Medium-Induced Modification of Z-Tagged Charged Particle Yields in Pb + Pb Collisions at 5.02 TeV with the ATLAS Detector

G. Aad et al. (ATLAS Collaboration)

(Received 25 August 2020; revised 3 November 2020; accepted 8 January 2021; published 19 February 2021)

The yield of charged particles opposite to a Z boson with large transverse momentum (p_T) is measured in 260 pb$^{-1}$ of pp and 1.7 nb$^{-1}$ of Pb + Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quark-gluon plasma created in Pb + Pb collisions. Compared with pp collisions, charged-particle yields in Pb + Pb collisions show significant modifications as a function of charged-particle p_T in a way that depends on event centrality and Z boson p_T. The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p_T regime difficult to measure through other channels.

DOI: 10.1103/PhysRevLett.126.072301

Collisions of heavy nuclei at ultrarelativistic energies at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) are understood to produce an extended region of hot and dense matter where partons exist in a deconfined state known as the quark-gluon plasma (QGP). The high density of unscreened color charges in the QGP causes the showers of hard-scattered partons with large transverse momentum (p_T) to be modified as they traverse the medium [1]. These modifications are observed in measurements of dijet and photon-jet momentum imbalance [2–5], and in jet fragmentation functions [6,7].

The large integrated luminosity of Pb + Pb collisions delivered during LHC Run 2 has enabled measurements of jets produced in association with a high-p_T Z boson. At leading order, the Z boson and the jet are produced back to back in the azimuthal plane, with equal p_T. Since Z bosons and their decay leptons, or similarly, photons, do not participate in the strong interaction and are not modified by the QGP [8,9], they provide an estimate of the p_T and azimuthal direction of the partner hard-scattered parton before the developing shower is modified through interactions with the QGP [10,11]. Measurements of photon-tagged fragmentation functions at the LHC [12,13] and photon-hadron correlations at RHIC [14,15] used this feature to perform detailed studies of jet quenching. At fixed p_T, jets balancing Z bosons and photons arise from processes with different Q^2, and can test the sensitivity of the energy loss process to parton virtuality. Additionally, the use of isolated photons at low photon p_T ($\lesssim 60$ GeV) is difficult due to the large hadron-decay background, motivating the use of Z bosons. A measurement of Z + jet production with $p_T^Z > 60$ GeV by CMS demonstrates that the total p_T carried inside the jet cone is decreased in Pb + Pb events compared with that in pp events [16]. However, the modification of the jet’s constituent particle p_T distributions, or any lower p_T^Z selections, have not yet been studied.

This Letter presents a measurement of the yield of charged particles produced opposite in azimuth to a Z boson with $p_T^Z > 15$ GeV in Pb + Pb and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector at the LHC. The Pb + Pb and pp data were recorded in 2018 and 2017, respectively, and correspond to integrated luminosities of up to 1.7 nb$^{-1}$ and 260 pb$^{-1}$. The charged particles are required to have $p_T^\text{ch} > 1$ GeV and be approximately back to back with the Z boson in the transverse plane, with azimuthal separation $\Delta \phi$ larger than $3\pi/4$ [17]. In simulations of pp collisions, particles entering these regions reside primarily in the leading jet azimuthally opposite to the Z boson. The per-Z yields of charged particles, N_{ch}, are reported as a function of p_T^ch, $(1/N_Z)(d^2N_{ch}/dp_T^\text{ch}d\Delta \phi)$, in pp and Pb + Pb collisions. To quantify the modification resulting from the partons’ propagation through the QGP, the ratio of particle yields between Pb + Pb and pp collisions, I_{AA}, is reported and compared with the expectations from theoretical calculations. This measurement explores phenomena similar to those in measurements of the photon-tagged jet fragmentation function [12]. However, requiring a

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
reconstructed jet may result in a bias towards events with less energy loss than average [18–20]. Since there is no such requirement in this measurement, it provides additional insight into energy loss in an unbiased way, at low p_T^{jet} values which have not yet been measured at the LHC and where theoretical models have not been tested.

The ATLAS experiment [21] is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range $|\eta| < 2.5$. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors [22,23]. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). Liquid-argon calorimeters with separate EM and hadronic compartments instrument the end cap (up to $|\eta| = 3.2$) and forward (FCal, up to $|\eta| = 4.9$) regions. The muon spectrometer surrounds the calorimeters and includes three air-core toroidal superconducting magnets with field integrals ranging between 2.0 and 6.0 T m, a system of precision tracking chambers, and fast detectors for triggering. During Pb + Pb data taking, the muon system was operational for only 1.4 nb$^{-1}$ of the total integrated luminosity. Thus the dimuon channel is analyzed only in this subset of data.

