The Challenges of Cross-Document Coreference Resolution in Email

Xue Li
x.li3@uva.nl
University of Amsterdam
Amsterdam, Netherlands

Sara Magliacane
s.magliacane@uva.nl
University of Amsterdam
MIT-IBM Watson AI Lab
Amsterdam, Netherlands

Paul Groth
p.t.groth@uva.nl
University of Amsterdam
Amsterdam, Netherlands

ABSTRACT

Long-form conversations such as email are an important source of information for knowledge capture. For tasks such as knowledge graph construction, conversational search, and entity linking, being able to resolve entities from across documents is important. Building on recent work on within document coreference resolution for email, we study for the first time a cross-document formulation of the problem. Our results show that the current state-of-the-art deep learning models for general cross-document coreference resolution are insufficient for email conversations. Our experiments show that the general task is challenging and, importantly for knowledge intensive tasks, coreference resolution models that only treat entity mentions perform worse. Based on these results, we outline the work needed to address this challenging task.

CCS CONCEPTS

• Computing methodologies → Information extraction.

KEYWORDS
cross-document coreference resolution, email conversations, entity resolution, challenges, conversational data

ACM Reference Format:

1 INTRODUCTION

Coreference resolution (CR), the task of determining which textual mentions refer to the same entity, is a long standing and important task in natural language understanding (NLU) [8]. Being able to perform coreference resolution is particularly important in knowledge capture settings dealing with emergent entities or entities which are not represented in existing knowledge graphs [13, 16].

One such setting is knowledge capture from long form conversations such as medical conversations [18], personal dialogues [14], threaded discussion forums [20], and email conversations [4]. CR in conversational data is challenging because of the change in speakers and high lexical ambiguity [20]. Such lexical ambiguity is caused by the often large amounts of shared background knowledge needed to understand the conversation [17]. For example, imagine an email thread discussing the edits to a document. The participants know the contents of the document and its intended purpose, but such knowledge is not easily available to an extraction system.

In this work, we study CR performance on a type of long form conversation, namely, email conversations. Email provides a challenging but realistic case because it contains more than one speaker, and has no limitation on the length of the emails. Surprisingly, there has not been a lot of work on CR in emails, and only recent work has begun to study CR on emails using deep learning models [3] based on a small hand-annotated subset of the Enron email corpus [9]. The corpus only contains coreference annotations for mentions within email and across emails in each thread. Dakle et al. [3] formulate this problem as Within-Document Coreference Resolution (WD-CR), treating an email thread as a single document, and ran a WD-CR state of the art method, spanBert [6]. Given that entities are often referred to across emails and between multiple threads, we instead consider a cross-document formulation more natural. Therefore, we evaluated a state of the art cross-document coreference resolution (CD-CR) [1] model on the same corpus, considering each email in a thread as a single document.

Our results show that email conversations are a particularly challenging domain, where the state-of-the-art performs significantly worse than when applied to commonly-used corpora in the field such as news (e.g. CoNLL F1 34.4 on news vs. 27.4 on email). Based on these results, we outline the key challenges for CR in emails and paths forward to addressing them. In summary, the contributions of the paper are as follows:

(1) performance results for the state-of-the-art CD-CR on email conversations including an ablation study investigating performance with and without pronounal coreference;
(2) a qualitative error analysis that identifies where the challenges in this domain arise from; and
(3) paths forward to addressing this important domain.

2 BACKGROUND

We briefly introduce the state of the art on coreference resolution (CR), focusing on the cross-document setting and email. We refer the reader to [5, 17] for recent reviews of approaches to CR.

State-of-the-art CR: In the early literature, CR systems typically contained two separate stages: mention extraction with existing feature-engineered systems (e.g. syntactic parsing) and coreference relation finding. The first work that joined the two stages was e2e-coref [10]. It proposed an end-to-end deep learning architecture that jointly learned to extract mentions and rank them as
to whether they corefer. Later, c2f-coref [11] proposed a span
refinement technique to iteratively refine the span representations of
mentions to help address global inconsistency and achieve higher-
order inference. The current state of the art in within-document
CR, spanBert [6], leverages large pre-trained language models [7].

