Genomic variability and population structure in shelled pteropods

Choo, L.Q.

Publication date
2022

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References

Apollonio Silva De Oliveira, D., Decraemer, W., Mocsy, T., de Souza, S., dos Santos, G.A.P., 2017. Low genetic but high morphological variation over more than 1000 km coastline refutes omnipresence of cryptic diversity in marine nematodes. BMC Evol. Biol. 17, 71. https://doi.org/10.1186/s12862-017-0908-0
References

References

References

References

References

Choquet, M., 2017. Combining ecological and molecular approaches to redefine the baseline knowledge of the genus Calanus in the North Atlantic and the Arctic Oceans (PhD thesis).

194
References

References

References

References

References

199
References

References

References

Kinger, S.B., Heaton, H., Cudini, J., Lambert, C.C., Balas, J., 2018. A high-quality of de novo genome assembly from a single mosquito using PacBio sequencing. https://doi.org/10.1038/s41598-017-11708-w

References

573815-L-bw-Bruin
Processed on: 18-2-2022PDF page: 203
References

204
References

References

References

References

Padgham, M., Sumner, M.D., 2020. geodist: Fast, Dependency-Free Geodesic Distance Calculations.

References

References

References

References

212
References

References

WoRMS Editorial Board, 2021. World Register of Marine Species [WWW Document]. https://doi.org/10.14284/170

214
References

Summary

Rising atmospheric CO₂ concentrations cause ocean acidification, a decrease in pH that threatens the existence of many marine calcifying organisms. Shelled pteropods are marine planktonic snails that are regarded as bioindicators of ocean acidification because their thin aragonitic shells are susceptible to dissolution. Despite their small body size, shelled pteropods play an important role in the ocean’s carbonate budget and in marine food webs worldwide. Experiments have been conducted on shelled pteropods to assess their short-term responses to ocean acidification, but little is known about their evolutionary potential to adapt to long-term environmental changes. It is not possible to directly observe the evolutionary process due to difficulties in maintaining pteropods in lab cultures and their relatively long generation times. However, we can gain insight into factors affecting their adaptive potential by analysing levels of standing genetic variation within populations, gene flow between populations, and demographic fluctuations during their evolutionary history from genomic data.

While pteropods live in an open ocean environment and are hypothesised to have high effective population sizes and dispersal potentials, it is unknown if pteropod species are genetically homogeneous across their broad spatial ranges, or composed of several distinct populations. Given their roles as bioindicators, it is necessary to accurately assess their species boundaries because different species have different evolutionary trajectories and may have different sensitivities. In this thesis, I aimed to assess the spatial distribution of genetic variation within the shelled pteropod genus Limacina, to gain insight into the drivers of population structure in the open ocean and to obtain a better understanding of their evolutionary history and adaptive potential. Limacina bulimoides was chosen as a focal species because of its broad subtropical distribution and high abundance across the globe. Hence, levels of genetic variability in this species could be assessed at a population level across various spatial scales.

In Chapter 2, we assessed the population structure of L. bulimoides across a latitudinal transect in the Atlantic Ocean using partial DNA sequences of two barcoding genes, namely the mitochondrial cytochrome oxidase I (COI) and nuclear ribosomal 28S genes. Genetic differentiation of L. bulimoides across the sampling sites was compared to their shell shape variation and placed within the context of their abundance along an equivalent transect sampled two years later. We uncovered two dispersal barriers, one across the equatorial upwelling region between 15°N and 4°S, supported only by differentiation at the nuclear 28S locus, and the other dispersal barrier in the southern subtropical gyre, at 15-18°S, which was supported by both barcoding genes and shell shape variation. The locations of these dispersal barriers were congruent with regions of low abundance, supporting the hypothesis that areas of suboptimal habitat may function as barriers to dispersal in holoplanktonic organisms.
In **Chapter 3**, we developed a target capture approach to investigate genome-wide variation in the pteropod *L. bulimoides*, which was also tested on related pteropod species *L. trochiformis*, *L. lesueurii*, *L. helicina* and *Heliconoides inflatus*. A 2.9 gigabase draft genome of *L. bulimoides* was generated, and used in conjunction with a draft transcriptome to develop a set of genome-wide target capture probes, comprising 2812 single copy nuclear genes, including conserved protein coding regions, the 28S rDNA sequence, ten mitochondrial genes, 35 candidate biomineralisation genes and 41 non-coding regions. These probes were successful in obtaining detailed genomic information from the target species *L. bulimoides* with 97% of the targets being recovered.