Events with a high-p_T electron or muon are initially selected for analysis by the single-lepton triggers described in Refs. [24,25]. The centrality of Pb + Pb events is defined using the total transverse energy measured in the FCal [4,26], E_T^{FB}. Pb + Pb events are divided into three categories which correspond to the 0%–10%, 10%–30%, and 30%–80% centrality intervals in minimum-bias (MB) events, the smaller values indicating larger nuclear overlap regions and thus larger, hotter QGP regions. The orientation of the underlying event (UE) elliptic flow is determined from the azimuthal distribution of the FCal energy [27,28].

In pp events, the average number of interactions per bunch crossing ranged from 2 to 4, and thus all charged-particle tracks are required to originate from the primary reconstructed vertex [29].

Monte Carlo simulations of $\sqrt{s} = 5.02$ TeV pp collisions with Z bosons decaying in the dielectron and dimuon channels, as well as data-driven studies, are used to correct the data for bin migration and reconstruction inefficiencies. Generated events were passed through a GEANT4 simulation [30,31] of the ATLAS detector under the same conditions present during data taking and were digitized and reconstructed in the same way as the data. The Z boson events were generated at next-to-leading order (NLO) with the POWHEG-BOX v2 program [32–35] interfaced to the PYTHIA 8.186 parton shower model [36]. The NLO CT10 parton distribution function (PDF) set [37] was used in the matrix element, while the CTEQ6L1 PDF set [38] and the AZNLO tuned set of parameters [39] were used to model the parton shower.

Four million events were generated to serve as the simulation sample for pp collisions. To model Pb + Pb events, fifteen million simulated pp events were overlaid at the detector-hit level with MB Pb + Pb events in data. This data-overlay sample was reweighted on an event-by-event basis to match the ΣE_T^{FB} distribution for Pb + Pb events containing Z bosons.

The Z bosons in pp and Pb + Pb events are reconstructed in opposite-sign dielectron and dimuon decay channels using procedures similar to those described in Refs. [9,40]. Reconstructed electrons are required to have a transverse momentum $p_T^e > 20$ GeV, to lie within the fiducial acceptance of the EM barrel ($|\eta^e| < 1.37$) or end cap ($1.52 < |\eta^e| < 2.47$) detectors, and to satisfy “loose” likelihood-based identification criteria, which have been optimized separately for pp and Pb + Pb events [41]. Reconstructed muons are required to have a transverse momentum $p_T^\mu > 20$ GeV, to lie within the fiducial acceptance of the muon spectrometer ($|\eta^\mu| < 2.5$), and to pass the “medium” selection requirements described in Ref. [42]. The $Z \rightarrow \ell\ell$ candidates are required to be within the mass range $76 < m_{\ell\ell} < 106$ GeV and have $p_T^\ell > 15$ GeV. This selection ensures that the contribution from multijet and other backgrounds is smaller than 1.5% (0.1%) for the dielectron (dimuon) channel, and is considered negligible. In total, these criteria select approximately 21 000 (28 000) $Z \rightarrow ee$ ($Z \rightarrow \mu\mu$) events in pp data, and 3400 (4100) events in Pb + Pb data.

Each Z data event is assigned a series of weights, derived from simulation and data, to account for the trigger, reconstruction and selection efficiencies of its decay leptons. Individual lepton trigger efficiencies are determined directly in pp and Pb + Pb data using tag-and-probe techniques [24,25], and are 0.70–0.80 for each muon and 0.75–0.95 for each electron. Reconstruction and selection efficiencies are determined using simulation and are 0.65–0.80 for muons and 0.65–0.95 for electrons. Although the efficiencies may vary substantially with the individual lepton p_T, η, and ϕ, the resulting dependence on p_T^Z is weak due to the large Z mass and weak correlation between bosons and their decay leptons.

Charged-particle tracks are reconstructed from hits in the inner detector using an algorithm [43] which, in Pb + Pb collisions, is optimized for the high-occupancy conditions [44]. They are required to meet several criteria intended to select primary charged particles [6]. All reconstructed tracks with $p_T > 1$ GeV, $|\eta| < 2.5$ and $\Delta\phi > 3\pi/4$ are considered. The charged-particle yield is corrected for reconstruction and selection inefficiency on a per-track basis using a simulation-derived efficiency which varies
from 0.6 to 0.8 depending on both detector occupancy and track kinematics. A small correction, typically 1%–2%, accounts for the contribution of reconstructed tracks not associated with primary particles. The p_{T}^{ch} resolution is found to have a negligible effect ($\lesssim 0.3\%$) on the results and is not corrected for.

