP (for Conditional Propositions), establish a
complete axiomatisation of se-congruence over the signature �CP(A):

For all closed terms P, Q over �CP(A), CP � P = Q ⇐⇒ se(P) = se(Q).

A simple proof of this fact is recorded in Bergstra and Ponse (2017, Thm.2.11) (and
repeated in Ponse & Staudt, 2018, Appendix A3).

With the conditional connective and the constants T and F, the sequential connec-
tives prescribing short-circuit evaluation are definable:

¬x = F � x � T, (defNeg)

x ∧�� y = y � x � F, (defAnd)

x ∨�� y = T � x � y. (defOr)

Note that these equations agree with the extension of the definition of the function
se in (addedClause) above: se(¬P) = se(F � P � T), se(P ∧�� Q) = se(Q � P � F), and
se(P ∨�� Q) = se(T � P � Q). Thus, the axioms in Table 3 combined with these three
equations, say

CP(¬, ∧�� , ∨��),

axiomatise equality of evaluation trees for closed terms over the enriched signature
�CP(A) ∪ �SCL(A).

250 J. A. BERGSTRA ET AL.

In order to capture memorising evaluations, the following axiom is formulated
in Bergstra and Ponse (2011):

x � y � (z � u � (v � y � w)) = x � y � (z � u � w) (CPmem)

The axiom (CPmem) expresses that the first evaluation value of y is memorised. We
define

CPmem = CP ∪ {(CPmem)}.
In forthcoming proofs, we use the fact that replacing the variable y in axiom (CPmem)
by F � y � T and/or the variable u by F � u � T yields equivalent versions of this
axiom:

(x � y � (z � u � v)) � u � w = (x � y � z) � u � w, (CPmem1)

x � y � ((z � y � u) � v � w) = x � y � (u � v � w), (CPmem2)

((x � y � z) � u � v) � y � w = (x � u � v) � y � w. (CPmem3)

This follows directly from CPmem. Furthermore, if we replace u by F in (CPmem), we find
the contraction law

x � y � (v � y � w) = x � y � w, (CPcon1)

and replacing u by T in axiom (CPmem3) yields the symmetric contraction law

(x � y � z) � y � w = x � y � w. (CPcon2)

With help of the tool Mace4 (McCune, 2008), it easily follows that the axioms of
CPmem are independent, and therefore, those of CP are also independent.

We write

CPmem(¬, ∧�� , ∨��)

for the axioms of CPmem extended with Equations (defNeg)–(defOr). An important
property of CPmem(¬, ∧�� , ∨��) is that the conditional connective can be expressed with
the sequential connectives and negation. First, observe that it is trivial to derive

¬x ∧�� z = F � x � z, (1)

and hence

(x ∧�� y) ∨�� (¬x ∧�� z)

= T � (y � x � F) � (F � x � z) by (defNeg)–(defOr), (1)

= (T � y � (F � x � z)) � x � (F � x � z) by (CP4), (CP2)

= (T � y � F) � x � z by (CPmem1), (CPcon1)

= y � x � z. by (CP3) (2)

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 251

The following equation can be helpful, and can be similarly proved from
CPmem(¬, ∧�� , ∨��):

(x ∨�� z) ∧�� (¬x ∨�� y) = y � x � z. (3)

In Bergstra and Ponse (2012) and Bergstra et al. (2013), a set-up is provided for
defining (two-valued) short-circuit logics in a generic way with help of the condi-
tional by restricting the consequences of some CP-axiomatisation extended with
Equation (defNeg) (that is, ¬x = F � x � T) and Equation (defAnd) (i.e. x ∧�� y = y �
x � F) to the signature �SCL(A). So, the conditional connective is considered a hidden
operator.

The definition below uses the export operator of Module algebra (Bergstra et al.,
1990) to express this in a concise way: in module algebra, S X is the operation
that exports the signature S from module X while declaring other signature elements
hidden.

Definition 5.1: A short-circuit logic is a logic that implies the consequences of the
module expression

SCL = { T, ¬, ∧�� } (CP ∪ {(defNeg), (defAnd)}).

As a first example, SCL � ¬¬x = x can be proved as follows:

¬¬x = F � (F � x � T) � T by (defNeg)

= (F � F � T) � x � (F � T � T) by (CP4)

= T � x � F by (CP2), (CP1)

= x. by (CP3) (4)

In Bergstra and Ponse (2012) and Bergstra et al. (2013), the following short-circuit logics
are defined:

Definition 5.2: Free short-circuit logic (FSCL) is the short-circuit logic that implies no
other consequences than those of the module expression SCL.

Memorising short-circuit logic (MSCL) is the short-circuit logic that implies no other
consequences than those of the module expression

{ T, ¬, ∧�� } (CPmem ∪ {(defNeg), (defAnd)}).
Static short-circuit logic (SSCL) is the short-circuit logic that implies no other conse-
quences than those of the module expression

{ T, ¬, ∧�� } (CPmem ∪ {(defNeg), (defAnd), F � x � F = F}).

To enhance readability, we extend these short-circuit logics with the constant F and
its defining axiom (Neg), which is justified by the SCL-derivation

F = F � T � T by (CP1)

= ¬ T, by (defNeg) (5)

252 J. A. BERGSTRA ET AL.

and with the connective ∨�� and its defining axiom (Or) (thus, x ∨�� y = ¬(¬x ∧�� ¬y))
by admitting equation (defOr) in SCL-derivations, that is, x ∨�� y = T � x � y. This last
extension is justified by

¬(¬x ∧�� ¬y) = F � (¬y � (F � x � T) � F) � T by (defNeg), (defAnd)

= F � (F � x � ¬y) � T by (CP4), (CP2), (CP1)

= (F � F � T) � x � (F � ¬y � T) by (CP4)

= T � x � y. by (CP2), (defNeg), (4) (6)

In Staudt (2012), Ponse and Staudt (2018), the following results are proved:

For all P, Q ∈ SA, FSCL � P = Q ⇐⇒ EqFSCL � P = Q ⇐⇒ P =se Q.

In the remainder of the paper, we will prove a correspondence result for MSCL and
EqMSCL, which establishes that the latter axiomatises MSCL.

6. Completeness of EqMSCL revisited

In this section, we prove that EqMSCL and MSCL are equally strong, that is, both
define the same equational theory. Hence, both constitute a complete axiomatisation
of memorising se-congruence.

Given a signature �, we write

T�,X

for the set of open terms over � with variables in X (typical elements of X are x, y, z,
u, v, w).

Definition 6.1: Define the following two functions between sets of open terms:

f : T�SCL(A),X → T�CP(A),X is defined by

f (bl) = bl for bl ∈ { T, F}, f (¬t) = F � f (t) � T,

f (a) = a for a ∈ A, f (t1 ∧�� t2) = f (t2) � f (t1) � F,

f (x) = x for x ∈ X , f (t1 ∨�� t2) = T � f (t1) � f (t2).

g : T�CP(A),X → T�SCL(A),X is defined by

g(bl) = bl for bl ∈ { T, F}, g(x) = x for x ∈ X ,

g(a) = a for a ∈ A, g(t1 � t2 � t3) = (g(t2) ∧�� g(t1)) ∨�� (¬g(t2) ∧�� g(t3)).

Lemma 6.2: For all t ∈ T�SCL(A),X , CPmem(¬, ∧�� , ∨��) � f (t) = t.

Proof: By structural induction on t. �

Lemma 6.3: For all s, t ∈ T�CP(A),X , CPmem(¬, ∧�� , ∨��) � s = t ⇒ CPmem � s = t.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 253

Proof: In an equational proof of CPmem(¬, ∧�� , ∨��) � s = t, each occurrence of one of
the Equations (defNeg), (defAnd), and (defOr) can be replaced by the correspond-
ing T�CP(A), X -identity. More precisely, any occurrence of ¬x = F � x � T can be
replaced by F � x � T = F � x � T, and similar for applications of (defAnd) and
(defOr).

Because s and t do not contain occurrences of ¬, ∧�� , and ∨�� , this yields an equational
proof of s = t in CPmem. �

Lemma 6.4: For all s, t ∈ T�CP(A),X , CPmem � s = t ⇒ EqMSCL � g(s) = g(t).

Proof: The g-translation of each CPmem-axiom is derivable in EqMSCL.
Axiom (CP1). g(x � T � y) = (T ∧�� x) ∨�� (¬ T ∧�� y) = x = g(x).
Axiom (CP2). g(x � F � y) = (F ∧�� x) ∨�� (¬ F ∧�� y) = F ∨�� y = y = g(y).

Axiom (CP3). g(T � x � F) = (x ∧�� T) ∨�� (¬x ∧�� F) = x ∨�� (¬x ∧�� F)
(F8)= x ∨�� (x ∧��

F)
(Abs)′

= x = g(x).
The cases for axioms (CP4) and (CPmem) are spelled out in Appendix A.6. �

Theorem 6.5: For all terms s, t over �SCL(A), EqMSCL � s = t ⇐⇒ MSCL � s = t.

Proof: (⇒) It suffices to derive the axioms of EqMSCL from MSCL.
Axiom (Neg). See (5).
Axiom (Or). This follows from (6).
Axiom (Tand). T ∧�� x = x � T � F = x.
Axiom (Abs). x ∧�� (x ∨�� y) = (T � x � y) � x � F

(CPcon2)= T � x � F = x.
Axiom (Mem). Denote (x ∨�� y) ∧�� z = (¬x ∧�� (y ∧�� z)) ∨�� (x ∧�� z) by L = R. Then

L = z � (T � x � y) � F

= z � x � (z � y � F), by (CP4), (CP1)

R = T � ((z � y � F) � (F � x � T) � F) � (z � x � F)

= T � (F � x � (z � y � F)) � (z � x � F) by (CP4), (CP2), (CP1)

= [z � x � F] � x � [T � (z � y � F) � (z � x � F)] by (CP4), (CP2)

= z � x � (T � (z � y � F) � F) by (CPcon2), (CPmem2)

= z � x � (z � y � F). by (CP3)

(⇐)

MSCL � s = t ⇒ CPmem(¬, ∧�� , ∨��) � s = t by definition

⇒ CPmem(¬, ∧�� , ∨��) � f (s) = f (t) by Lemma 6.2

⇒ CPmem � f (s) = f (t) by Lemma 6.3

⇒ EqMSCL � g(f (s)) = g(f (t)). by Lemma 6.4

254 J. A. BERGSTRA ET AL.

Hence, it suffices to derive for all t ∈ T�SCL(A),X , EqMSCL � g(f (t)) = t. This follows
easily by structural induction, we only show the inductive case t = t1 ∨�� t2:

g(f (t1 ∨�� t2))
IH= (t1 ∧�� T) ∨�� (¬t1 ∧�� t2)

(M2),(F5)′
= (¬t1 ∧�� t2) ∨�� t1

(Ar2)= t1 ∨�� t2.