However, the success of such models relies on textual orders. In
the cross-document (CD) setting, generally there is no temporal
ordering between the documents, which impacts negatively the
performance of these models [1]. Instead of learning an antecedent
distribution and chaining the current mention to the most probable
antecedent, the current state-of-the-art [1], which we evaluate in
this paper, learns to extract candidate mentions and compare all
the most probable mentions for potential coreference. We explain
the model in more detail in Section 3.

To evaluate the performance of CD-CR, ECB+ (EventsCoref-
Bank+) [2] is the most commonly used dataset in recent years. It
consists of news articles organized by topics, and contains both
WD and CD CR annotations for both entities and events. To address
the lexical ambiguity challenge in CD-CR in particular, within each
topic, each instance (also called subtopic) is a pair of similar but
different events. ECB+ is a challenging dataset that focuses mostly
on the specific situation for disambiguation for events that contain
similar entities. In the rest of the paper, we show that CD-CR models
that perform reasonably on ECB+ do not work well on email.

More broadly, Cattan et al. [1] highlighted the pressing need
for more realistic evaluation on CD-CR task. In particular, existing
work often reports performance using golden mentions instead
of predicted mentions. Their work showed that the contribution
of mention prediction is significant and should be considered in
evaluation. Thus, an end-to-end training approach is more realistic
for real-world data.

CR for email: Email conversations have long been studied on
tasks such as classification, search and summarization [3]. One of
the largest email corpus is the Enron Email Corpus [9] containing
emails of 150 employees of the Enron Corporation. Surprisingly,
only recently has CR within email come to the fore. In particular, [3]
provided, what appears to be, the first analysis of entity coreference
for email in the literature. They introduced a manually annotated
seed corpus (SC) containing 46 threads and 245 emails from the
Enron Email Corpus. The authors filtered the original corpus so
that each thread contains more than 3 emails in order to have
both within-email annotations as well as cross-email annotations,
and each email has meaningful text body instead of forwarding
messages. In their analysis they evaluated a state of the art model,
spanBert [6], that they had fine-tuned to the seed corpus, which had
F1 score of 54. This is 26 points below the state-of-the-art in general
WD-CR [19].

Building this work, Dikale and Moldovan [4] introduced a
larger dataset called CEREC with 6001 email threads containing
36,448 emails with weakly labeled data. The labeling has two stages,
mention identification annotations and coreference relation annota-
tions. Both stages use pre-trained spanBert [6] to annotate
without further training. The mention annotations produced by
spanBert are then manually corrected. For the coreference relations
annotation, first a small subset of email threads are manually anno-
tated as a validation set for training performance. Then spanBert
is trained on the manually annotated seed corpus [3] and then the
coreference relations are obtained on the large dataset based on the
golden mentions. Surprisingly, training a state-of-the-art WD-CR
model on CEREC showed roughly no change in performance, with
a reported F1 score of 54.1 [4] compared to the F1 score of 54 [3]
on the seed corpus.

3 METHOD

We now describe the model and model training we use to charac-
terize the performance of CD-CR in email.

Model architecture: As previously discussed, we use the state-
of-the-art model architecture [1] and summarize it here:

The model contains three main modules: a span_scorer, a
span_embedder, and a pairwise_scorer.

The model takes a set of documents as input and uses a pre-
trained language model to get a contextual representation of each
token in the document. It then segments the tokens to determine
possible mention candidates up to a pre-defined mention width.
Then, the span_embedder is used to obtain the embedding for each
mention candidate. The model then prunes all candidates according
to span_scorer. The most probable candidates are paired together
and scored by the pairwise_scorer, which is a multi-layer perceptron
(MLP). During inference, agglomerative clustering is used to
return final clusters of coreferent mentions.

Cattan et al. [1] proposed three different training styles: pipeline,
continue and end-to-end (e2e). The main difference is that they
freeze different parts of the pipeline. We use the e2e style, which
trains all three modules end-to-end. A binary cross-entropy loss is
used to jointly train the span_scorer and pairwise_scorer.

Model training: We train this model on the SC corpus [3] intro-
duced previously. We use the e2e training style to achieve a more
realistic evaluation. For comparison to ECB+ results, we assume
that each email thread is equivalent to an ECB+ topic. We split long
documents to the maximum document length of \(n = 512 \) tokens.