In **Chapter 4**, we applied the target capture probes developed in **Chapter 3** to analyse spatial patterns of divergence of *L. bulimoides* across the global ocean. Genomic variation was studied with 107,214 single nucleotide polymorphisms (SNPs) from across 161 individuals, while shell shape variation was analysed using geometric morphometric analyses of shell images. We identified three distinct lineages, which we called the Atlantic, Indo-Pacific and Pacific lineage, based on their geography. We found no evidence of recent gene flow between the three lineages, not even between the Indo-Pacific and Pacific lineages that occur sympatrically in the North Pacific. The timing of divergence between the lineages was estimated to be during the mid-Pleistocene transition around 1 million years ago, while the fluctuations in population size within lineages coincided with known glacial-interglacial transitions. Shell shape was subtly different but overlapping between the lineages, and could not be used to distinguish them. However, we identified tissue pigmentation within the North Pacific individuals of the Pacific lineage as a potential distinguishing trait from the sympatric Indo-Pacific lineage. Hence, the circumglobal *L. bulimoides* is actually composed of three reproductively isolated lineages with more restricted distribution patterns that partially overlap.

In **Chapter 5**, we focused on the genome-wide diversity of 142 *L. bulimoides* individuals of the Atlantic lineage, with 97,425 SNPs obtained using target capture probes. The three populations that were tentatively identified in **Chapter 2** were confirmed by the genome-wide analysis, namely the North, Equatorial and South Atlantic populations, with no evidence of recent gene flow between them. The dispersal barriers between the three populations were narrowed down to 14-15°N and 15-18°S. The presence of narrow dispersal barriers and absence of genetic mixing suggests that (bio-)physical barriers, natural selection, or a combination of both could be keeping populations apart, although more analyses are required to identify the processes maintaining this population structure. The mitochondrial and nuclear signals were incongruent for some individuals, which suggest (ancient) mitochondrial introgression between populations.

In **Chapter 6**, we demonstrated a new method in which alcohol-based handgel, which was widely distributed during the COVID-19 crisis, was used to position shelled pteropods under the microscope for standardised photographs and mor-
Summary

Phometric analysis. The new method was more efficient than previous positioning methods used. There is potential for broader application of this method for the taxonomic identification, and the morphological and ontogenetic study of other small molluscs and planktonic organisms.

In Chapter 7, I summed up the findings from Chapters 2-6 and point to future research directions. My thesis has shown that genome-wide markers provide additional insights into the population structure and evolutionary history of L. bulimoides compared to barcoding genes. I found that L. bulimoides is not genetically homogeneous across its range, but is composed of at least three reproductively isolated lineages across the Atlantic, Indian and Pacific Oceans. Detailed analysis of the Atlantic lineage revealed further population structure, with three distinct populations separated by narrow dispersal barriers. Looking forward, the methods used to access genomic information in L. bulimoides can be applied to other shelled pteropods, including species in (sub)polar regions, which are already experiencing the effects of a rapidly acidifying ocean.
Samenvatting