�

Theorems 4.9 and 6.5 lead to the following result.

Corollary 6.6: MSCL axiomatises memorising se-congruence, and EqMSCL is an equa-
tional axiomatisation of MSCL.

7. Short-circuit logics with undefinedness

In this section, we include the third truth value undefined, represented by the constant
U. In the setting with the conditional connective, U is defined by the axiom

x � U � y = U, (CP-U)

which implies U ∧�� x = U ∨�� x = U and ¬U = U, and also F ∧�� U = F. Extending eval-
uation trees and the previous results on EqMSCL and MSCL to this setting turns out be
rather simple. Finally, we define two short-circuit logics with undefinedness based on
the extensions of CP and CPmem with the axiom (CP-U).

Definition 7.1: The set T U
A of U-evaluation trees over A with leaves in { T, F, U} is

defined inductively by

T ∈ T U
A , F ∈ T U

A , U ∈ T U
A , (X � a � Y) ∈ T U

A for any X , Y ∈ T U
A and a ∈ A.

The operator _ � a � _ is called U-tree composition over a. In the evaluation tree X �
a � Y , the root is represented by a, the left branch by X, the right branch by Y, and the
underlining of the root represents a middle branch to the leaf U.

Next to the formal notation for evaluation trees, we again introduce a more pictorial
representation. For example, the tree

F � b � (T � a � F)

can be represented as follows, where � yields a left branch, and � a right branch:

An alternative representation of U-evaluation trees is obtained by replacing the middle
branches of internal nodes by underlined versions of these nodes.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 255

We extend the set SA to SU
A of closed (sequential) propositional statements over A

with U by the following grammar (a ∈ A):

P ::= T | F | U | a | ¬P | P ∧�� P | P ∨�� P,

and refer to its signature by �SCLU(A) = {∧�� , ∨�� , ¬, T, F, U, a | a ∈ A}.
We interpret propositional statements in SU

A as evaluation trees by extending the
function se (Definition 2.2).

Definition 7.2: The unary short-circuit evaluation function se U : SU
A → T U

A is defined
as follows, where a ∈ A:

se U(T) = T, se U(¬P) = se U(P)[T �→ F, F �→ T],

se U(F) = F, se U(P ∧�� Q) = se U(P)[T �→ se U(Q)],

se U(U) = U, se U(P ∨�� Q) = se U(P)[F �→ se U(Q)],

se U(a) = T � a � F.

Examples: se U(a ∧�� U) = U � a � F and se U((a ∨�� T) ∧�� b) = (T � b � F) � a �
(T � b � F) can be depicted as follows:

The extension to memorising evaluation trees in T U
A is straightforward

(cf. Definition 3.1). For readability, we also use the name ‘memorising evaluation trees’
(rather than ‘memorising U-evaluation trees’).

Definition 7.3: The unary memorising evaluation function

mseU : SU
A → T U

A

yields memorising evaluation trees and is defined by

mseU(P) = mU(se U(P)).

The auxiliary function mU : T U
A → T U

A is defined as follows (a ∈ A):

mU(T) = T, mU(F) = F, mU(U) = U,

mU(X � a � Y) = mU(L U
a (X)) � a � mU(R U

a (Y)).

For a ∈ A, the auxiliary functions L U
a : T U

A → T U
A (‘Left a-reduction’) and R U

a : T U
A →

T U
A (‘Right a-reduction’) are defined by

L U
a (T) = T, L U

a (F) = F, L U
a (U) = U,

L U
a (X � b � Y) =

�
L U

a (X) if b = a,

L U
a (X) � b � L U

a (Y) otherwise,

256 J. A. BERGSTRA ET AL.

and

R U
a (T) = T, R U

a (F) = F, R U
a (U) = U,

R U
a (X � b � Y) =

�
R U

a (Y) if b = a,

R U
a (X) � b � R U

a (Y) otherwise.

As an example, we depict se U(a ∧�� (b ∧�� ¬a)) and the memorising evaluation tree
mseU(a ∧�� (b ∧�� ¬a)):

We extend memorising se-congruence (=mse) to SU
A .

Definition 7.4: Memorising se U-congruence, notation =mseU , is defined on SU
A by

P =mseU Q ⇐⇒ mseU(P) = mseU(Q).

Both the extension of Lemma 3.5 to T U
A and the extension of the supporting

Lemma 3.3 are trivial: all inductive proofs require only one extra, trivial base case.

Lemma 7.5: The binary relation =mseU is a congruence on SU
A .

In Table 4, we extend the set of axioms EqMSCL to EqMSCLU by adding the axiom (4).
Defining Udl = U implies that EqMSCLU satisfies the duality principle.

Theorem 7.6: For all P, Q ∈ SU
A , EqMSCLU � P = Q ⇒ P =mseU Q.

Proof: By Lemma 7.5 =mseU is a congruence on SU
A . Clearly, ¬U =mseU U. The remain-

der of the proof is equal to the proof of Theorem 4.1. �

Some derivabilities in EqMSCLU:

U ∧�� F = (U ∧�� F) ∨�� F by (F5)

= (U ∨�� (F ∨�� F)) ∧�� (U ∨�� F) by (Mem)′and (4)

Table 4. EqMSCLU, a set of axioms for memorising
se U-congruence over SU

A .

F = ¬ T (Neg)
x ∨�� y = ¬(¬x ∧�� ¬y) (Or)
T ∧�� x = x (Tand)
x ∧�� (x ∨�� y) = x (Abs)
(x ∨�� y) ∧�� z = (¬x ∧�� (y ∧�� z)) ∨�� (x ∧�� z) (Mem)
¬U = U (Und)

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 257

= U, by (F5) and Idempotence (7)

U ∧�� x = (U ∨�� F) ∧�� x by (F5)

= (U ∧�� (F ∧�� x)) ∨�� (U ∧�� x) by (Mem) and (Und)

= U ∨�� (U ∧�� x) by (F6) and (7)

= U. by (Abs)′ (8)

In order to prove the completeness of EqMSCLU, we again use normal forms.

Definition 7.7: Memorising SCLU Normal Forms (mSUNFs) are inductively defined:

• T, F, U are mSUNFs , and
• (a ∧�� P) ∨�� (¬a ∧�� Q) is an mSUNF if a ∈ A, and P and Q are mSUNFs that do not

contain a.

We write MSUNF for the set of all mSUNFs .

The following functions on MSUNF are used to compose mSUNFs .

Definition 7.8: For a ∈ A the function TU
a : MSUNF → MSUNF is defined by

TU
a (T) = T, TU

a (F) = F, TU
a (U) = U,

TU
a ((b ∧�� P1) ∨�� (¬b ∧�� P2)) =

�
P1 if b = a,

(b ∧�� TU
a (P1)) ∨�� (¬b ∧�� TU

a (P2)) otherwise.

For a ∈ A the function FU
a : MSUNF → MSUNF is defined by

FU
a (T) = T, FU

a (F) = F, FU
a (U) = U,

FU
a ((b ∧�� P1) ∨�� (¬b ∧�� P2)) =

�
P2 if b = a,

(b ∧�� FU
a (P1)) ∨�� (¬b ∧�� FU

a (P2)) otherwise.

So, TU
a removes the a-occurrences in an mSUNF under the assumption that a eval-

uates to T (and FU
a does this under the assumption that a evaluates to F). Note that

for each P ∈ MSUNF , both TU
a (P) and FU

a (P) are also mSUNFs . In order to compose
mSUNFs , we use the following lemma.

Lemma 7.9: For all a ∈ A, P ∈ SU
A , and Q ∈ MSUNF ,

(1) EqMSCLU � a ∧�� (P ∧�� Q) = a ∧�� (P ∧�� TU
a (Q)),

(2) EqMSCLU � ¬a ∧�� (P ∧�� Q) = ¬a ∧�� (P ∧�� FU
a (Q)),

(3) EqMSCLU � a ∧�� (P ∨�� Q) = a ∧�� (P ∨�� TU
a (Q)),

(4) EqMSCLU � ¬a ∧�� (P ∨�� Q) = ¬a ∧�� (P ∨�� FU
a (Q)).

Proof: As the proof of Lemma 4.7 (in Appendix A.5), except that the inductive proofs
require one more trivial base case. �

258 J. A. BERGSTRA ET AL.

Lemma 7.10: For each P ∈ SU
A there is P′ ∈ MSUNF such that EqMSCLU � P = P′.

Proof: As the proof of Lemma 4.8, except that the inductive proofs require one more
trivial base case. �

Theorem 7.11: For all P, Q ∈ SU
A , EqMSCLU � P = Q ⇐⇒ P =mseU Q.

Proof: As the proof of Theorem 4.9, except that the inductive proof requires one more
trivial base case. �

Theorem 7.12: The axioms of EqMSCLU are independent.

Proof: See Appendix A.7. �

We extend CP with axiom (CP-U) and write CPU for this extension. Furthermore, we
extend the function se U (Definition 7.2) to closed terms over �CPU(A) by

se U(P � Q � R) = se U(Q)[T �→ se U(P), F �→ se U(R)].

Proposition 7.13: For all closed terms P, Q over �CPU(A),

CPU � P = Q ⇐⇒ se U(P) = se U(Q).

Proof: See Appendix A.8. �

Below we define short-circuit logics with ‘undefinedness’.

Definition 7.14: A short-circuit logic with undefinedness is a logic that implies the
consequences of the module expression

SCLU = { T, U, ¬, ∧�� } (CPU ∪ {(defNeg), (defAnd)}).

We write CPU
mem for the extension of CPmem with axiom (CP-U).

Definition 7.15: Free short-circuit logic with undefinedness (FSCLU) is the short-circuit
logic that implies no other consequences than those of the module expression SCLU.

Memorising short-circuit logic with undefinedness (MSCLU) is the short-circuit logic
that implies no other consequences than those of the module expression

{ T, U, ¬, ∧�� } (CPU
mem ∪ {(defNeg), (defAnd)}).

Of course, we intend to provide equational axiomatisations for both these short-
circuit logics. For FSCLU, we discuss a conjecture in Section 8, and for MSCLU, we have
a similar result as before (cf. Corollary 6.6).

Theorem 7.16: For all terms s, t over �SCLU(A), EqMSCLU � s = t ⇐⇒ MSCLU

� s = t.

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 259

Proof: The proof of Theorem 6.5 as well as the proofs of all supporting lemmas can be
easily extended to the signatures containing U. �

Theorems 7.11 and 7.16 imply the following result.

Corollary 7.17: MSCLU axiomatises memorising se U-congruence =mseU , and EqMSCLU

is an equational axiomatisation of MSCLU.