We use a span representation based on e2e-coref [10]. First, we
use pre-trained RoBERTa [12] to encode each token in the input.
For each mention candidate, or span, \(i \) we compute the embedding
\(s_{emb} \) as a concatenation of 4 different components:

\[
s_{emb}(i) = (x_{start}(i), x_{end}(i), \hat{x}_i, \phi(i))
\]

where \(x_{start}(i) \) and \(x_{end}(i) \) are the token representation of the first
and last token in \(m_i \), while \(\hat{x}_i \) is the weighted sum of all token
representations in span \(i \) (i.e. the attention), and \(\phi(i) \) is the feature
vector that encodes the length information of span \(i \).

Then all encoded mentions will be scored by the mention scorer
\(s_{m}(\cdot) \), which are then pruned to retain only \(\lambda = 35\% \) percent of
mentions. We use a multiple layer perceptron (MLP) layer with
ReLU activation function as our \(s_{m}(\cdot) \). Then the pruned mention
candidates will be paired up and scored by a pairwise scorer \(s_{p}(i, j) \),
where \(i, j \) might or might not from different documents. The pair-
wise scorer \(s_{p}(i, j) \) is also a MLP. We perform negative sampling.

All three modules mention scorer \(s_{m}(\cdot) \), span embedder \(s_{emb} \)
and pairwise scorer \(s_{p}(i, j) \) are jointly trained by optimizing the
binary cross-entropy loss over pairs:

\[
\text{loss} = -\sum_{i} s_{m}(i) \log \left(\text{softmax}(s_{p}(i, j)) \right)
\]
We now discuss the main challenges faced in order to improve coreference resolution in email using a qualitative error analysis.

5 CHALLENGES

We now discuss the main challenges faced in order to improve coreference resolution in email using a qualitative error analysis. Subsequently, we articulate several directions for future work.

Informal language: As mentioned in Section 2, most datasets for the CD-CR task are in the news domain, where the language style is more formal and structured. Hence, most entity mentions have previous references. In comparison, email is more informal and hence less structured. Table 3 shows examples of this from the ECB+ and Email datasets. In the ECB+ example, we can see that the text is clear. The main coreference challenge is that two different events have similar names. In addition, in the Email example, the coreference relations are more complicated. In the Document 1, one would need header information to reason what we refers to. Similarly, the two emails are needed jointly to understand the coreference for your in Document 2 which must exclude the speaker herself. This example illustrates that treating coreference resolution in emails as within document is insufficient.

Variety of surface forms: Table 1 shows pronoun-related mentions take up to 31.5% of all mentions. As discussed in Section 4, model performance drops by 4 points on the F1 score after removing all pronouns. This indicates that the model struggles on predicting coreference between other type of mentions. Some example mentions are shown in Example 1.

Example 1

'I Frazier, Perry'
'I Perry'
'FP'
'perry.frazier@enron.com'

From the example, we can see that there are multiple different surface forms for the same entity and these forms vary widely. Models need to become better at coping with this sort of wide variation. This is a known challenge in the literature [17] but given the nature of email appears with more frequency.

Sparsity: The prior two challenges are exacerbated by the fact that there is a lack of data necessary to train good models. Unfortunately, the current weakly labeled CEREC dataset is inadequate due to low quality annotations.

6 PATHS FORWARD

More data: A clear path forward is the provision of more annotated data. Here, we suggest that instead of using an existing coreference model to generate data as in CEREC, a data programming approach [15] might be more appropriate.

Incorporation of rules: While, as we have discussed, email conversations are complex, there are opportunities to take advantage of common patterns within conversations. For example, we calculated that using simple rules to align subset of pronouns {I, you} with email headers could resolve around 13.6% of mentions. Incorporating these and other rules with current models is a promising direction.

Language models for email text: Creating a pre-trained model specifically for emails could help to better capture the unique idiosyncrasies of email. This could also address the huge amount of memory needed for token encoding.

Better pruning strategies: The current state-of-the-art model on CD-CR, currently pairs up all mention candidates. This creates a massive search space thus requires a pruning factor to be given beforehand. Dynamically pruning candidates with a smarter strategy could reduce this space of potential candidates.

\[
L = -\frac{1}{N} \sum_{i,j \in N} y \cdot \log(s(i,j))
\]

where \(N \) is the set of mention pairs and \(y \) indicates the binary label. When \(y = 1 \), it indicates the mention pair is coreferent.