De toenemende hoeveelheid CO₂ die door menselijke activiteiten in de atmosfeer wordt gebracht leidt tot verzuring van de oceaan. Dit is een proces waarbij het zeewater geleidelijk zuurder wordt, waardoor het voor kalkvormende organismen steeds moeilijker wordt om hun schaaltjes of schelpen te bouwen. Pteropoden, ook wel zeevlinders genoemd, zijn een groep planktonslakken die extreem gevoelig lijken te zijn voor oceaanverzuring vanwege hun dunne huisjes gemaakt van aragoniet (een zeer oplosbare vorm van calciumcarbonaat). Ook al zijn zeevlinders slechts enkele millimeters tot een centimeter groot, ze spelen een belangrijke rol in de mariene voedselketen en het carbonaat budget van de oceaan. Korte termijn experimenten hebben aangetoond dat zeevlinders te lijden hebben onder oceaanverzuring. Echter, we weten niet of zeevlinders zich kunnen aanpassen op de lange termijn. Het is niet mogelijk om het evolutionaire proces direct te observeren want het is zeer moeilijk om zeevlinders in het lab te kweken en ze hebben een relatief lange generatietijd (ongeveer een jaar). Maar we kunnen wel inzicht krijgen in factoren die hun aanpassing op de lange termijn bepalen, zoals de hoeveelheid genetische variatie binnen en tussen populaties, de mate van uitwisseling tussen populaties, en fluctuaties in populatiegrootte gedurende hun evolutionaire geschiedenis. Dit kan worden afgeleid uit het DNA.

Pteropoden leven in de open oceaan en algemeen wordt aangenomen dat ze grote effectieve populaties hebben en zich zeer goed kunnen verspreiden. Echter, we weten niet of soorten genetisch homogeen zijn over het hele gebied waarin ze voorkomen, of dat ze uit verschillende populaties of (onder)soorten bestaan. Omdat zeevlinders worden gezien als bio-indicatoren of graadmeters van oceaanverzuring is het belangrijk om de diversiteit aan soorten goed te kennen. Verschillende soorten hebben namelijk een verschillende evolutionaire geschiedenis en kunnen daarom verschillend reageren op veranderingen in hun leefomgeving. In dit proefschrift heb ik gekeken naar de verspreiding van genetische variatie in het genus Limacina om meer inzicht te krijgen in de processen die een rol spelen in het ontstaan van verschillende populaties en soorten in de open oceaan, alsnog hun potentieel om zich te kunnen aanpassen aan een toekomstige oceaan. Mijn onderzoek heeft zich met name gericht op Limacina bulimoides omdat deze soort in grote aantallen voorkomt en een wereldwijde verspreiding heeft. Hierdoor kon ik de genetische variatie goed bestuderen aan de hand van voldoen- de individuen uit verschillende oceaanbakkers.

In Hoofdstuk 2 hebben we de populatiestructuur van L. bulimoides bestudeerd langs een noord-zuid transect in de Atlantische Oceaan aan de hand van twee barcoding genen, namelijk het mitochondriale cytochrom oxidase I (COI) gen en het nucleaire ribosomale 285 gen. We hebben genetische differentiatie tussen populaties vergeleken met morfologische variatie in schelpvorm, en ook gekeken naar de abundantie langs een vergelijkbaar transect dat twee jaar later is bemonsterd.
Samenvatting

We ontdekten twee dispersie barrières: één barrière was gelegen in het gebied van de equatoriale oceaanstromen tussen 15°N en 4°S en werd alleen ondersteund door het nucleaire 28S gen. De tweede barrière was in de Zuid-Atlantische gyre tussen 15°S en 18°S, en werd ondersteund door beide genen en door verschillen in schelpvorm. De locaties van deze barrières overlapten met een afname in populatie dichtheden. Dit ondersteunt de hypothese dat suboptimale gebieden mogelijk leiden tot dispersie barrières in het plankton van de open oceaan.

