Medium-Induced Modification of Z-Tagged Charged Particle Yields in Pb + Pb Collisions at 5.02 TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 25 August 2020; revised 3 November 2020; accepted 8 January 2021; published 19 February 2021)

The yield of charged particles opposite to a Z boson with large transverse momentum (p_T) is measured in 260 pb$^{-1}$ of pp and 1.7 nb$^{-1}$ of Pb + Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quark-gluon plasma created in Pb + Pb collisions. Compared with pp collisions, charged-particle yields in Pb + Pb collisions show significant modifications as a function of charged-particle p_T in a way that depends on event centrality and Z boson p_T. The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p_T regime difficult to measure through other channels.

DOI: 10.1103/PhysRevLett.126.072301

Collisions of heavy nuclei at ultrarelativistic energies at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) are understood to produce an extended region of hot and dense matter where partons exist in a deconfined state known as the quark-gluon plasma (QGP). The high density of unscreened color charges in the QGP causes the showers of hard-scattered partons with large transverse momentum (p_T) to be modified as they traverse the medium [1]. These modifications are observed in measurements of dijet and photon-jet momentum imbalance [2–5], and in jet fragmentation functions [6,7].

The large integrated luminosity of Pb + Pb collisions delivered during LHC Run 2 has enabled measurements of jets produced in association with a high-p_T Z boson. At leading order, the Z boson and the jet are produced back to back in the azimuthal plane, with equal p_T. Since Z bosons and their decay leptons, or similarly, photons, do not participate in the strong interaction and are not modified by the QGP [8,9], they provide an estimate of the p_T and azimuthal direction of the partner hard-scattered parton before the developing shower is modified through interactions with the QGP [10,11]. Measurements of photon-tagged fragmentation functions at the LHC [12,13] and photon-hadron correlations at RHIC [14,15] used this feature to perform detailed studies of jet quenching. At fixed p_T, jets balancing Z bosons and photons arise from processes with different Q^2, and can test the sensitivity of the energy loss process to parton virtuality. Additionally, the use of isolated photons at low photon p_T (≤60 GeV) is difficult due to the large hadron-decay background, motivating the use of Z bosons. A measurement of Z + jet production with $p_T^Z > 60$ GeV by CMS demonstrates that the total p_T carried inside the jet cone is decreased in Pb + Pb events compared with that in pp events [16]. However, the modification of the jet’s constituent particle p_T distributions, or any lower p_T selections, have not yet been studied.

This Letter presents a measurement of the yield of charged particles produced opposite in azimuth to a Z boson with $p_T^Z > 15$ GeV in Pb + Pb and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{S_{NN}} = 5.02$ TeV with the ATLAS detector at the LHC. The Pb + Pb and pp data were recorded in 2018 and 2017, respectively, and correspond to integrated luminosities of up to 1.7 nb$^{-1}$ and 260 pb$^{-1}$. The charged particles are required to have $p_T > 1$ GeV and be approximately back to back with the Z boson in the transverse plane, with azimuthal separation $\Delta\phi$ larger than $3\pi/4$ [17]. In simulations of pp collisions, particles meeting these criteria reside primarily in the leading jet azimuthally opposite to the Z boson. The per-Z yields of charged particles, N_{ch}, are reported as a function of p_T^{ch}, $(1/N_Z)(d^2N_{ch}/dp_T^{ch}d\Delta\phi)$, in pp and Pb + Pb collisions. To quantify the modification resulting from the partons’ propagation through the QGP, the ratio of particle yields between Pb + Pb and pp collisions, I_{AA}, is reported and compared with the expectations from theoretical calculations. This measurement explores phenomena similar to those in measurements of the photon-tagged jet fragmentation function [12]. However, requiring a
The ATLAS experiment [21] is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range |η| < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors [22,23]. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile calorimeter covers the central pseudorapidity range jηj < 1.7. Liquid-argon calorimeters with separate EM and hadronic compartments instrument the end cap (up to |η| = 3.2) and forward (FCal, up to |η| = 4.9) regions. The muon spectrometer surrounds the calorimeters and includes three air-core toroidal superconducting magnets with field integrals ranging between 2.0 and 6.0 T m, a system of precision tracking chambers, and fast detectors for triggering. During Pb + Pb data taking, the muon system was operational for only 1.4 nb⁻¹ of the total integrated luminosity. Thus the dimuon channel is analyzed only in this subset of data.