8. Discussion

In this section, we discuss some other variants of sequential connectives. Next, we
relate MSCLU to McCarthy’s three-valued logic and observe that we cannot relate
FSCLU to any well-known three-valued logic. We conclude with a note on two-valued
SSCL (which comprises an axiomatisation).

Boolean connectives that prescribe short-circuit evaluation often have specific
names or notations, for example, Dijkstra’s cand (conditional conjunction) and cor
used in the three-valued setting with undefined (see Dijkstra, 1976; Gries, 1981), or
the short-circuited connectives && and || as used in programming languages such
as C, Go, Java, and Perl. Short-circuit evaluation in C is discussed in e.g. Zimmermann
and Dold (2003). Other notations for the sequential connectives ∧�� and ∨�� with mem-
orising interpretation are � and � from computability logic (see, e.g. Japaridze, 2008),
and ⊗ and ⊕ from transaction logic (see, e.g. Basseda & Kifer, 2015, there called serial
connectives). However, MSCL is just a part of both these logics and it is questionable
whether its axiomatisation or semantics are of any relevance.

In Guzmán and Squier (1990), so-called Conditional logic is defined and axiomatised.
This logic is named after the discussion in Gries (1981, pp. 68–70) about logical laws for
the connectives cand and cor. Some typical equations that hold in conditional logic,
where cand and cor are written as ∧ and ∨, are

¬U = U, U ∧ x = U, F ∧ x = F, and (9)

(x ∧ y) ∨ (y ∧ x) = (y ∧ x) ∨ (x ∧ y). (10)

However, it is not so clear whether (Guzmán & Squier, 1990) follow the intentions
of Gries (1981). In the words of Pigozzi (1990):5

Consider now the protomatrix MC3 of McCarthy’s noncommuting conditional logic. Gries
seems clearly to have an assertional logic in mind when he deals with this protomatrix
in Gries (1981). On the other hand, in their detailed study of the logic MC3 carried out
in 1990, Guzmán and Squier deal exclusively with the equational logic. The exact connec-
tion between the assertional and the equational case is not clear, but it is certainly not as
strong as in the classical (Boolean) case.

When the binary connectives in (9) and (10) are replaced by ∧�� and ∨�� , equations (9)
are consequences in MSCLU, but (10) is not: a memorising evaluation tree with root a
is not equal to one with root b. In fact, omitting (10) from the axiomatisation provided
in Guzmán and Squier (1990) yields an axiomatisation as strong as EqMSCLU, which fol-
lows easily with Prover9 (McCune, 2008). Thus, MSCLU is a three-valued logic different
from conditional logic and is new, as far as we know. We refer to Bergstra et al. (1995)

260 J. A. BERGSTRA ET AL.

Table 5. An alternative set of CP-axioms for defining
SSCL.

x � T � y = x (CP1)
x � F � y = y (CP2)
(x � y � z) � y � F = y � x � F (CP3s)
x � (y � z � u) � v = (x � y � v) � z � (x � u � v) (CP4)

for an overview of three-valued logics and their axiomatisations, including conditional
logic (there called McCarthy’s three-valued logic, as in Nagata et al., 1975).

We did not find any work related to the three-valued logic FSCLU (Definition 7.15). It
seems that extending the equational axiomatisation EqFSCL with the axiom U ∧�� x =
¬U, say EqFSCLU, is an attractive option: EqFSCLU implies ¬U = U (and thus U ∧�� x =
U and U ∨�� x = U) and we could not find any desirable equation that is non-derivable.
Furthermore, if (F1) and (F3) are omitted, EqFSCLU is independent (compare Fact 2.5).
We formulate the following conjecture (see also challenge (2) in Section 9).

Conjecture 8.1: For all P, Q ∈ SU
A , FSCLU � P = Q ⇐⇒ EqFSCLU � P = Q.

We conclude this section with a few words on the definition of two-valued static
short-circuit logic SSCL (Definition 5.2). In Table 5, we provide an alternative set of
axioms for defining SSCL that is not a simple extension of CP or CPmem. Note that
axiom (CP3s) with y = T implies (CP3), and with y = F implies F � x � F = F (the
axiom that is used to define SSCL). These axioms are independent (which easily fol-
lows with Mace4, McCune, 2008). A proof of one of the axioms (CPmem1) or (CPmem3)
by Prover9 (McCune, 2008) is relatively simple (with the option kbo); for the first one, a
convenient intermediate result is

f(f(f(x,y,z),u,v),y,0)=f(f(x,u,v),y,0),

that is, ((x � y � z) � u � v) � y � F = (x � u � v) � y � F, and adding this as a
fifth axiom yields a comprehensible proof of (CPmem1).

However, finding a more simple axiomatisation of static se-congruence is not a goal
of this paper: the axiomatisation in Definition 5.2 is sufficiently simple and expresses
the fundamental intuitions appropriately. Reasons to present the axiomatisation in
Table 5 are its independence (contrary to CPmem ∪ { F � x � F = F}) and, of course,
its striking simplicity (cf. Hoare, 1985).

9. Conclusions

In Bergstra and Ponse (2011), we introduced ‘proposition algebra’, which is based on
Hoare’s conditional x � y � z and the constants T and F. We defined a number of
varieties of so-called valuation algebras in order to capture different semantics for the
evaluation of conditional statements, and provided axiomatisations of the resulting
‘valuation congruences’: CP (four axioms) axiomatises free valuation congruence (the
least identifying valuation congruence we consider), and the extension CPmem (one
extra axiom) axiomatises memorising valuation congruence, the most identifying val-
uation congruence below ‘sequential propositional logic’. Static valuation congruence

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 261

can be axiomatised by adding the axiom F � x � F = F to CPmem, and can be seen
as an axiomatisation of sequential propositional logic.

In Bergstra and Ponse (2010, 2012), we introduced an alternative valuation seman-
tics for proposition algebra in the form of Hoare-McCarthy algebras (HMAs) that is
more elegant than the semantic framework provided in Bergstra and Ponse (2011):
HMA-based semantics has the advantage that one can define a valuation congruence
without first defining the valuation equivalence it is contained in.

In Bergstra and Ponse (2017), following the approach of Staudt (2012), we defined
evaluation trees as a simpler and more direct semantics for proposition algebra and
proved several completeness results for the valuation congruences mentioned above.

In Bergstra et al. (2013), we introduced ‘short-circuit logic’ as defined here (Defini-
tions 5.1 and 5.2). In Ponse and Staudt (2018), summarised in Section 2, we dealt with
the case of free short-circuit logic (FSCL).

In this paper, we have shown that memorising short-circuit logic can be understood
and used without any reference to (or dependence on) the conditional connective, in
spite of the fact that it is defined with this connective: MSCL can also be seen as the
equational logic defined by EqMSCL, and with equality of memorising evaluation trees
as a simple semantics (Theorem 4.9). The meaning of a sequential proposition is deter-
mined by the entire process of its sequential evaluation, as modelled by its memorising
evaluation tree. This perspective explains why the sequential connectives are taken
to be non-commutative and why the constants T and F are not definable (and thus
included). In Section 4, we discussed the following properties of MSCL:

• The double negation shift, the duality principle, and associativity of the sequen-
tial connectives (all of these also hold in FSCL).

• Idempotence of the sequential connectives, and

x ∧�� (y ∨�� z) = (x ∧�� y) ∨�� (x ∧�� z), left − distributivity(LD)

x ∧�� (y ∧�� x) = x ∧�� y. (see (C2) for a proof)

None of these hold in FSCL.

Some perhaps less familiar properties of MSCL, none of which hold in FSCL, are the
following two characterisations of ‘if x then y else z’:

(x ∧�� y) ∨�� (¬x ∧�� z) = (¬x ∨�� y) ∧�� (x ∨�� z), (M1)

(x ∧�� y) ∨�� (¬x ∧�� z) = (¬x ∧�� z) ∨�� (x ∧�� y), (M2)

and the right-distributivity of ∧�� over ‘if x then y else z’, that is

(if x then y else z) ∧�� u = if x then (y ∧�� u) else (z ∧�� u),

which is characterised by

((x ∧�� y) ∨�� (¬x ∧�� z)) ∧�� u = (x ∧�� (y ∧�� u)) ∨�� (¬x ∧�� (z ∧�� u)). (M3)

In a similar way, the right-distributivity of ∨�� over ‘if x then y else z’ follows.

262 J. A. BERGSTRA ET AL.

In Sections 1 and 5, we briefly discussed static short-circuit logic: SSCL defines
a version of ordinary propositional logic (PL) by means of sequential connectives
that prescribe short-circuit evaluation and that are commutative. So, any equational
axiomatisation of PL is one for SSCL, provided the connectives are replaced by their
sequential counterparts (and x →�� y = ¬x ∨�� y). However, we think SSCL does not
yield interesting perspectives and is counterintuitive from a programming-oriented
point of view. For example, the identity a ∧�� b = b ∧�� a requires that their memoris-
ing evaluation trees should be considered equal. This either requires a transformation
of memorising evaluation trees according to some fixed ordering of atoms (compris-
ing a and b), which may not agree with the actual evaluation order, or an equivalence
relation on memorising evaluation trees that does not respect the evaluation order of
atoms.6

We conclude that MSCL provides a more natural view on sequential propositional
logic than SSCL.

In Section 7, we extended our main results to a three-valued setting by includ-
ing a constant U that represents McCarthy’s notion of undefinedness (Theorems 7.11
and 7.16). The extension to evaluation trees with leaves in { T, F, U} is straightforward,
and so is their memorising variant. The resulting short-circuit logic MSCLU satisfies
the duality principle, has a simple equational axiomatisation, and preserves all MSCL-
identities. We also introduced FSCLU, i.e. three-valued free short-circuit logic, and
raised the question of a complete equational axiomatisation for closed terms (Conjec-
ture 8.1). Finally, as observed in Section 1, two-valued SSCL cannot be extended in this
way because commutativity of the sequential connectives would imply that U = F.

In the Introduction, we distinguished short-circuit logics (SCLs) into two- or three-
valuedness. Another, more programmer-oriented criterion for distinction is whether or
not atomic side effects can occur in the evaluation of a conditional expression. If so,
then FSCL (or FSCLU) is the appropriate SCL; a typical example (allowed in many pro-
gramming languages) is a condition containing an assignment (as an atom) and some
examples are discussed in Ponse and Staudt (2018, Section 4.4). For the case where
atoms (and hence conditions) are ‘side effect free’, MSCL or MSCLU is the appropriate
logic to reason about their logical equivalences, and the choice of which of the two is
determined only by whether the atoms involved can yield the truth value undefined. A
sequential version of the second example in the Introduction, viz,

(x �= 0) ∧�� (y/x > 17),

is of course a typical example for using MSCLU. Other examples are mentioned
in Gries (1981) and concern for example arrays that are indexed out of their bounds.