In Hoofdstuk 3 hebben we een ‘target capture’ methode ontwikkeld om variatie verspreid over het hele genoom van de pteropode L. bullimoides te onderzoeken. Daarnaast hebben we deze methode getest op de verwante soorten L. trochiformis, L. lesueurii, L. helicina en Heliconoides inflatus. Op basis van een eerste gefragmenteerd genoom van 2.9 gigabase en een transcriptoom van L. bullimoides zijn de capture probes ontwikkeld. Deze probes omvatten 2.812 ‘single copy’ nucleaire genen, de 28S rDNA gen, tien mitochondriale genen, 35 kandidaat biominalisatie genen en 41 niet-coderende stukken. De probes waren succesvol om variatie over het hele genoom van L. bullimoides te onderzoeken (97% van de beoogde DNA sequenties zijn teruggevonden).

In Hoofdstuk 4 zijn de ‘target capture probes’, die we hebben ontwikkeld in Hoofdstuk 3, gebruikt om de ruimtelijke verspreiding van genoom variatie in L. bullimoides over de wereldwijde oceaan te onderzoeken. Genoom variatie is bestudeerd aan de hand van 107.214 ‘single nucleotidie polymorphisms’ (SNPs) van 161 individuen, terwijl hun schelpvorm werd onderzocht met een geometrische morfometrische analyse op basis van gestandardiseerde foto’s. We ontdekten drie evolutsionele lijnen van verwantschap, die we de Atlantische, Indo-Pacifische en Pacifische lijn hebben genoemd op basis van hun verspreidingen. We vonden geen enkel bewijs van genetische uitwisseling tussen deze drie lijnen, zelfs niet tussen de Indo-Pacifische en Pacifische takken welke samen voorkomen in de Noord Pacifische Oceaan. Op basis van genetische differentiatie schatten we dat de lijnen zijn gesplitst tijdens het midden-Pleistoceen, ongeveer 1 miljoen jaar geleden. Fluctuaties in populatiegrootte van de lijnen lijken samen te vallen met transities tussen ijstijden en interglaciaal. De schelpvorm verschilde subtiel tussen de verschillende lijnen maar vertoonde ook overlap, en kan daarom niet gebruikt worden als een morfologisch kenmerk. Echter, we hebben pigmentvlekken op de ‘vleugels’ van pteropoden van de Pacifische lijn ontdekt, die een mogelijk kenmerk zijn om de Pacifische lijn van de sympatrische Indo-Pacifische lijn te kunnen onderscheiden. Dus hoewel L. bullimoides een wereldwijde verspreiding heeft, bestaat deze ‘soort’ in feite uit drie reproductief geïsoleerde lijnen (wellicht zelfs drie afzonderlijke soorten) met meer beperkte en deels overlappende verspreidingspatronen.

In Hoofdstuk 5 hebben we de genoom-wijde variatie van 142 L. bullimoides individuen uit de Atlantische Oceaan onderzocht, op basis van 97.425 SNPs verkregen middels de ‘target capture probes’ uit Hoofdstuk 3. De resultaten van deze genoom-wijde studie bevestigen dat de Atlantische lijn bestaat uit drie verschillende popu-
Samenvatting

In HOOFDSTUK 6 beschrijven we een nieuwe methode, gebruikmakend van de alcohol-handgel die ruim voor handen was tijdens de COVID-19 crisis, om zeevinders te positioneren onder de microscoop en gestandaardiseerde foto’s te maken voor morfometrische analyses. De nieuwe methode bleek veel efficiënter dan de eerder gebruikte methodes. Daarnaast zou deze methode kunnen worden toegepast voor morfologische identificatie en ontogenetische studies van andere kleine mollusken en plankton.