Events with a high-pT electron or muon are initially selected for analysis by the single-lepton triggers described in Refs. [24,25]. The centrality of Pb + Pb events is defined using the total transverse energy measured in the FCal [4,26], ΣEjT. Pb + Pb events are divided into three categories which correspond to the 0%–10%, 10%–30%, and 30%–80% centrality intervals in minimum-bias (MB) events, the smaller values indicating larger nuclear overlap regions and thus larger, hotter QGP regions. The orientation of the underlying event (UE) elliptic flow is determined from the azimuthal distribution of the FCal energy [27,28]. In pp events, the average number of interactions per bunch crossing ranged from 2 to 4, and thus all charged-particle tracks are required to originate from the primary reconstructed vertex [29].

Monte Carlo simulations of \(\sqrt{s} = 5.02 \) TeV pp collisions with Z bosons decaying in the dielectron and dimuon channels, as well as data-driven studies, are used to correct the data for bin migration and reconstruction inefficiencies. Generated events were passed through a GEANT4 simulation [30,31] of the ATLAS detector under the same conditions present during data taking and were digitized and reconstructed in the same way as the data. The Z boson events were generated at next-to-leading order (NLO) with the POWHEG-BOX v2 program [32–35] interfaced to the PYTHIA 8.186 parton shower model [36]. The NLO CT10 parton distribution function (PDF) set [37] was used in the matrix element, while the CTEQ6L1 PDF set [38] and the AZNLO tuned set of parameters [39] were used to model the parton shower.

Four million events were generated to serve as the simulation sample for pp collisions. To model Pb + Pb events, fifteen million simulated pp events were overlaid at the detector-hit level with MB Pb + Pb events in data. This data-overlay sample was reweighted on an event-by-event basis to match the \(\Sigma E^T \) distribution for Pb + Pb events containing Z bosons. The Z bosons in pp and Pb + Pb events are reconstructed in opposite-sign dielectron and dimuon decay channels using procedures similar to those described in Refs. [9,40]. Reconstructed electrons are required to have a transverse momentum \(p_T^e > 20 \) GeV, to lie within the fiducial acceptance of the EM barrel (|η| < 1.37) or end cap (1.52 < |η| < 2.47) detectors, and to satisfy “loose” likelihood-based identification criteria, which have been optimized separately for pp and Pb + Pb events [41]. Reconstructed muons are required to have a transverse momentum \(p_T^μ > 20 \) GeV, to lie within the fiducial acceptance of the muon spectrometer (|ημ| < 2.5), and to pass the “medium” selection requirements described in Ref. [42]. The \(Z \rightarrow \ell\ell \) candidates are required to be within the mass range 76 < m_\ell\ell < 106 GeV and have \(p_T^Z > 15 \) GeV. This selection ensures that the contribution from multijet and other backgrounds is smaller than 1.5% (0.1%) for the dielectron (dimuon) channel, and is considered negligible. In total, these criteria select approximately 21 000 (28 000) \(Z \rightarrow ee \) (\(Z \rightarrow μμ \)) events in pp data, and 3400 (4100) events in Pb + Pb data.

Each Z data event is assigned a series of weights, derived from simulation and data, to account for the trigger, reconstruction and selection efficiencies of its decay leptons. Individual lepton trigger efficiencies are determined directly in pp and Pb + Pb data using tag-and-probe techniques [24,25], and are 0.70–0.80 for each muon and 0.75–0.95 for each electron. Reconstruction and selection efficiencies are determined using simulation and are 0.65–0.80 for muons and 0.65–0.95 for electrons. Although the efficiencies may vary substantially with the individual lepton \(p_T, η, \) and \(φ \), the resulting dependence on \(p_T^Z \) is weak due to the large Z mass and weak correlation between bosons and their decay leptons.