Challenging questions and future work. A challenging question with respect to the
proof of Theorem 4.2, that is, EqMSCL � EqFSCL, is to find a shorter and more compre-
hensible proof of associativity. Alternatively, find another equational axiomatisation of
MSCL that is short and simple, uses only three variables, and admits a simple proof of
this theorem.

Two other challenges, following the discussion in Section 8:

(1) Find a convincing example that distinguishes MSCLU from Conditional Logic as
defined in Guzmán and Squier (1990).

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 263

(2) Solve Conjecture 8.1, i.e. find out whether EqFSCLU axiomatises FSCLU for
closed terms. And, if this is the case, find out whether EqFSCLU and FSCLU define
the same equational theory.7 We note that we could not transfer the com-
pleteness proofs in this paper to FSCLU: we could not find suitable normal
forms (cf. Ponse & Staudt, 2018, Sect.2.2), and the conditional x � y � z is not
definable in FSCLU (cf. Bergstra & Ponse, 2011, Prop.12.1).

In future work, we want to cover two more short-circuit logics, ‘repetition-proof’
and ‘contractive’ short-circuit logic (see Bergstra et al., 2013), and to provide examples
of program fragments that illustrate all short-circuits logics defined (compare Ponse
& Staudt, 2018, Sect.4.4).

Notes

1. In Staudt (2012), the dual of axiom (F5) is used, and in Ponse and Staudt (2018),
se-congruence is called ‘free valuation congruence’.

2. See https://oeis.org/A065410.
3. For the conditioned disjunction, reference (Church, 1956) is often used, and also the

name conditional disjunction.
4. In 1963, Dicker provided in (Dicker, 1963) a set of five independent and simple axioms

for the conditioned disjunction. In Section 8 we provide a set of four independent and
simple axioms that is also complete.

5. The protomatrix mentioned is the set of truth tables for { T, F, U}.
6. In Bergstra and Ponse (2017), we defined static evaluation trees for CPmem ∪ { F � x �

F = F} according to the first requirement.
7. This last challenge generalises an open question about EqFSCL from Ponse

and Staudt (2018): For open terms s, t over �SCL(A), can EqFSCL � s = t ⇐⇒ FSCL � s =
t be proved?

8. We speak of ‘basic forms’ instead of normal forms in order to avoid intuitions from term
rewriting: for example, the basic form associated with action a is T � a � F, whereas
one would expect that the normal form of the latter is a.

9. Without loss of generality it can be assumed that substitutions happen first in equational
proofs (see, e.g. Aceto et al., 2008).

Acknowledgments

We thank an anonymous reviewer for his helpful comments and, in particular, for his suggestion
to consider three-valued cases of short-circuit logic as well.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Jan A. Bergstra http://orcid.org/0000-0003-2492-506X
Alban Ponse http://orcid.org/0000-0001-6061-5355

https://oeis.org/A065410
http://orcid.org/0000-0003-2492-506X
http://orcid.org/0000-0001-6061-5355

264 J. A. BERGSTRA ET AL.

References

Aceto L., Chen T., Fokkink W. J., & Ingolfsdottir A. (2008). On the axiomatizability of priority.
Mathematical Structures in Computer Science, 18(1), 5–28. https://doi.org/10.1017/S0960129
507006524

Basseda R., & Kifer M. (2015). Planning with regression analysis in transaction logic. In B. ten Cate,
& A. Mileo (Eds.), RR 2015: Web reasoning and rule systems (pp. 45–60). LNCS 9209. Springer.
https://doi.org/10.1007/978-3-319-22002-4_5

Bergstra J. A., Bethke I., & Rodenburg P. H. (1995). A propositional logic with 4 values: True,
false, divergent and meaningless. Journal of Applied Non-Classical Logics, 5(2), 199–218.
https://doi.org/10.1080/11663081.1995.10510855

Bergstra J. A., Heering J., & Klint P. (1990). Module algebra. Journal of the ACM, 37(2), 335–372.
https://doi.org/10.1145/77600.77621

Bergstra J. A., & Ponse A. (2010). On Hoare-McCarthy algebras. http://arxiv.org/abs/1012.5059
[cs.LO].

Bergstra J. A., & Ponse A. (2011). Proposition algebra. ACM Transactions on Computational Logic,
12(3), Article 21, 1–36. https://doi.org/10.1145/1929954.1929958

Bergstra J. A., & Ponse A. (2012). Proposition algebra and short-circuit logic. In F.
Arbab & M. Sirjani (Eds.), Proceedings of the 4th international conference on fundamen-
tals of software engineering (FSEN 2011, Tehran) (pp. 15–31). LNCS 7141. Springer.
https://doi.org/10.1007/978-3-642-29320-7_2

Bergstra J. A., & Ponse A. (2017). Evaluation trees for proposition algebra. https://arxiv.org/abs/
1504.08321v3 [cs.LO].

Bergstra J. A., Ponse A., & Staudt D. J. C. (2013). Short-circuit logic. https://arxiv.org/abs/1010.
3674v4 [cs.LO, math.LO].

Church A. (1948). Conditioned disjunction as a primitive connective for the propositional
calculus. Portugaliae Mathematica, 7 (2), 87–90.

Church A (1956). Introduction to mathematical logic. Princeton University Press.
Dicker R. M. (1963). A set of independent axioms for Boolean algebra. Proceedings of the London

Mathematical Society, s3-13(1), 20–30. https://doi.org/10.1112/plms/s3-13.1.20
Dijkstra E. W. (1976). A discipline of programming. Prentice Hall, Inc.
Gries D. (1981). The science of programming. Springer-Verlag.
Guzmán F., & Squier C. C. (1990). The algebra of conditional logic. Algebra Universalis, 27(1),

88–110. https://doi.org/10.1007/BF01190256
Hoare C. A. R. (1985). A couple of novelties in the propositional calculus. Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik, 31(2), 173–178. https://doi.org/10.1002/(ISSN)
1521-3870

Japaridze G. (2008). Sequential operators in computability logic. Information and Computation,
206(12), 1443–1475. https://doi.org/10.1016/j.ic.2008.10.001

McCarthy J. (1963). A basis for a mathematical theory of computation. In P. Braffort, & D.
Hirschberg (Eds.), Computer programming and formal systems (pp. 33–70). Volume 35 of
Studies in logic and the foundations of mathematics. Elsevier.

McCune W. (2008). The GUI: Prover9 and Mace4 with a graphical user interface. Prover9-Mace4-
v05B.zip. Retrieved March 14, 2008, from https://www.cs.unm.edu/mccune/prover9/gui/
v05.html

Moret B. M. E. (1982). Decision trees and diagrams. Computing Surveys, 14(4), 593–623.
https://doi.org/10.1145/356893.356898

Nagata M., Nakanishi M., & Nishimura T. (1975). Implementation of Lukasiewicz’s, Kleene’s
and McCarthy’s 3-valued logic. Science Reports of the Tokyo Kyoiku Daigaku, Section A,
13(347–365), 90–100.

Pigozzi Don L. (1990). Data types over multiple-valued logics. Theoretical Computer Science,
77(1–2), 161–194. https://doi.org/10.1016/0304-3975(90)90119-3

https://doi.org/10.1017/S0960129507006524
https://doi.org/10.1007/978-3-319-22002-4_5
https://doi.org/10.1080/11663081.1995.10510855
https://doi.org/10.1145/77600.77621
http://arxiv.org/abs/1012.5059
https://doi.org/10.1145/1929954.1929958
https://doi.org/10.1007/978-3-642-29320-7_2
https://arxiv.org/abs/1504.08321v3
https://arxiv.org/abs/1010.3674v4
https://doi.org/10.1112/plms/s3-13.1.20
https://doi.org/10.1007/BF01190256
https://doi.org/10.1002/(ISSN)1521-3870
https://doi.org/10.1016/j.ic.2008.10.001
https://www.cs.unm.edu/mccune/prover9/gui/v05.html
https://doi.org/10.1145/356893.356898
https://doi.org/10.1016/0304-3975(90)90119-3

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 265

Ponse A., & Staudt D. J. C. (2018). An independent axiomatisation for free short-circuit logic. Jour-
nal of Applied Non-Classical Logics, 28(1), 35–71. https://doi.org/10.1080/11663081.2018.
1448637

Staudt D. J. C. (2012, May). Completeness for two left-sequential logics [MSc. thesis Logic, Univer-
sity of Amsterdam]. https://arxiv.org/abs/1206.1936 [cs.LO].

Zimmermann W., & Dold A. (2003). A framework for modeling the semantics of expression evalu-
ation with abstract state machines. In E. Börger, A. Gargantini, & E. Riccobene (Eds.), ASM 2003
(pp. 391–406). LNCS 2589. Springer. https://doi.org/10.1007/3-540-36498-6_23

Appendix. Detailed proofs

A.1 A proof of Lemma 3.3
Lemma 3.3: For all a, b ∈ A, f , f ′ ∈ {L, R}, and X , Y ∈ TA,

(1) If b �= a then fa(f ′
b(X)) = f ′

b(fa(X)),
(2) fa(m(fa(X))) = fa(m(X)),
(3) fa(m(X)) = m(fa(X)),
(4) m(fa(X[T �→ F, F �→ T])) = m(fa(X))[T �→ F, F �→ T],
(5) fa(X[T �→ Y]) = fa(X)[T �→ fa(Y)],
(6) If m(X) = m(Y) then m(fa(X)) = m(fa(Y)),
(7) m(fa(m(X))) = m(fa(X)).

Proof: (1) By structural induction on X. The base cases are trivial, and if X = X1 � c � X2 then
distinguish the cases c = a and c �∈ {a, b}:

Case c = a, subcase f = f ′ = L. Then La(Lb(X)) = La(Lb(X1) � a � Lb(X2)) = La(Lb(X1)) and
Lb(La(X)) = Lb(La(X1)), so by induction we are done.

Subcase f = L and f ′ = R. Then La(Rb(X)) = La(Rb(X1) � a � Rb(X2)) = La(Rb(X1)) and
Rb(La(X)) = Rb(La(X1)), so by induction we are done.