In HOOFDSTUK 7 heb ik alle bevindingen van HOOFDSTUKKEN 2-6 samengevat en richtingen voor toekomstig onderzoek aangegeven. Mijn proefschrift heeft laten zien dat genoom-wijde merkers meer inzicht geven in de populatiestructuur en evolutionaire geschiedenis van L. bulimoides dan de barcoding genen die gewoonlijk gebruikt worden. Ik heb gevonden dat L. bulimoides niet genetisch homogeen is over het hele verspreidingsgebied, maar bestaat uit tenminste drie genetisch geïsoleerde evolutionaire lijnen in de Atlantische, Indische en Pacificse Oceaan. Binnen de Atlantische lijn vonden we nog verdere ruimtelijke structuur met drie populaties gescheiden middels twee nauwe dispersie barrières. Kijkend naar de toekomst, zie ik dat de nieuwe methoden die ik heb gebruikt om te kijken naar variatie binnen het genoom van L. bulimoides ook kunnen worden toegelaten op andere zeevinders, wat met name interessant zal kunnen zijn voor de (sub)polaire pteropode soorten die op dit moment al te lijden hebben onder de steeds zuurder wordende oceaan.
Author contributions

CHAPTER 2
LQC, TMPB, EG and KTCAP contributed to the study design. EG and KTCAP collected samples for the study. LQC and TMPB collected molecular and morphometric data. All authors analysed the data. LQC wrote the manuscript, with input from all authors. All authors approved of the final manuscript.

CHAPTER 3
LQC, TMPB, MC, MK, IS, GH and KTCAP contributed to the study design. KTCAP provided samples used in this study. FM and PRS analysed sequence data and contributed to the capture design. LQC, TMPB, MK and IS contributed to the molecular work. LQC, TMPB, MC, GH and KTCAP contributed to bioinformatic analyses and manuscript writing. All authors provided feedback and approved of the final manuscript.

CHAPTER 4
LQC, GH and KTCAP designed the study. EG and KTCAP contributed samples used in this study. LQC collected the molecular data while GS collected the morphometric data. LQC, MC, GH and KTCAP contributed to the bioinformatic analyses while LQC and GS analysed the morphometric data. LQC, MC, GH, EG and KTCAP contributed to the manuscript writing. All authors provided feedback and approved of the manuscript.

CHAPTER 5
LQC, GH and KTCAP designed the study. LQC, EG and KTCAP collected samples for the study. LQC collected the molecular data, while GS collected the morphometric data. LQC, GS, GH, and KTCAP contributed to data analyses and LQC, GH, JH and KTCAP contributed to manuscript writing. All authors provided feedback and approved of the manuscript.

CHAPTER 6
LQC and KTCAP designed the study. GS processed the specimens for photography, micro-CT scanning and DNA barcoding. LQC wrote the manuscript and all authors provided feedback and approved of the final manuscript.
About the author

Le Qin was born on 2nd September 1993 in Singapore, where she spent most weekends of her childhood exploring the beaches and various nature reserves. This is where her love for nature and science all began. She got her first taste of research in junior college, when she participated in the Science Research Programme, investigating the distribution and diets of intertidal limpets at the Tropical Marine Science Institute (TMSI) at the National University of Singapore (NUS). After graduating from junior college, Le Qin continued at TMSI, this time to study the formation of hairs on some marine mussel species, together with her twin sister. She was awarded a Loke Cheng-Kim scholarship to pursue a Bachelor’s degree in Zoology at Fitzwilliam College, University of Cambridge, England from 2012 to 2015. There were many opportunities for fieldwork and experiments, including studying the secretions of dock beetle larvae and habitat choice in estuarine shrimp, and from these Le Qin decided that working with live animals was probably not so suitable for her. A volunteering stint at the Mollusc collections of the Natural History Museum in London further solidified her view that dead animals were much more cooperative. Seeking a return to her marine roots, she wrote her final year thesis on the relative importance of various habitats to commercially important demersal fish, and the case for including these habitats in marine protected areas.

