Two bright bursts from FRB 20201124A with the Onsala 25-m telescope at 1.4 GHz, with no simultaneous emission detected at 330 MHz with Westerbork 25-m


Publication date
2021

Document Version
Final published version

Published in
The astronomer's telegram

License
Unspecified

Citation for published version (APA):
Two bright bursts from FRB 20201124A with the Onsala 25-m telescope at 1.4 GHz, with no simultaneous emission detected at 330 MHz with Westerbork 25-m

ATel #14605; F. Kirsten (Chalmers/OSO), O. S. Ould-Boukattine (U. of Amsterdam), K. Nimmo (ASTRON, U. of Amsterdam), J. W. T. Hessels (ASTRON, U. of Amsterdam), J. Yang (Chalmers/OSO), M. Gawronski (NCU, Torun), M. P. Snelders (U. of Amsterdam), R. Feiler (NCU, Torun), B. Marcote (JIVE), O. Forssen (Chalmers/OSO) 
on 6 May 2021; 09:47 UT

Credential Certification: Franz Kirsten (franz.kirsten@chalmers.se)

Subjects: Radio, Fast Radio Burst

Referred to by ATel #: 15190, 15192

Tweet

We are running a multi-telescope, multi-band observing campaign on the recently announced fast radio burst source FRB 20201124A (ATel #14497). The participating stations are the 25-m telescope at Onsala Space Observatory (OSO, observing between 1360-1488 MHz), the 25-m dish at Westerbork RT1 (300-364 MHz) and the 32-m telescope in Torun (4550-4806 MHz). Whenever possible, the three stations observe simultaneously, recording raw voltages ('baseband' data, dual circular polarisation, 2-bit quantisation) in VDIF format with the local DBBC2 backends.

The baseband data are transferred to a multi-core computer at OSO and searched with a pipeline that converts the voltages to Stokes I and writes them out as filterbank files. Depending on observing frequency, the time and frequency resolution vary between 64 microseconds to 1 millisecond and 7.8 kHz and 1 MHz, respectively. We search the filterbank data for bursts using Heimdall and process all candidates with the machine learning classifier FETCH (Agarwal et al. 2020). A detailed description of the pipeline can be found in Kirsten et al. (2021).

Our pipeline detected two bursts in the data taken with the Onsala 25-m dish on 2021 April 22 and 2021 April 25. The bursts' barycentric arrival times (in TDB timescale) referenced to infinite frequency using a dispersion measure of DM = 410 pc cm^-3 (determined by eye) are:

Related

15286 A bright burst detected at 2 GHz from the repeating FRB 20201124A

15197 Detection of two bright bursts from FRB20201124A with Aperatif at the Westerbork Synthesis Radio Telescope.

15198 Subsequent detection of three more bursts from FRB 20201124A using the Westerbork-RT1 25-m telescope

15199 Burst detection from FRB 20201124A using the Westerbork-RT1 25-m telescope

15142 New giant radio flare from Cygnus X-3

14933 Detection of 9 new bursts from FRB20201124A with the 100 m Effelsberg Telescope

14836 Further monitoring of FRB 20201124A with Swift

14605 Two bright bursts from FRB 20201124A with the Onsala 25-m telescope at 1.4 GHz, with no simultaneous emission detected at 330 MHz with Westerbork 25-m

14603 VLBI localization of FRB 20201124A and absence of persistent emission on milliarcsecond scales

14592 ASKAP low-band interferometric localization of the FRB 20201124A source

14556 Extremely bright pulse from FRB20201124A and observed with the 25-m Stockert Radio Telescope

14549 Detection of a persistent radio source at the location of FRB20201124A with VLA

14538 uGMRT localization of FRB20201124A with VLA

14537 Radio observations of FRB20201124A at 4-8 GHz with the 100-m Effelsberg Radio Telescope

14531 MASTER follow-up optical observation of FRB20201124A

14526 uGMRT detection of a persistent radio source coincident with FRB20201124A

14525 Observations of FRB 20201124A with Swift/XRT and UVOT

14523 Swift observations of FRB 20201124A

14519 High Frequency Radio Observations of FRB 20201124A at 2.26 GHz using
B1: MJD 59326.642775112
B2: MJD 59329.517962359

Burst B1 is a single-component burst, while B2 is composed of at least three separate peaks (above we quote the arrival time as the peak of the first component). The three peaks are separated by roughly 9 and 11 ms from one another. We measure the fluences of the bursts as follows:

B1: 20 +/- 2 Jy ms
B2_total: 74 +/- 8 Jy ms
B2_comp1: 26 +/- 3 Jy ms
B2_comp2: 21 +/- 2 Jy ms
B2_comp3: 18 +/- 2 Jy ms

The Westerbork 25-m RT1 telescope was observing at the same time. However, no bursts were found either in a blind search of the whole data set, or at the expected arrival times of the 1.4-GHz bursts when accounting for dispersive delay down to 330 MHz. Thus, we constrain the fluence of any potential counterpart around 330 MHz to be < 80 Jy ms.

Dedispersed plots of the bursts.

R. E. Rutledge, Editor-in-Chief
dfox@astronomerstelegram.org
Derek Fox, Editor
rrutledge@astronomerstelegram.org