The rise and fall of mesodiencephalic dopaminergic neurons
Kouwenhoven, W.M.

Citation for published version (APA):
Kouwenhoven, W. M. (2016). The rise and fall of mesodiencephalic dopaminergic neurons: Molecular programming by transcription factors Engrailed 1, Pitx3, and Nkx2.9 during the development of mesodiencephalic neurons

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Molecular programming by transcription factors Engrailed 1, Pitx3, and Nkx2.9 during the development of mesodiencephalic neurons
The rise and fall of mesodiencephalic dopaminergic neurons

Molecular programming by transcription factors Engrailed 1, Pitx3, and Nkx2.9 during the development of mesodiencephalic neurons

WILLEMIEKE M. KOUWENHOVEN
The research presented in this thesis was performed in the Molecular Neuroscience laboratory at the Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands.

The research was financially supported by an NWO VICI grant (865.09.002, the Netherlands) to M.P.S.

The printing of this thesis was supported by the generosity of
* Stichting Alkemade-Keuls,
* De Parkinson Vereniging,
* Opa A.J. Kouwenhoven.

Cover Design: Skinny Linny
Lay out: Willemieke M. Kouwenhoven
Printed by: Gildeprint

© Willemieke M. Kouwenhoven, The Netherlands, 2016
The rise and fall of mesodiencephalic dopaminergic neurons

Molecular programming by transcription factors Engrailed 1, Pitx3, and Nkx2.9 during the development of mesodiencephalic neurons

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties
ingestelde commissie,
in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 21 december 2016, te 11.00 uur
door

WILLEMIEKE MARIA KOUWENHOVEN
geboren te Gouda
PROMOTIE COMMISSIE

Promotor: Prof. dr. M.P. Smidt
Copromotor: dr. L.P. van der Heide

OVERIGE LEDEN:
Prof. dr. E. Aronica Universiteit van Amsterdam
Prof. dr. J.P.H. Burbach Universiteit Utrecht
Prof. dr. E.M. Hol Universiteit van Amsterdam
Dr. A. Korosi Universiteit van Amsterdam
Prof. dr. P.J. Lucassen Universiteit van Amsterdam

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica
WERKEN EN FEESTEN VORMT SCHOONE GEESTEN
- prof.dr. Johanna Westerdijk (1883 - 1961)
CONTENTS

CHAPTER 1 9
Mesodiencephalic dopaminergic neurons: the origin story

CHAPTER 2 31
Specification of dopaminergic subsets involves interplay of En1 and Pitx3

CHAPTER 3 61
Engrailed 1 shapes the dopaminergic and serotonergic landscape through proper isthmic organizer maintenance and function

CHAPTER 4 85
Pitx3 is essential for Substantia Nigra development by orchestrating neuronal migration and survival: A possible role for Fgf13

CHAPTER 5 111
Pitx3 and En1 determine the size and molecular programming of the mesodiencephalic dopaminergic neuronal pool

CHAPTER 6 135
Nkx2.9 programs mesodiencephalic dopaminergic neurons early in development

CHAPTER 7 163
General Discussion

CHAPTER 8 187
English summary//Nederlandse samenvatting

CHAPTER 9: ADDENDA 197
List of Publications
Curriculum Vitae
Dankwoord: De We in Wetenschap