Le Qin then continued with a Master’s degree in Biosystematics based at the Natural History Museum and Imperial College London from 2015 to 2016, where she completed three research projects in a diverse range of fields, including fly metagenomics, tissue visualisation techniques for tapeworms, and a project on the biogeography of riverine snails, supervised by Ellinor Michel and Jon Todd. Following the completion of her Master’s degree, Le Qin returned to Singapore and kept busy with sorting out deep sea benthic organisms at the Keppel Corporate Lab (NUS), while looking out for exciting PhD opportunities. As fate would have it, Ellinor and Jon forwarded her an email about the opening for this current PhD position at Naturalis Biodiversity Center, and she seized her chance. In October 2017, she started her PhD project in Leiden on the population structure of shelled pteropods, under the supervision of Katja Peijnenburg and Galice Hoarau. There were many adventures along the way, such as living in the northernmost country she’d ever been to (which was not as cold or terrifying as she imagined) and embarking on a 25-day research cruise across the Atlantic Ocean to collect plankton for her genomic analyses. With her work, she gained greater insight into the distribution of genetic variation in pelagic snails, and facilitated the application of genome-wide techniques in non-model planktonic organisms. Le Qin will join the lab of Roger Butlin in April this year to continue working on snails, this time on the role of chromosomal inversions in the adaptation and speciation of intertidal periwinkles.
About the author

PEER REVIEWED PUBLICATIONS

Acknowledgements

This thesis would not have been possible without the help of many people.

Firstly, I’d like to express my deepest appreciation to my supervising committee, Katja, Galice and Jef. I am extremely grateful to Katja for giving me the opportunity to work with pteropods. I had never seen such delicate and exquisite molluscs before starting my PhD, and it was amazing to see them alive in the field! I’ve learnt a lot from you about being a scientist, juggling workloads with grace and inspiring others through your teaching and outreach. Thank you for the many opportunities to attend international conferences and courses, and expand my scientific network and skills in population genomics.

Galice, thank you for your unwavering support and guidance and for helping to keep me on track with deadlines. I will fondly remember the precious time I spent in Bodø, surrounded by a welcoming and supportive academic community, and the amazing Norwegian nature and horses!

Thank you, Jef, for your invaluable experience and advice with navigating the entire PhD process. I greatly appreciated your guidance in putting the thesis together into its final format, as well as making the final steps as smooth as possible!

I would also like to extend my gratitude to my exam committee: Prof Kerstin Johannesson, Prof Menno Schilthuizen, Dr Lisa Becking, Prof Willem Renema, Prof Astrid Groot, Dr Susanne Wilken and Prof Corina Brussaard for taking the time out of their busy schedules to read my thesis and participate in my defence.

I am also greatly indebted to the plankton team.

Thank you Debbie and Paula, for your pteropod expertise and advice about pursuing a research career, as well as numerous cat sitting opportunities that I thoroughly enjoyed. I count myself as so lucky to be able to learn from you. Daniela, Catharina, Giada and Pane, thank you for the wonderful opportunity to supervise your work, and for your trust in me. A special mention to Giada, whose work appears in several chapters within this thesis, your enthusiasm and thirst for knowledge has kept me motivated even in the darkest of times.

Lisette, my dearest slakzus, thank you for being my PhD buddy and emotional support. I don’t think I could have completed this journey without you walking by my side. I’ve enjoyed our time together, including the authentic Dutch Easter and Christmas with your family, our lovely plankton-filled time on Leg 8 abroad the Pelagia and getting lost in the crowd in a random pub in Ireland.

Thijs, thank you for being the best lab partner! You welcomed me into your home when I first arrived in the Netherlands, then we set off to Bodø together, where we spent countless hours in the lab extracting DNA and preparing libraries. Along the way, I picked up Dutch vocabulary and grammar, while you got yourself
Acknowledgements

A new PhD project there (among other stuff;)). It was a pleasure to work with you, and continue from where your Masters project left off.

Bo, Boris, Gloria, Iliana, Jaap, Luis, Mari-Lee, and other plankton team members, it was great sharing such pterrific pteropody times with you all.

And to the late **Arie Janssen,** thank you for sharing with us your valuable pteropod insights and knowledge. It was a real privilege to have known and worked with you.

I’d also like to extend my sincere thanks to my dear colleagues in Bodø.

Marvin, thank you for your expertise with the target capture technique, pipeline and analyses. I managed to have a running start with my project because of this, and I am very grateful for your dedication to your work, and the fun and spontaneous times we shared outside of the lab!