The contribution to the yield from UE particles in Pb + Pb collisions is estimated using MB events and is statistically subtracted from the measured yields. For each Z event in data, 40–160 unique MB events are used for this estimation. These MB events are centrality matched to within 1% in peripheral events, decreasing to within 0.1% in central events. Furthermore, to match the azimuthal modulation of the UE, the elliptic flow angles [28] in the Z data event and in the matching MB event must match within $\pi/16$. The signal-to-background ratio varies strongly with p_{T}^{ch}, p_{T}, and Pb + Pb centrality, with a minimum of 5×10^{-3} at the lowest p_{T}^{ch} and p_{T} values in the most central events. In pp events, the UE is known to have larger activity in a Z event than in an ordinary MB pp collision [45,46], necessitating a different procedure. Here, the UE is determined in events with $1 < p_{T}^{ch} < 12$ GeV in the azimuthal region perpendicular to the Z boson to avoid the contribution from jet particles.

The data are further corrected for bin migration resulting from the finite resolution in the p_{T}^{ch} measurement. This is evaluated by comparing the per-Z charged-particle yields, where the Z selection is made at the generator level, with those after reconstruction, and is typically a 2%–3% correction.

The primary sources of systematic uncertainty in the yield measurement are those affecting the Z boson reconstruction, those affecting the charged-particle selection, and those affecting the UE background estimation and subtraction. The uncertainties associated with the electron and muon energy scales are evaluated using a common set of uncertainties [42,47], and are typically negligible ($\lesssim 1\%$) except at high p_{T}^{ch}. Those associated with lepton trigger and selection efficiency determination are smaller than the ones related to the energy scale. Several sources of tracking-related uncertainty are considered, which are described in previous measurements of charged-particle fragmentation functions, and of which the largest is the sensitivity to the track selection criteria, which is 2%–3% [6,48].

The uncertainty in the determination of the UE background yield is evaluated by propagating the statistical uncertainty of the UE estimation in MB events. The sensitivity of the UE estimation to the matching criteria for the elliptic flow [27] angles between signal and MB events, or the additional requirement to match the triangular flow angles, are investigated. However, since these variations give statistically compatible results, they are not included. As a check of the background subtraction procedure, the full analysis is performed on simulated Z events overlaid with HIJING [49] Pb + Pb background, and compared with the generator-level distributions. An absolute uncertainty in the background estimation of 0.3% is derived using this study.

Finally, an internal consistency check is performed by comparing the per-Z yields between the electron and muon decay channels. A difference was observed in the $15 < p_{T}^{ch} < 30$ GeV selections and was included as an uncertainty of at most 4% in pp and 14% in central Pb + Pb events.

For the yields at low p_{T}^{ch} and in central events, the uncertainty from the UE determination is dominant and can be as large as 30%. For yields at high p_{T}^{ch} and in lower-multiplicity events, the uncertainties associated with the track selection and the lepton energy scale are typically dominant, and as large as 5%. Uncertainty sources common to Pb + Pb and pp are canceled in the I_{AA} ratio when possible, such that the resulting measurement is dominated by uncertainties specific to Pb + Pb events. In all cases, the statistical uncertainty in the I_{AA} is larger than the total systematic uncertainty.

Figure 1 presents the charged-particle yield per Z boson, in Pb + Pb and pp events, as a function of p_{T}^{ch}, for the selection $\Delta \phi > 3\pi/4$. The yields in Pb + Pb collisions are observed to be modified relative to those in pp collisions.