Experimental settings: The experiments are carried out on titan RTX 24GB GPU, it takes approximately 70 minutes to train and evaluate 10 epochs. Our training data is split into training, validation and test set in an 80:10:10 ratio. The seed corpus (SC) contains 43 email threads and 228 emails in total. All threads have at least 4 emails. The whole dataset contains 3815 mentions across emails within threads. Each email contains header, body and footer.

We note that emails have conversational features, i.e. the speaker of each email changes in a thread and therefore it is more confusing to learn the antecedent distributions for pronominal mentions across emails. Simple rules for {I, you} are easy to resolve, but for second order pronouns (e.g. our team) and above it is challenging to learn the distribution.

To further study cross-documents pronominal resolution, we first remove first order pronouns in a union of {I, you}, and then remove a whole list of pronouns \(^1\) from the dataset. Table 1, details the number of removed mentions.

<table>
<thead>
<tr>
<th>Mention type</th>
<th>Number</th>
<th>Subtracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>All mentions</td>
<td>3815</td>
<td>0</td>
</tr>
<tr>
<td>- subset of pronouns {I, you}</td>
<td>3298</td>
<td>517</td>
</tr>
<tr>
<td>- all pronouns</td>
<td>2613</td>
<td>1202</td>
</tr>
</tbody>
</table>

Table 1: Number of mentions before & after removing pronouns.

4 RESULTS

We evaluate the model on the standard coreference resolution metrics, including MUC, B, CEAF, LEA. The results are reported in Table 2. We compare our cross-document coreference resolution model on the test set of the email seed corpus with the ECB+ test set. To make the results comparable, we compare the evaluation result, on the ECB+ test set for entity resolution only, with predicted mentions, and on a topic level. The final F1 score is 34.4. For the email seed corpus, we first evaluate our model on the full test set with all pronouns. The F1 score is around 27.4, which is a significant 7 point drop. Then, a subset of pronouns {I, you} are removed from the mentions. This has a slightly worse F1 score of 26.7. After the removal of all pronouns, the model produce an F1 score of 23.5.

This shows that the model is able to learn some alignment between pronouns but performs worse on less generic mentions, which often characterize entities.

5 CHALLENGES

We now discuss the main challenges faced in order to improve coreference resolution in email using a qualitative error analysis. Subsequently, we articulate several directions for future work.

\(^1\)The full list of pronouns that we removed is here: https://gist.github.com/effyli/da7c4243f296a6c889e97384b4889605
Table 2: Cross-document coreference results. ECB+ Test Set with entities only on the top topic level as a baseline (from [1]). Email test set [3], with/without(-) subset({I, you}) or removing all pronouns.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Doc 1</th>
<th>Doc 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECB+ Entities Test set</td>
<td>41.7</td>
<td>25.3</td>
</tr>
<tr>
<td>Email Test data</td>
<td>47.1</td>
<td>25.0</td>
</tr>
<tr>
<td>- Subset of pronouns {I, you}</td>
<td>41.7</td>
<td>24.7</td>
</tr>
<tr>
<td>- All pronouns</td>
<td>34.8</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Table 3: Examples from ECB+ and SC (emails). The same color denotes coreference. Emails are from the same thread.

Improving span representations: Current span representations used in these models lack contextual information. Such contextual information is important for email (e.g. what conversation an email is occurring in). Refining span representations by incorporating whole document contexts or speaker information is an important direction forward.

Word Knowledge & Reasoning: Lastly, one common challenge in current NLU system is the lack of world knowledge. This also holds true for coreference resolution [17]. General information that most parties in the conversation or audiences would recognize will be missing in the email itself. Thus, it may be the case that, in particular for long form conversations, a background knowledge base is a prerequisite for good performance. Such a knowledge base might not be in the form of a knowledge graph but could be in the form of background documents.

7 CONCLUSION

In this paper, we investigated the performance of the state-of-the-art for cross-document coreference resolution on email. We have shown that email is a challenging domain for existing deep learning models. Based on these results and a qualitative analysis, we have identified six paths forward to improve performance in this context. More broadly, we believe understanding these challenges is a first step forward in helping to improve knowledge capture from long form conversations.

Acknowledgement: Funding for this research comes from the Dutch Research Council (NWO) through grant MVI19.032.

REFERENCES