This project also would not have been possible if not for **Martina.** Thank you for teaching me about all the various lab techniques, and for keeping the labs so well-organised. It is always a successful lab day when working with you!

Apollo, thank you for being my lab buddy to liven up the long hours spent there. I’ve enjoyed our time together, collaborating on analyses and having adventures in Svalbard and awesome gatherings with great food.

Alexander and **Lars Martin,** thank you for managing the server resources and ensuring that they ran smoothly, these computers were certainly indispensable for all my genomic analyses!

I’d also like to thank my other colleagues who provided their expertise and insight: **Irina, Aurélien, Isabel, Mads** and **Leslie,** as well as the other scientific and administration staff at Nord University who’ve helped me along the way and looked out for me during my time in Bodø.

To **Erica Goetze,** thank you for the opportunity to work together, I have learnt a lot from your precise insight in the field of biological oceanography. It was great to meet in person at OSM2020, and I’m looking forward to our next (virtual) meeting at OSM2022!

And to **Ferdi Marlétaz,** even though we may not have met in person (yet), I’ve greatly enjoyed our collaborations on the pteropod target capture, and thank you for your advice and helpful contributions in our ongoing bioinformatics efforts!

I also gratefully acknowledge the numerous plankton collections that my work depended on, and thank **Alice Burridge, Michelle Jungrbluth** and **Atsushi Tsuda** for collecting these precious samples and kindly making them available.

Wayne, my fellow bbt and chicken nuggets fiend, and token physicist friend, thank you for your help in proofreading of my thesis sections. Your advice and encour-
Acknowledgements

agement from the perspective of someone who recently completed their PhD was irreplaceable. I look forward to more deep conversations about science and navigating the academic world, as well as on other less professional topics.

I am also grateful towards the members of the Marine biodiversity group: Willem, Nicole, Frank, José, Aleks, Eduard, Esther, Jan, Martina, Sabrina, Sander, Thomas, and other recent members, for the interesting and fruitful scientific discussions, cake and lovely lab retreats. I had so much fun on our trip to the Biesbosch, and our ice-skating trip in Kinderdijk! I’d like to especially thank Willem for making the group a wonderful place for research, and your helpful insight about fossils and geological timescales. And thank you, Jan, for the opportunity to collaborate on a project together!

Thank you to the laboratory staff at Naturalis: Arjen, Elza, Bertie-Joan, Dirk, Frank, Kees, Marcel, Marina, Rob and Roland for their technical support and for facilitating my experiments, as well as the front-desk, Angela and Anneke, for helping me with the most random queries and being a warm familiar face. I also appreciate the help and guidance from the Naturalis RCO, including Dominique, Erik, and the other members of the PhD council for making the Naturalis a wonderful and supportive place for us.

Geert-Jan Brummer, thank you for the opportunity to rummage through your plankton samples at the VU, and for your advice and encouragement! It has meant a lot to me.

To the lovely people on board the Pelagia for NICO expedition leg 8, thank you for making my first scientific cruise experience so great! Thank you to all the scientific staff and crew for patiently showing me the ropes as I grew my sea legs, including our cruise leader Corina for ensuring everything was well-organised, from sampling locations to Pelagia’s-got-Talent and Susanne for being a supportive and encouraging presence for me when I was adjusting to life on board. A special mention to Martimartin fan club for the fun and laughter we shared.

Milan Malinsky, Emiliano Trucchi and Michael Matschiner, thank you for your technical expertise and advice during and after the population genomics course in Cesky Krumlov. I’ve learnt a lot from all of you and your inspiring work.

To the rest of my scientific network whom I’ve met along the way: Paula Pappalardo, Leocadio Blanco-Bercial and Amy Maas, Katie Peichel and Sean Stankowski, thank you for the encouragement and helpful advice for my scientific career.