![FIG. 1. Charged-particle yield per Z boson as a function of p_{T}^{ch}, for the selection $\Delta \phi > 3\pi/4$, reported for $15 < p_{T}^{ch} < 30$ GeV, $30 < p_{T}^{ch} < 60$ GeV, and $p_{T}^{ch} > 60$ GeV. Results are shown for pp events and the three centralities of Pb + Pb events. These are offset horizontally around the bin centers, which are located between the 0%–10% and 10%–30% points, for visibility. The vertical bars and boxes correspond to the statistical and systematic uncertainties of the data.](https://example.com/fig1.png)
To better reveal the modification, Fig. 2 presents \(I_{AA} \) values, the ratios of yields in \(\text{Pb} + \text{Pb} \) events to those in \(pp \) events. The \(I_{AA} \) values are suppressed below unity at large \(p_T^{ch} \), with a systematically larger suppression in more central events and for lower \(p_T^{ch} \) selections. For \(p_T^{ch} > 60 \text{ GeV} \), the \(I_{AA} \) values at low \(p_T^{ch} \), less than 2–3 \text{ GeV}, are significantly different than those at high \(p_T^{ch} \), and typically greater than unity. Lower \(p_T^{ch} \) selections are compatible with a similar increase at low \(p_T^{ch} \), although the uncertainties limit the significance of this enhancement. The suppression over a wide range of \(p_T^{ch} \) values, and the general enhancement of the \(I_{AA} \) above unity at lower \(p_T^{ch} \), are qualitatively similar to those observed in the ratios of jet fragmentation functions in photon-tagged events [12].

Figure 3 compares the \(I_{AA} \) in 0%–10% \(\text{Pb} + \text{Pb} \) events with the following theoretical calculations, where available, which use the same kinematic selections as the data: (1) a perturbative calculation within the framework of soft-collinear effective field theory with Glauber gluons (SCET\(_G\)) in the soft-gluon-emission (energy-loss) limit, with jet-medium coupling \(g = 2.0 \pm 0.2 [50,51] \); (2) the Hybrid Strong/Weak Coupling model [52], which combines initial production using PYTHIA 8 with a parameterization of energy loss derived from holographic methods, including backreaction effects; (3) JEWEL, an MC event generator which simulates QCD jet evolution in heavy-ion collisions, including radiative and elastic energy loss processes, and configured to include medium recoils [53]; and (4) a coupled linearized Boltzmann transport (COLBT) and hydrodynamics model [54,55], which includes jet-induced medium excitations. All models qualitatively reproduce the degree of suppression at large \(p_T^{ch} \), greater than 10 \text{ GeV}. The Hybrid model, JEWEL and COLBT qualitatively capture the increase at low \(p_T^{ch} \). For these three models, removing the backreaction, medium recoils, and jet-induced medium excitations, respectively, results in a significant underprediction of the data in this region. Several of these models also capture the relative difference in the \(I_{AA} \) between the three \(p_T^{ch} \) selections. A full evaluation of theoretical uncertainties is needed to further discriminate between the mechanisms of energy loss and medium response in the data.
In conclusion, this Letter presents a measurement of charged-particle yields produced in the azimuthal direction opposite to a Z boson with $p_T > 15$ GeV. The measurement is performed using 260 pb$^{-1}$ of pp and up to 1.7 nb$^{-1}$ of Pb + Pb collision data at 5.02 TeV with the ATLAS detector at the Large Hadron Collider. The per-Z yields are systematically modified in Pb + Pb collisions compared with pp collisions due to the interactions between the parton shower and the hot and dense QGP medium. The charged-particle p_T distribution in Pb + Pb collisions is softer than that in pp collisions, with a suppression at high p_T^ch and an enhancement at low p_T^ch. The degree of modification varies with Pb + Pb event centrality, consistent with a larger and hotter QGP being created in more central events. At high p_T, the modification pattern is qualitatively similar to that observed in measurements of photon-tagged jet fragmentation functions. In addition to the particular theoretical comparisons presented here, the data will allow systematic tests of models across centrality and p_T^ch selections. The data can also test energy loss models for low-p_T partons that are otherwise difficult to access experimentally at the LHC, but which are valuable for direct comparison to future measurements at RHIC.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IFR, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafsson Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [56].

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudo-rapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton AB, Canada
4Department of Physics, Ankara University, Ankara, Turkey
5Istanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul, Turkey
6Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
8High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9Physics Department, University of Texas at Arlington, Arlington, Texas, USA
10Physics Department, National and Kapodistrian University of Athens, Athens, Greece
11Physics Department, National Technical University of Athens, Zografou, Greece
12Physics Department, University of Texas at Austin, Austin, Texas, USA
13Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
14Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
15Department of Physics, Bogazici University, Istanbul, Turkey
16Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
17Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
18Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
19Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
20Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
21Physics Department, Tsinghua University, Beijing, China
22Department of Physics, Nanjing University, Nanjing, China
23Institute of Physics, University of Belgrade, Belgrade, Serbia
24Department for Physics and Technology, University of Bergen, Bergen, Norway
25Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, Colombia

Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia, Colombia

INFN Bologna and Università di Bologna, Dipartimento di Fisica, Italy

INFN Sezione di Bologna, Italy

Physikalisches Institut, Universität Bonn, Bonn, Germany

Department of Physics, Boston College, Boston, Massachusetts, USA

University of Colorado Boulder, Department of Physics, Colorado, USA

Physics Department, Brookhaven National Laboratory, Upton, New York, USA

Department of Physics, Brandeis University, Waltham, Massachusetts, USA

Transilvania University of Brașov, Brașov, Romania

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

Department of Physics, Alexandru Ioan Cuza University of Iași, Iași, Romania

National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania

University Politehnica Bucharest, Bucharest, Romania

West University in Timisoara, Timisoara, Romania

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic

Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

California State University, California, USA

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, University of Cape Town, Cape Town, South Africa

iThemba Labs, Western Cape, South Africa

Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa

University of South Africa, Department of Physics, Pretoria, South Africa

School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Carleton University, Ottawa ON, Canada

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco

Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco

Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco

Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco

Faculté des sciences, Université Mohammed V, Rabat, Morocco

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington, New York, USA

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Dipartimento di Fisica, Università della Calabria, Rende, Italy

INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy

Physics Department, Southern Methodist University, Dallas, Texas, USA

Physics Department, University of Texas at Dallas, Richardson, Texas, USA

National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece

Department of Physics, Stockholm University, Sweden

Oskar Klein Centre, Stockholm, Sweden

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany

Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham, North Carolina, USA

SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN e Laboratori Nazionali di Frascati, Frascati, Italy

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland

Dipartimento di Fisica, Università di Genova, Genova, Italy

INFN Sezione di Genova, Italy

II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China

Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China

School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China

Tsung-Dao Lee Institute, Shanghai, China

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

Department of Physics, University of Hong Kong, Hong Kong, China

Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

JICLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France

Department of Physics, Indiana University, Bloomington, Indiana, USA

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy

ICTP, Trieste, Italy

Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy

INFN Sezione di Lecce, Italy

Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

INFN Sezione di Milano, Italy

Dipartimento di Fisica, Università di Milano, Milano, Italy

INFN Sezione di Napoli, Italy

Dipartimento di Fisica, Università di Napoli, Napoli, Italy

INFN Sezione di Pavia, Italy

Dipartimento di Fisica, Università di Pavia, Pavia, Italy

INFN Sezione di Pisa, Italy

Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

INFN Sezione di Roma, Italy

Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy

Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Italy

Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

INFN-TIFPA, Italy

Università degli Studi di Trento, Trento, Italy

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, Iowa, USA

Joint Institute for Nuclear Research, Dubna, Russia

Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Physics Department, Lancaster University, Lancaster, United Kingdom

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
144 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
145 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
146 Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
147 Universidad Andres Bello, Department of Physics, Santiago, Chile
148 Instituto de Alta Investigación, Universidad de Tarapacá, Chile
149 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
150 Department of Physics, Shinshu University, Nagano, Japan
151 Department Physik, Universität Siegen, Siegen, Germany
152 Department of Physics, Simon Fraser University, Burnaby BC, Canada
153 SLAC National Accelerator Laboratory, Stanford, California, USA
154 Physics Department, Royal Institute of Technology, Stockholm, Sweden
155 Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
156 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
157 School of Physics, University of Sydney, Sydney, Australia
158 Institute of Physics, Academia Sinica, Taipei, Taiwan
159 E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
160 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
161 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
162 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
163 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
164 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
165 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
166 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
167 Tomsk State University, Tomsk, Russia
168 Department of Physics, University of Toronto, Toronto ON, Canada
169 Triumf, Vancouver BC, Canada
169a Division of Physics and Tonomaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
170 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
171 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
172 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
173 Department of Physics, University of Illinois, Urbana, Illinois, USA
174 Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
175 Department of Physics, University of British Columbia, Vancouver BC, Canada
176 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
177 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
178 Department of Physics, University of Warwick, Coventry, United Kingdom
179 Waseda University, Tokyo, Japan
180 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
181 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
182 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
183 Department of Physics, Yale University, New Haven, Connecticut, USA

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain.
dAlso at TRIUMF, Vancouver BC, Canada.
eAlso at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
fAlso at Physics Department, An-Najah National University, Nablus, Palestine.
gAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
hAlso at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
iAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
jAlso at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
kAlso at Universita di Napoli Parthenope, Napoli, Italy.
lAlso at Institute of Particle Physics (IPP), Canada.
mAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.