The remaining subcases follow in a similar way.
Case c �∈ {a, b}. All subcases for f and f ′ follow easily by induction.
(2) (fa(m(fa(X))) = fa(m(X)).) By induction on d(X). The base cases are trivial, and if X = X1 �

c � X2 then distinguish the cases c = a and c �= a:
Case c = a, subcase f = L. Then

La(m(La(X))) = La(m(La(X1 � a � X2)))

= La(m(La(X1)))

= La(m(La(X1)) � a � m(Ra(X2)))

= La(m(X)),

so induction is not needed in this case. The remaining subcase follows in a similar way.
Case c �= a, subcase f = L. Then

La(m(La(X))) = La(m(La(X1 � c � X2)))

= La(m(Lc(La(X1))) � c � m(Rc(La(X2))))

= La(m(Lc(La(X1)))) � c � La(m(Rc(La(X2))))

= La(m(La(Lc(X1)))) � c � La(m(La(Rc(X2)))) by La.3.3.1

= La(m(Lc(X1))) � c � La(m(Rc(X2))) by IH

= La(m(Lc(X1)) � c � m(Rc(X2)))

= La(m(X)).

https://doi.org/10.1080/11663081.2018.1448637
https://arxiv.org/abs/1206.1936
https://doi.org/10.1007/3-540-36498-6_23

266 J. A. BERGSTRA ET AL.

Note that d(Lc(X1)) ≤ d(X1) < d(X) and d(Rc(X2)) ≤ d(X2) < d(X). The remaining subcase
follows in a similar way.

(3) (fa(m(X)) = m(fa(X)).) By induction on d(X). The base cases are trivial, and if X = X1 �
c � X2 distinguish the cases c = a and c �= a:

Case c = a, subcase f = L. Then

La(m(X)) = La(m(La(X1)) � a � m(Ra(X2)))

= La(m(La(X1)))

= La(m(X1)) by La.3.3.2

= m(La(X1)) by IH

= m(La(X1 � a � X2))

= m(La(X)).

The remaining subcase follows in a similar way.
Case c �= a, subcase f = L. Then

La(m(X)) = La(m(Lc(X1)) � c � m(Rc(X2)))

= La(m(Lc(X1))) � c � La(m(Rc(X2)))

= m(La(Lc(X1))) � c � m(La(Rc(X2))) by IH

= m(Lc(La(X1))) � c � m(Rc(La(X2))) by La.3.3.1

= m(La(X1) � c � La(X2))

= m(La(X)).

Note that d(Lc(X1)) ≤ d(X1) < d(X) and d(Rc(X2)) ≤ d(X2) < d(X). The remaining subcase
follows in a similar way.

(4) (m(fa(X[T �→ F, F �→ T])) = m(fa(X))[T �→ F, F �→ T].) By induction on d(X). The base
cases are trivial, and if X = X1 � c � X2 distinguish the cases c = a and c �= a:

Case c = a, subcase f = L. Then La(X) = La(X1) and by induction we are done. The remain-
ing subcase follows in a similar way.

Case c �= a, subcase f = L. Write [neg] for the leaf replacement [T �→ F, F �→ T]. Then

m(La(X[neg])) = m(Lc(La(X1[neg]))) � c � m(Rc(La(X2[neg])))

= m(La(Lc(X1[neg]))) � c � m(La(Rc(X2[neg]))) by La.3.3.1

= m(La(Lc(X1)))[neg] � c � m(La(Rc(X2)))[neg] by IH

= m(Lc(La(X1)))[neg] � c � m(Rc(La(X2)))[neg] by La.3.3.1

= (m(Lc(La(X1))) � c � m(Rc(La(X2))))[neg]

= m(La(X))[neg].

The remaining subcase follows in a similar way.
(5) (fa(X[T �→ Y]) = fa(X)[T �→ fa(Y)].) By induction on the structure of X. The base cases are

trivial, and if X = X1 � c � X2 distinguish the cases c = a and c �= a:
Case c = a, subcase f = L. Then La(X[T �→ Y]) = La(X1[T �→ Y]) and by induction

La(X1[T �→ Y]) = La(X1)[T �→ Y] = La(X)[T �→ Y]. The remaining subcase follows in a similar
way.

Case c �= a, subcase f = L: La(X[T �→ Y]) = La(X1[T �→ Y]) � c � La(X2[T �→ Y])
IH= La(X1)

[T �→ La(Y)] � c � La(X2)[T �→ La(Y)] = La(X)[T �→ La(Y)]. The remaining subcase follows in
a similar way.

(6) (If m(X) = m(Y) then m(fa(X)) = m(fa(Y)).) By induction on d(X). The base cases are
trivial, and if X = X1 � c � X2 distinguish the cases c = a and c �= a:

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 267

Case c = a, subcase f = L. Then m(La(X)) = m(La(X1)) and m(Ra(X)) = m(Ra(X2)), and
m(X) = m(Y) implies that Y = Y1 � a � Y2, so m(fa(X)) = m(fa(Y)). The remaining subcase
follows in a similar way.

Case c �= a, subcase f = L. Then m(X) = m(Y) implies that Y = Y1 � c � Y2, and m(Lc(X1)) =
m(Lc(Y1)) and m(Rc(X2)) = m(Rc(Y2)). Derive

m(La(X)) = m(Lc(La(X1))) � c � m(Rc(La(X2)))

= m(La(Lc(X1))) � c � m(La(Rc(X2))) by La.3.3.1

= m(La(Lc(Y1))) � c � m(La(Rc(Y2))) by IH

= m(Lc(La(Y1))) � c � m(Rc(La(Y2))) by La.3.3.1

= m(La(Y)).

The remaining subcase follows in a similar way.
(7) (m(fa(m(X))) = m(fa(X)).) By induction on d(X). The base cases are trivial. If X = X1 � c �

X2 then distinguish the cases c = a and c �= a:
Case c = a, f = L:

m(La(m(X))) = m(La(m(X1 � a � X2)))

= m(La(m(La(X1)) � a � m(Ra(X2))))

= m(La(m(La(X1))))

= m(La(m(X1))) by La.3.3.2

= m(La(X1)) by IH

= m(La(X)).

The remaining subcase f = R follows in a similar way.
Case c �= a, subcase f = L:

m(La(m(X))) = m(La(m(X1 � c � X2)))

= m(La(m(Lc(X1)) � c � m(Rc(X2))))

= m(La(m(Lc(X1))) � c � La(m(Rc(X2))))

= m(Lc(La(m(Lc(X1))))) � c � m(Rc(La(m(Rc(X2)))))

= m(La(Lc(m(Lc(X1))))) � c � m(La(Rc(m(Rc(X2))))) by La.3.3.1

= m(La(Lc(m(X1)))) � c � m(La(Rc(m(X2)))) by La.3.3.2

= m(La(m(Lc(X1)))) � c � m(La(m(Rc(X2)))) by La.3.3.3

= m(La(Lc(X1))) � c � m(La(Rc(X2))) by IH

= m(Lc(La(X1))) � c � m(Rc(La(X2))) by La.3.3.1

= m(La(X1) � c � La(X2))

= m(La(X)).

Note that d(Lc(X1)) ≤ d(X1) < d(X) and d(Rc(X2)) ≤ d(X2) < d(X). The remaining subcase
f = R follows in a similar way. �

A.2 Continuation of the proof of Theorem 4.1
Theorem 4.1: For all P, Q ∈ SA, EqMSCL � P = Q ⇒ P =mse Q.

Proof: The case for axiom (Mem). First derive

(X �∨�� Y) �∧�� Z = X[F �→ Y][T �→ Z]

268 J. A. BERGSTRA ET AL.

= X[T �→ Z, F �→ Y[T �→ Z]] (L)

and

(∼¬X �∧�� (Y �∧�� Z)) �∨�� (X �∧�� Z) = (X[T �→ F, F �→ Y[T �→ Z]])[F �→ X[T �→ Z]]

= X[T �→ X[T �→ Z], F �→ Y[T �→ Z[F �→ X[T �→ Z]]]]. (R)

It suffices to show that for all X , Y , Z ∈ TA, m((X �∨�� Y) �∧�� Z) = m((∼¬X �∧�� (Y �∧�� Z)) �∨�� (X �∧�� Z)),
which follows by structural induction on X. The base cases are trivial.

If X = X1 � a � X2, we find by (L) that

m((X �∨�� Y) �∧�� Z)

= m(La(X1[T �→ Z, F �→ Y[T �→ Z]])) � a � m(Ra(X2[T �→ Z, F �→ Y[T �→ Z]])).

Furthermore, let [Rep] = [T �→ X[T �→ Z], F �→ Y[T �→ Z[F �→ X[T �→ Z]]]], then

m((∼¬X �∧�� (Y �∧�� Z)) �∨�� (X �∧�� Z)) = m(La(X1[Rep])) � a � m(Ra(X2[Rep])). (Aux3)

With Lemma 3.3.5 it follows that (cf. (Aux2))

La(X1[Rep]) = La(X1[T �→ X1[T �→ Z], F �→ Y[T �→ Z[F �→ X1[T �→ Z]]]]), (RepL)

Ra(X2[Rep]) = Ra(X2[T �→ X2[T �→ Z], F �→ Y[T �→ Z[F �→ X2[T �→ Z]]]]). (RepR)

We derive

m(La(X1[T �→ Z, F �→ Y[T �→ Z]]))

= m(La(m(X1[T �→ Z, F �→ Y[T �→ Z]]))) by La.3.3.7

= m(La(m((X1 �∨�� Y) �∧�� Y))) by (L)

= m(La(m((∼¬X1 �∧�� (Y �∧�� Z)) �∨�� (X1 �∧�� Z)))) by IH

= m(La((∼¬X1 �∧�� (Y �∧�� Z)) �∨�� (X1 �∧�� Z))) by La.3.3.7

= m(La(X1[Rep])). by (R) and (RepL)

In a similar way it follows with (RepR) that

m(Ra(X2[T �→ Z, F �→ Y[T �→ Z]])) = m(Ra(X2[Rep])),

so we find by (Aux3) that m((X �∨�� Y) �∧�� Z) = m((∼¬X �∧�� (Y �∧�� Z)) �∨�� (X �∧�� Z)). �

A.3 A proof of Theorem 4.2
Theorem 4.2: EqMSCL � EqFSCL.

Proof: With help of the theorem prover Prover9 (McCune, 2008). We derive the EqFSCL-axioms
in a particular order to obtain useful intermediate results. Recall that (n)′ represents the dual of
equation (n).