I’d also like to recognise the assistance I received from UvA and IBED, from the staff who took an interest in my work to the opportunities to be part of a wider academic community, and the UvA Care project, from which I benefited greatly.

Special thanks to Jan Bruin for the layout and formatting of the thesis and Amalia Aikaterini Mailli and George Komiotis for bringing my cover design idea to reality.
Acknowledgements

The spicy girls: Ajaree, Dewi, Deyi, Eka, Richa, Nida, thank you for being my go-to bunch of friends when things get tough! I am so grateful for all the wonderful moments we shared (usually involving delicious food and typical Dutch tourist attractions). To the Speedo body club: Andrés, Esther, Héctor, Lisette, Lizzie, and other guest stars, thank you for keeping me sane and healthy during the pandemic. Many thanks also to the members of the several in-person and online game groups, including Andrés, Charlotte, Eka, Esther, Héctor, Kevin, James, Lizzie, Manon, Merijn, Panos, Roderick, and Werner, we now know who is great at drawing, who is a terrible liar, and who can (probably) get away with murder. To those people above, Bob, Giada, Gloria, Izaï, Kasper, Marcel, Pane, Zac, and the other masters and bachelor students in the PhD room, thank you for the wonderful company, camaraderie and cake that we shared.

To my Singaporean community in the Netherlands: Agnes, Angie, Evelyn, Doreen and Maarten, Mickey, Grace, Sheena, and Wayne, thank you for all the wonderful gatherings and great food, it definitely alleviated my bouts of homesickness!

To the PhD and international student community in Nord University, thank you for welcoming me into your midst multiple times, we’ve had such awesome adventures and the most amazing parties, both under the midnight sun and the northern lights. To my friends: Adriána, Amalia, Ana, Alex, Artem, Apollo, Arun, Aurélien, Betty, Bingqian, Chen, Chris, Deepti, Dhurba, Éric, Fernando, Ingrid, Isabel, Isabelle, Joost, Joshua, Julia, Leona, Liu Cui, Marvin, Park, Paula, Prabhj, Rabbani, Sanne, Shuhua, Spoorti, Thijs, Tiago, Ying, Yousri, Zhiyuan, Øjrjan, and any others I may have inadvertently missed, I’ve thoroughly enjoyed the times I spent hiking/fishing/cooking/eating/skiing/ice-skating/horse-riding with you all, and there will always be a special place in my heart for you. Aurélie and Hín, thank you for the lovely horsey times we shared in Valnesfjord. And it is so special to find a fellow Singaporean in a small city in Norway, thank you Grace and the Coldevin family for the numerous dinners and teas, weekend hikes, and for being a warm welcoming home in the midst of Bodø’s dark and rainy days.

Many other people have inspired me and nurtured my interest in science, by showing me that it was fun, before anything else. Special mention to Dr Tan Koh Siang, who mentored me when I was 16 and excited about plucking limpets off rocks to dissect them. I still remember the hawker food analogies you used to explain diet choice to me, and I was really fascinated when I realised that I could, in fact, make studying snails my career choice. I am also very grateful towards Ellinor and Jon, with whom I had the wonderful opportunity to study river snails. Thank you for your guidance and confidence in me, and for sending information about this PhD opportunity my way! I’d also like to thank David Reid, Andreia Salvador, Jon Ablett, John Taylor and others from the NHM Mollusc department for indulging in
Acknowledgements

my obsession about snaily things, and giving me an opportunity to volunteer in the collections when I was just an undergrad. I also wish to extend my gratitude to the Loke Cheng Kim Foundation, which generously sponsored my undergraduate studies at Fitzwilliam College, University of Cambridge. I have been very privileged to explore so many opportunities and build my scientific career because of this, and I hope that I will be able to pass it forward and give back to the community in the future.

Finally, I wish to express my deepest gratitude to my dear parents and sister for their unconditional support for my career choice, and for letting me know that I am always loved despite the large physical distances between us. Thank you for your hard work and sacrifice through the years, and I love you all too.