Axiom (F3). First derive

T ∨�� x
(Tand)= T ∧�� (T ∨�� x)

(Abs)= T. (A1)

Hence,

x = (T ∨�� T) ∧�� x by (Tand), (A1)

= (F ∧�� (T ∧�� x)) ∨�� (T ∧�� x) by (Mem), (Neg)

= (F ∧�� x) ∨�� x, by (Tand) (A2)

and

¬(F ∧�� ¬x) = ¬(¬ T ∧�� ¬x) by (Neg)

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 269

= T ∨�� x by (Or)

= T. by (A1) (A3)

Hence, ¬(F ∧�� x)
(A2)= ¬(F ∧�� ((F ∧�� x) ∨�� x))

(Or)= ¬(F ∧�� ¬(¬(F ∧�� x) ∧�� ¬x))
(A3)= T, and thus

z = (T ∨�� y) ∧�� z by (Tand), (A1)

= (F ∧�� (y ∧�� z)) ∨�� (T ∧�� z) by (Mem), (Neg)

= ¬(¬(F ∧�� (y ∧�� z)) ∧�� ¬z) by (Tand), (Or)

= ¬(T ∧�� ¬z) by ¬(F ∧�� x) = T

= ¬¬z. by (Tand) (F3)

Intermediate result 1 – Duality. By axioms (Neg), (Or), (F3), the duality principle holds.
Axiom (F6). F ∧�� x = F by (A1)′.
Axiom (F5). Instantiate (Mem) with x = F and y = T, and apply ¬ F = T and (Tand), (F6):

z = T ∧�� z
(Tand)′

= (F ∨�� T) ∧�� z
(Mem)= (T ∧�� (T ∧�� z)) ∨�� (F ∧�� z)

(Tand),(F6)= z ∨�� F. (F5)

Intermediate result 2 – Idempotence. By axiom (F5), x = x ∧�� (x ∨�� F)
(Abs)= x ∧�� x.

Axiom (F8). We derive the dual equation. We write ‘Idemp’ for idempotence and first derive

x ∨�� T = (x ∨�� T) ∧�� T by (F5)′

= (¬x ∧�� (T ∧�� T)) ∨�� (x ∧�� T) by (Mem)

= ¬x ∨�� x, by (F5)′ (A4)

and

¬x ∨�� T = x ∨�� ¬x. by (A4), (F3) (A5)

Hence

x ∨�� T = (¬x ∨�� x) ∧�� T by (A4), (F5)′

= (x ∧�� (x ∧�� T)) ∨�� (¬x ∧�� T) by (Mem)

= x ∨�� ¬x by (F5)′, Idemp

= ¬x ∨�� T. by (A5) (F8′)

Intermediate result 3 – four auxiliary results.

x ∧�� y = (x ∨�� F) ∧�� y by (F5)

= (¬x ∧�� (F ∧�� y)) ∨�� (x ∧�� y) by (Mem)

= (x ∧�� F) ∨�� (x ∧�� y). by (F6), (F8) (Ar1)

x ∨�� y = (x ∨�� y) ∧�� T by (F5)′

= (¬x ∧�� y) ∨�� x. by (Mem), (F5)′ (Ar2)

x ∨�� y = (x ∨�� T) ∧�� (x ∨�� y) by (Ar1)′

= (¬x ∧�� (x ∨�� y)) ∨�� (x ∧�� (x ∨�� y)) by (Mem), (Tand)

= (¬x ∧�� (x ∨�� y)) ∨�� x by (Abs)

= x ∨�� (x ∨�� y). by (Ar2) (Ar3)

x ∨�� y = (¬x ∧�� y) ∨�� x by (Ar2)

= (¬x ∧�� (¬x ∧�� y)) ∨�� x by (Ar3)′

= x ∨�� (¬x ∧�� y). by (Ar2) (Ar4)

270 J. A. BERGSTRA ET AL.

Axiom (F9). First derive

(x ∨�� T) ∧�� F = (¬x ∧�� F) ∨�� (x ∧�� F) by (Mem), (Tand)

= (x ∧�� F) ∨�� (x ∧�� F) by (F8)

= x ∧�� F. by Idemp (A6)

Hence,

(x ∨�� T) ∧�� y = ((x ∨�� T) ∧�� F) ∨�� ((x ∨�� T) ∧�� y) by (Ar1)

= (x ∧�� F) ∨�� ((x ∨�� T) ∧�� y) by (A6)

= (x ∧�� F) ∨�� (¬(x ∧�� F) ∧�� y) by (F8)′

= (x ∧�� F) ∨�� y. by (Ar4) (F9)

Intermediate result 4 – three more auxiliary results.

(x ∧�� F) ∧�� y = x ∧�� F (Ar5)

x ∧�� (y ∧�� x) = x ∧�� y (Ar6)

(x ∧�� y) ∧�� x = x ∧�� y (Ar7)

First derive

(x ∧�� F) ∧�� F = ¬(x ∧�� F) ∧�� F by (F8)

= (¬x ∨�� T) ∧�� F

= ¬x ∧�� F by (A6)

= x ∧�� F, by (F8) (A7)

hence

(x ∧�� F) ∧�� y = (x ∧�� F) ∧�� ((x ∧�� F) ∧�� y) by (Ar3)′

= (x ∧�� F) ∧�� (((x ∧�� F) ∧�� F) ∨�� ((x ∧�� F) ∧�� y)) by (Ar1)

= (x ∧�� F) ∧�� ((x ∧�� F) ∨�� ((x ∧�� F) ∧�� y)) by (A7)

= x ∧�� F. by (Abs) (Ar5)

x ∧�� (y ∧�� x) = (x ∧�� x) ∧�� (y ∧�� x) by Idemp

= ((x ∧�� F) ∨�� x) ∧�� (y ∧�� x) by (Ar1), Idemp

= (¬(x ∧�� F) ∧�� (x ∧�� (y ∧�� x))) ∨�� ((x ∧�� F) ∧�� (y ∧�� x)) by (Mem)

= ((¬x ∨�� T) ∧�� (x ∧�� (y ∧�� x))) ∨�� (x ∧�� F) by (Ar5)

= ((x ∧�� F) ∨�� (x ∧�� (y ∧�� x))) ∨�� (x ∧�� F) by (F9), (F8)

= (x ∧�� (y ∧�� x)) ∨�� (x ∧�� F) by (Ar1)

= (x ∧�� (y ∧�� x)) ∨�� (¬x ∧�� x) by (A4)′

= (¬x ∨�� y) ∧�� x by (Mem)

= x ∧�� y. by (Ar2)′ (Ar6)

(x ∧�� y) ∧�� x = (x ∧�� y) ∧�� (x ∧�� (x ∧�� y)) by (Ar6)

= (x ∧�� y) ∧�� (x ∧�� y) by (Ar3)′

= x ∧�� y. by Idemp (Ar7)

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 271

Axiom (F7). We use the following auxiliary results:

(x ∧�� y) ∧�� z = (x ∧�� F) ∨�� ((x ∧�� y) ∧�� z) (A8)

(x ∨�� y) ∧�� (y ∧�� z) = (x ∧�� F) ∨�� (y ∧�� z) (A9)

¬x ∨�� (y ∧�� z) = ¬x ∨�� ((x ∧�� y) ∧�� z) (A15)

and derive associativity of ∧�� as follows:

(x ∧�� y) ∧�� z = (x ∧�� F) ∨�� ((x ∧�� y) ∧�� z) by (A8)

= (x ∨�� (x ∧�� y)) ∧�� ((x ∧�� y) ∧�� z) by (A9)

= x ∧�� ((x ∧�� y) ∧�� z) by (Abs)′

= (¬x ∨�� ((x ∧�� y) ∧�� z)) ∧�� x by (Ar2)′

= (¬x ∨�� (y ∧�� z)) ∧�� x by (A15)

= x ∧�� (y ∧�� z). by (Ar2)′ (F7)

We derive the above auxiliary results in order:

(x ∧�� F) ∨�� ((x ∧�� y) ∧�� z) = ((x ∧�� F) ∨�� ((x ∧�� y) ∧�� z)) ∨�� (x ∧�� F) by (Ar7)′

= ((x ∨�� T) ∧�� ((x ∧�� y) ∧�� z)) ∨�� (x ∧�� F) by (F9)

= ((¬x ∨�� T) ∧�� ((x ∧�� y) ∧�� z)) ∨�� (x ∧�� F) by (F8)′

= (¬(x ∧�� F) ∧�� ((x ∧�� y) ∧�� z)) ∨�� ((x ∧�� F) ∧�� z) by (Ar5)

= ((x ∧�� F) ∨�� (x ∧�� y)) ∧�� z by (Mem)

= (x ∧�� y) ∧�� z. by (Ar1) (A8)

(x ∨�� y) ∧�� (y ∧�� z) = (¬x ∧�� (y ∧�� (y ∧�� z))) ∨�� (x ∧�� (y ∧�� z)) by (Mem)

= (¬x ∧�� (y ∧�� z)) ∨�� (x ∧�� (y ∧�� z)) by (Ar3)′

= (x ∨�� T) ∧�� (y ∧�� z) by (Mem)

= (x ∧�� F) ∨�� (y ∧�� z), by (F9) (A9)

The following auxiliary results lead to (A15):

(x ∨�� y) ∧�� (x ∨�� z) = (¬x ∧�� (y ∧�� (x ∨�� z))) ∨�� (x ∧�� (x ∨�� z)) by (Mem)

= (¬x ∧�� (y ∧�� (x ∨�� z))) ∨�� x by (Abs)

= x ∨�� (y ∧�� (x ∨�� z)). by (Ar2) (A10)

x ∨�� (¬x ∨�� y) = (¬x ∧�� (¬x ∨�� y)) ∨�� x by (Ar2)

= ¬x ∨�� x by (Abs)

= (¬x ∧�� ¬x) ∨�� x by Idemp

= x ∨�� ¬x. by (Ar2) (11)

x ∨�� ((x ∧�� z) ∨�� y) = x ∨�� ((¬x ∨�� (z ∨�� y)) ∧�� (x ∨�� y)) by (Mem)′

= (x ∨�� (¬x ∨�� (z ∨�� y))) ∧�� (x ∨�� y) by (A10)

= (x ∨�� ¬x) ∧�� (x ∨�� y) by (A11)

= x ∨�� (¬x ∧�� (x ∨�� y)) by (A10)

= x ∨�� (x ∨�� y) by (Ar4)

= x ∨�� y. by (Ar3) (A12)

x ∨�� y = x ∨�� ((x ∧�� z) ∨�� y) by (A12)

272 J. A. BERGSTRA ET AL.

= x ∨�� ((x ∧�� z) ∨�� (y ∨�� (x ∧�� z))) by (Ar6)′

= x ∨�� (y ∨�� (x ∧�� z)). by (A12) (A13)

x ∨�� (y ∧�� z) = x ∨�� (¬x ∧�� (y ∧�� z)) by (Ar4)

= x ∨�� ((¬x ∧�� (y ∧�� z)) ∨�� (x ∧�� z)) by (A13)

= x ∨�� ((x ∨�� y) ∧�� z). by (Mem) (A14)

¬x ∨�� (y ∧�� z) = ¬x ∨�� ((¬x ∨�� y) ∧�� z) by (A14)

= ¬x ∨�� ((¬x ∨�� (x ∧�� y)) ∧�� z) by (Ar4)

= ¬x ∨�� ((x ∧�� y) ∧�� z). by (A14) (A15)

We write ‘Assoc’ for (repeated) applications of associativity of ∧�� and ∨�� .
Intermediate result 5. In order to derive axiom (F10) we use the following two intermediate

results:

(x ∧�� y) ∨�� (¬x ∧�� z) = (¬x ∨�� y) ∧�� (x ∨�� z) (M1)

(x ∧�� y) ∨�� (¬x ∧�� z) = (¬x ∧�� z) ∨�� (x ∧�� y) (M2)

Equation (M1).

(x ∧�� y) ∨�� (¬x ∧�� z) = (x ∧�� y) ∨�� (¬x ∧�� (x ∨�� z)) by (Ar4)′

= (x ∧�� (y ∧�� (x ∨�� z))) ∨�� (¬x ∧�� (x ∨�� z)) by (A13)′

= (¬x ∨�� y) ∧�� (x ∨�� z). by (Mem) (M1)

Equation (M2). First derive

(x ∨�� y) ∧�� z = (x ∨�� y) ∧�� ((x ∨�� y) ∧�� z) by (Ar3)′

= (x ∨�� (x ∨�� y)) ∧�� ((x ∨�� y) ∧�� z) by (Ar3)

= (x ∧�� F) ∨�� ((x ∨�� y) ∧�� z), by (A9) (A16)

(x ∧�� F) ∨�� y = (¬x ∧�� F) ∨�� y by (F8)

= (¬x ∨�� T) ∧�� y by (F9)

= (x ∧�� y) ∨�� (¬x ∧�� y) by (Mem), (Tand)

= (¬x ∨�� y) ∧�� (x ∨�� y) by (M1)

= (¬x ∨�� (y ∨�� y)) ∧�� (x ∨�� y) by Idemp

= (x ∧�� y) ∨�� y, by (Mem)′ (A17)

(x ∨�� y) ∧�� z = (x ∧�� F) ∨�� ((x ∨�� y) ∧�� z) by (A16)

= (x ∧�� ((x ∨�� y) ∧�� z)) ∨�� ((x ∨�� y) ∧�� z) by (A17)

= ((x ∧�� (x ∨�� y)) ∧�� z) ∨�� ((x ∨�� y) ∧�� z) by Assoc

= (x ∧�� z) ∨�� ((x ∨�� y) ∧�� z). by (Abs) (A18)

Hence,

(x ∧�� y) ∨�� (¬x ∧�� z) = (¬x ∨�� y) ∧�� (x ∨�� z) by (M1)

= (¬x ∨�� y) ∧�� ((x ∨�� z) ∧�� (¬x ∨�� y)) by (Ar6)

= (¬x ∨�� (x ∧�� y)) ∧�� ((x ∨�� z) ∧�� (¬x ∨�� y)) by (Ar4)

= (¬x ∨�� (x ∧�� y)) ∧�� ((¬x ∧�� z) ∨�� (x ∧�� y)) by (M1)′

= (¬x ∧�� z) ∨�� (x ∧�� y). by (A18)′ (M2)

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 273

Axiom (F10). First derive

(x ∨�� y) ∧�� z = (¬x ∧�� (y ∧�� z)) ∨�� (x ∧�� z) by (Mem)

= (x ∨�� (y ∧�� z)) ∧�� (¬x ∨�� z). by (M1), (F3) (A19)

Hence,

(x ∧�� y) ∨�� (z ∧�� F) = (x ∧�� (y ∨�� (z ∧�� F))) ∨�� (¬x ∧�� (z ∧�� F)) by (A19)′

= (x ∨�� (z ∧�� F)) ∧�� (¬x ∨�� (y ∨�� (z ∧�� F))) by (M1), (M2)

= (x ∨�� [(z ∧�� F) ∧�� (y ∨�� (z ∧�� F))])

∧�� (¬x ∨�� (y ∨�� (z ∧�� F))) by (Ar5)

= (x ∨�� (z ∧�� F)) ∧�� (y ∨�� (z ∧�� F)). by (A19) (F10)

�

A.4 A proof of Theorem 4.4
Theorem 4.4: The following equations are derivable from EqMSCL, where (LD) abbreviates left-
distributivity.

x ∧�� (y ∨�� z) = (x ∧�� y) ∨�� (x ∧�� z), (LD)

((x ∧�� y) ∨�� (¬x ∧�� z)) ∧�� u = (x ∧�� (y ∧�� u)) ∨�� (¬x ∧�� (z ∧�� u)). (M3)

Proof: With help of the theorem prover Prover9 (McCune, 2008).
Equation (LD). First derive

x ∨�� (y ∨�� z) = (x ∨�� y) ∨�� z by Assoc

= ((x ∨�� y) ∨�� x) ∨�� z by (Ar7)′

= x ∨�� (y ∨�� (x ∨�� z)), by Assoc (A20)

¬x ∨�� (y ∨�� (x ∧�� z)) = ¬x ∨�� (y ∨�� (¬x ∨�� (x ∧�� z))) by (A20)

= ¬x ∨�� (y ∨�� (¬x ∨�� z)) by (Ar4)

= ¬x ∨�� (y ∨�� z). by (A20) (A21)

Hence,

x ∧�� (y ∨�� z) = (¬x ∨�� (y ∨�� z)) ∧�� x by (Ar2)′

= (¬x ∨�� (y ∨�� z)) ∧�� (x ∨�� (x ∧�� z)) by (Abs)′

= (¬x ∨�� (y ∨�� (x ∧�� z))) ∧�� (x ∨�� (x ∧�� z)) by (A21)

= (x ∧�� y) ∨�� (x ∧�� z). by (Mem)′ (LD)

Equation (M3). First derive

x ∧�� (y ∧�� ((x ∨�� z) ∧�� u)) = (x ∧�� (y ∧�� (x ∨�� z))) ∧�� u by Assoc

= (x ∧�� y) ∧�� u by (A13)′

= x ∧�� (y ∧�� u). by Assoc (A22)

Hence,

((x ∧�� y) ∨�� (¬x ∧�� z)) ∧�� u = ((¬x ∨�� y) ∧�� (x ∨�� z)) ∧�� u by (M1)

= (¬x ∨�� y) ∧�� ((x ∨�� z) ∧�� u) by Assoc

274 J. A. BERGSTRA ET AL.

= (x ∧�� (y ∧�� ((x ∨�� z) ∧�� u))) ∨��

(¬x ∧�� ((x ∨�� z) ∧�� u)) by (Mem)

= (x ∧�� (y ∧�� u)) ∨�� (¬x ∧�� ((x ∨�� z) ∧�� u)) by (A22)

= (x ∧�� (y ∧�� u)) ∨�� ((¬x ∧�� (x ∨�� z)) ∧�� u) by Assoc

= (x ∧�� (y ∧�� u)) ∨�� ((¬x ∧�� z) ∧�� u) by (Ar4)′

= (x ∧�� (y ∧�� u)) ∨�� (¬x ∧�� (z ∧�� u)). by Assoc (M3)

�

A.5 A proof of Lemma 4.7
Lemma 4.7: For all a ∈ A, P ∈ SA, and Q ∈ MSNF ,

(1) EqMSCL � a ∧�� (P ∧�� Q) = a ∧�� (P ∧�� Ta(Q)),
(2) EqMSCL � ¬a ∧�� (P ∧�� Q) = ¬a ∧�� (P ∧�� Fa(Q)),
(3) EqMSCL � a ∧�� (P ∨�� Q) = a ∧�� (P ∨�� Ta(Q)),
(4) EqMSCL � ¬a ∧�� (P ∨�� Q) = ¬a ∧�� (P ∨�� Fa(Q)).

Proof: Statement 1 follows by induction on the structure of Q. If Q ∈ { T, F} this is trivial.
For the induction step there are two cases: if Q = (a ∧�� Q1) ∨�� (¬a ∧�� Q2), then derive from
EqMSCL (tacitly using Assoc)

a ∧�� (P ∧�� Q) = (a ∧�� (P ∧�� (a ∧�� Q1))) ∨�� (a ∧�� (P ∧�� (¬a ∧�� Q2))) by (LD)

= (a ∧�� (P ∧�� Q1)) ∨�� (a ∧�� (P ∧�� F)) by (C2), (A21)′, (F6)

= (a ∧�� P) ∧�� (Q1 ∨�� F) by (LD)

= a ∧�� (P ∧�� Ta(Q)), by (F5)

and if Q = (b ∧�� Q1) ∨�� (¬b ∧�� Q2), then derive from EqMSCL (tacitly using Assoc)

a ∧�� (P ∧�� Q)

= (a ∧�� (P ∧�� (b ∧�� Q1))) ∨�� (a ∧�� (P ∧�� (¬b ∧�� Q2))) by (LD)

= (a ∧�� (P ∧�� (b ∧�� (a ∧�� (P ∧�� Q1))))) ∨�� (a ∧�� (P ∧�� (¬b ∧�� (a ∧�� (P ∧�� Q2))))) by (C2)

= (a ∧�� (P ∧�� (b ∧�� (a ∧�� (P ∧�� Ta(Q1)))))) ∨��

(a ∧�� (P ∧�� (¬b ∧�� (a ∧�� (P ∧�� Ta(Q2)))))) by IH

= (a ∧�� (P ∧�� (b ∧�� Ta(Q1)))) ∨�� (a ∧�� (P ∧�� (¬b ∧�� (Ta(Q2))))) by (C2)

= (a ∧�� P) ∧�� ((b ∧�� Ta(Q1)) ∨�� (¬b ∧�� (Ta(Q2)))) by (LD)

= a ∧�� (P ∧�� Ta(Q)).

The remaining statements follow in a similar way. �

A.6 Continuation of the proof of Lemma 6.4
Lemma 6.4: For all s, t ∈ T�CP(A),X , CPmem � s = t ⇒ EqMSCL � g(s) = g(t).

Proof: The cases for axioms (CP4) and (CPmem).
Axiom (CP4). We use Equations (M1) and (M2) (see Fact 4.3), and (M3) and (LD) (see

Theorem 4.4), and we write ‘Assoc’ for associativity.

g(x � (y � z � u) � v)

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 275

= (g(y � z � u) ∧�� x) ∨�� (¬g(y � z � u) ∧�� v)

= ([(z ∧�� y) ∨�� (¬z ∧�� u)] ∧�� x) ∨�� (¬[(z ∧�� y) ∨�� (¬z ∧�� u)] ∧�� v)

= ([(z ∧�� y) ∨�� (¬z ∧�� u)] ∧�� x) ∨�� ([(¬z ∨�� ¬y) ∧�� (z ∨�� ¬u)] ∧�� v)

= ([(z ∧�� y) ∨�� (¬z ∧�� u)] ∧�� x) ∨�� ([(z ∧�� ¬y) ∨�� (¬z ∧�� ¬u)] ∧�� v) by (M1)

= [(z ∧�� (y ∧�� x)) ∨�� (¬z ∧�� (u ∧�� x))]

∨�� [(z ∧�� (¬y ∧�� v)) ∨�� (¬z ∧�� (¬u ∧�� v))], by (M3)

and

g((x � y � v) � z � (x � u � v))

= (z ∧�� g(x � y � v)) ∨�� (¬z ∧�� g(x � u � v))

= (z ∧�� ((y ∧�� x) ∨�� (¬y ∧�� v))) ∨�� (¬z ∧�� ((u ∧�� x) ∨�� (¬u ∧�� v)))

= ([(z ∧�� (y ∧�� x)) ∨�� (z ∧�� (¬y ∧�� v))])

∨�� ([(¬z ∧�� (u ∧�� x)) ∨�� (¬z ∧�� (¬u ∧�� v))]) by (LD)

= (z ∧�� (y ∧�� x))

∨�� [((z ∧�� (¬y ∧�� v)) ∨�� (¬z ∧�� (u ∧�� x))) ∨�� (¬z ∧�� (¬u ∧�� v))] by Assoc

= (z ∧�� (y ∧�� x))

∨�� [((¬z ∧�� (u ∧�� x)) ∨�� (z ∧�� (¬y ∧�� v))) ∨�� (¬z ∧�� (¬u ∧�� v))] by (M2)

= [(z ∧�� (y ∧�� x)) ∨�� (¬z ∧�� (u ∧�� x))]

∨�� [(z ∧�� (¬y ∧�� v)) ∨�� (¬z ∧�� (¬u ∧�� v))]. by Assoc

Axiom (CPmem). As argued in Section 5, it is sufficient to derive axiom (CPmem1), that is,

(w � y � (z � x � u)) � x � v = (w � y � z) � x � v.

This is straightforward, a detailed proof is provided in Appendix A.6. Derive

g((w � y � (z � x � u)) � x � v) = (x ∧�� g(w � y � (z � x � u))) ∨�� (¬x ∧�� v) by (2)

= (x ∧�� M) ∨�� (¬x ∧�� v),

g((w � y � z) � x � v) = (x ∧�� g(w � y � z)) ∨�� (¬x ∧�� v) by (2)

= (x ∧�� N) ∨�� (¬x ∧�� v),

so it suffices to derive x ∧�� M = x ∧�� N. We use one auxiliary result and we write (n)′ for the dual
version of equation (n), and ‘Idemp’ for idempotence.

x ∧�� F = (x ∧�� F) ∧�� y by (F6), Assoc

= (x ∧�� ¬x) ∧�� y. by (C1), (F3) (A23)

Hence,

x ∧�� M = x ∧�� g(w � y � (z � x � u))

= x ∧�� ((y ∧�� w) ∨�� (¬y ∧�� ((x ∧�� z) ∨�� (¬x ∧�� u))))

= x ∧�� ((¬y ∨�� w) ∧�� (y ∨�� ((x ∧�� z) ∨�� (¬x ∧�� u)))) by (M1)

= x ∧�� ((y ∨�� ((x ∧�� z) ∨�� (¬x ∧�� u))) ∧�� (¬y ∨�� w)) by (M2)

= x ∧�� ((y ∨�� ((¬x ∧�� u) ∨�� (x ∧�� z))) ∧�� (¬y ∨�� w)) by (M2)

= [x ∧�� (y ∨�� ((¬x ∧�� u) ∨�� (x ∧�� z)))] ∧�� (¬y ∨�� w) by Assoc

= [(x ∧�� y) ∨�� (x ∧�� ((¬x ∧�� u) ∨�� (x ∧�� z)))] ∧�� (¬y ∨�� w) by (LD)

276 J. A. BERGSTRA ET AL.

= [(x ∧�� y) ∨�� ((x ∧�� (¬x ∧�� u)) ∨�� (x ∧�� (x ∧�� z)))] ∧�� (¬y ∨�� w) by (LD)

= [(x ∧�� y) ∨�� (((x ∧�� ¬x) ∧�� u) ∨�� (x ∧�� z))] ∧�� (¬y ∨�� w) by Assoc, Idemp

= [(x ∧�� y) ∨�� ((x ∧�� F) ∨�� (x ∧�� z))] ∧�� (¬y ∨�� w) by (A23)

= [(x ∧�� y) ∨�� (x ∧�� (F ∨�� z))] ∧�� (¬y ∨�� w) by (LD)

= (x ∧�� (y ∨�� z)) ∧�� (¬y ∨�� w) by (Tand)′, (LD)

= x ∧�� ((y ∨�� z) ∧�� (¬y ∨�� w)) by Assoc

= x ∧�� g(w � y � z) by (3)

= x ∧�� N.

�

A.7 A proof of Theorem 7.12

Theorem 7.12: The axioms of EqMSCLU are independent.

Proof: All independence models were found with the tool Mace4 (McCune, 2008). In each
model M defined below, � F�M = 0 and � T�M = 1.

Independence of axiom (Neg). A model M for EqMSCLU \ {(Neg)} with domain {0, 1, 2} and
�U�M = 0 that refutes F = ¬ T is the following:

¬
0 0
1 2
2 1

∧�� 0 1 2
0 0 0 0
1 0 1 2
2 2 2 2

∨�� 0 1 2
0 0 0 0
1 1 1 1
2 0 1 2

Independence of axiom (Or). A model M for EqMSCLU \ {(Or)} with domain {0, 1} and �U�M = 0
that refutes T ∨�� F = ¬(¬ T
leftand¬ F) is the following:

¬
0 0
1 0

∧�� 0 1
0 0 1
1 0 1

∨�� 0 1
0 0 0
1 1 1

Independence of axiom (Tand). A model M for EqMSCLU \ {(Tand)} with domain {0, 1} and
�U�M = 0 that refutes T ∧�� F = F is the following:

¬
0 0
1 0

∧�� 0 1
0 0 0
1 1 0

∨�� 0 1
0 0 0
1 0 0

Independence of axiom (Abs). A model M for EqMSCLU \ {(Abs)} with domain {0, 1} and
�U�M = 0 that refutes T ∧�� (T ∨�� F) = T is the following:

¬
0 0
1 0

∧�� 0 1
0 0 0
1 0 1

∨�� 0 1
0 0 0
1 0 0

Independence of axiom (Mem). A model M for EqMSCLU \ {(Mem)} with domain {0, 1, 2} and
�U�M = 2 that refutes (F ∨�� T) ∧�� U = (¬ F ∧�� (T ∧�� U)) ∨�� (F ∧�� U) is the following:

¬
0 1
1 0
2 2

∧�� 0 1 2
0 0 0 0
1 0 1 2
2 2 1 2

∨�� 0 1 2
0 0 1 2
1 1 1 1
2 0 2 2

JOURNAL OF APPLIED NON-CLASSICAL LOGICS 277

Independence of axiom (4). A model M for EqMSCLU \ {(4)} with domain {0, 1} and �U�M = 0
that refutes ¬U = U is the following:

¬
0 1
1 0

∧�� 0 1
0 0 0
1 0 1

∨�� 0 1
0 0 1
1 1 1

�

A.8 CPU and evaluation trees
Finally, we prove Proposition 7.13: this is Theorem A.6 below. This text (excluding footnotes)
comes from Bergstra and Ponse (2017), although the signature has now been extended with
the constant U, and CP to CPU with the axiom (CP-U), that is, x � U � y = U.

Let CU
A be the set of closed terms over �CPU(A).

Definition A.1: Basic forms over A are defined by the following grammar

t ::= T | F | U | t � a � t for a ∈ A.

We write BF∗
A for the set of basic forms over A.

The following lemmas exploit the structure of basic forms.8

Lemma A.2: For each P ∈ CU
A there exists Q ∈ BF∗

A such that CPU � P = Q.

Proof: First we establish an auxiliary result: if P, Q, R are basic forms, then there is a basic form S
such that CP � P � Q � R = S. This follows by structural induction on Q.

The lemma’s statement follows by structural induction on P.
The base cases P ∈ { T, F, U, a | a ∈ A} are trivial, and if P = P1 � P2 � P3 there exist by

induction basic forms Qi such that CP � Pi = Qi , hence CP � P1 � P2 � P3 = Q1 � Q2 � Q3.
Now apply the auxiliary result. �

Lemma A.3: For all basic forms P and Q, se U(P) = se U(Q) implies P = Q.

Proof: By structural induction on P. The base cases P ∈ { T, F, U} are trivial. If P = P1 � a � P2,
then Q �∈ { T, F, U} and Q �= Q1 � b � Q2 if b �= a, so Q = Q1 � a � Q2 and se U(Pi) = se U(Qi).
By induction we find Pi = Qi , and hence P = Q. �

Definition A.4: Free valuation congruence, notation =se U , is defined on CU
A as follows:

P =se U Q ⇐⇒ se U(P) = se U(Q).

Lemma A.5: Free valuation congruence is a congruence relation.

Proof: Let P, Q, R ∈ CU
A and assume P =se U P′, thus se U(P) = se U(P′). Then se U(P � Q � R) =

se U(Q)[T �→ se U(P), F �→ se U(R)] = se U(Q)[T �→ se U(P′), F �→ se U(R)] = se U(P′ � Q � R),
and thus P � Q � R =se U P′ � Q � R. The two remaining cases can be proved in a similar
way. �

Theorem A.6 (Completeness of CPU for closed terms): For all P, Q ∈ CU
A ,

CPU � P = Q ⇐⇒ P =se U Q.

278 J. A. BERGSTRA ET AL.

Proof: (⇒)9 By Lemma A.5, =se U is a congruence relation and it easily follows that closed
instances of CPU-axioms are valid. In the case of axiom (CP4) this follows from

se U(P � (Q � R � S) � V)

= se U(Q � R � S)[T �→ se U(P), F �→ se U(V)]

= �
se U(R)[T �→ se U(Q), F �→ se U(S)]

�
[T �→ se U(P), F �→ se U(V)]

= se U(R)[T �→ se U(Q)[T �→ se U(P), F �→ se U(V)], F �→ se U(S)[T �→ se U(P), F �→ se U(V)]]

= se U(R)[T �→ se U(P � Q � V), F �→ se U(P � S � V)]

= se U((P � Q � V) � R � (P � S � V)).

(⇐) Let P =se U Q. According to Lemma A.2 there exist basic forms P′ and Q′ such that CPU �
P = P′ and CPU � Q = Q′. By (⇒) we find P =se U P′ and Q =se U Q′, and because =se U is a
congruence, P′ =se U Q′. By Lemma A.3, P′ = Q′. Hence, CPU � P = P′ = Q′ = Q. �

	1. Introduction
	2. Evaluation trees and axioms for short-circuit evaluation
	3. Evaluation trees for memorising short-circuit evaluation
	4. Axioms for memorising se-congruence
	5. The conditional connective and three short-circuit logics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