Charged-particle tracks are reconstructed from hits in the inner detector using an algorithm [43] which, in Pb + Pb collisions, is optimized for the high-occupancy conditions [44]. They are required to meet several criteria intended to select primary charged particles [6]. All reconstructed tracks with \(p_T > 1 \) GeV, |η| < 2.5 and Δφ > 3π/4 are considered. The charged-particle yield is corrected for reconstruction and selection inefficiency on a per-track basis using a simulation-derived efficiency which varies

\[\text{PHYSICAL REVIEW LETTERS 126, 072301 (2021)} \]
from 0.6 to 0.8 depending on both detector occupancy and track kinematics. A small correction, typically 1%–2%, accounts for the contribution of reconstructed tracks not associated with primary particles. The p_T^{ch} resolution is found to have a negligible effect ($\lesssim 0.3\%$) on the results and is not corrected for.

The contribution to the yield from UE particles in Pb + Pb collisions is estimated using MB events and is statistically subtracted from the measured yields. For each Z event in data, 40–160 unique MB events are used for this estimation. These MB events are centrality matched to within 1% in peripheral events, decreasing to within 0.1% in central events. Furthermore, to match the azimuthal flow angles, are investigated. However, since these variations give statistically compatible results, they are not included. As a check of the background subtraction procedure, the full analysis is performed on simulated Z events overlaid with HIJING [49] Pb + Pb background, and compared with the generator-level distributions. An absolute uncertainty in the background estimation of 0.3% is derived using this study.

Finally, an internal consistency check is performed by comparing the per-Z yields between the electron and muon decay channels. A difference was observed in the $15 < p_T^Z < 30$ GeV selections and was included as an uncertainty of at most 4% in pp and 14% in central Pb + Pb events.

For the yields at low p_T^{ch} and in central events, the uncertainty from the UE determination is dominant and can be as large as 30%. For yields at high p_T^{ch} and in lower-multiplicity events, the uncertainties associated with the track selection and the lepton energy scale are typically dominant, and as large as 5%. Uncertainty sources common to Pb + Pb and pp are canceled in the I_{AA} ratio when possible, such that the resulting measurement is dominated by uncertainties specific to Pb + Pb events. In all cases, the statistical uncertainty in the I_{AA} is larger than the total systematic uncertainty.

Figure 1 presents the charged-particle yield per Z boson, in Pb + Pb and pp events, as a function of p_T^{ch}, for the selection $\Delta\phi > 3\pi/4$. The yields in Pb + Pb collisions are observed to be modified relative to those in pp collisions.

![FIG. 1. Charged-particle yield per Z boson as a function of p_T^{ch}, for the selection $\Delta\phi > 3\pi/4$, reported for $15 < p_T^Z < 30$ GeV, and $30 < p_T^Z < 60$ GeV, and $p_T^Z > 60$ GeV. Results are shown for pp and the three centralities of Pb + Pb events. These are offset horizontally around the bin centers, which are located between the 0%–10% and 10%–30% points, for visibility. The vertical bars and boxes correspond to the statistical and systematic uncertainties of the data.](image-url)
To better reveal the modification, Fig. 2 presents I_{AA} values, the ratios of yields in Pb + Pb events to those in pp events. The I_{AA} values are suppressed below unity at large p_T^{ch}, with a systematically larger suppression in more central events and for lower p_T^{ch} selections. For $p_T^{ch} > 60$ GeV, the I_{AA} values at low p_T^{ch}, less than 2–3 GeV, are significantly different than those at high p_T^{ch}, and typically greater than unity. Lower p_T^{ch} selections are compatible with a similar increase at low p_T^{ch}, although the uncertainties limit the significance of this enhancement. The suppression over a wide range of p_T^{ch} values, and the general enhancement of the I_{AA} above unity at lower p_T^{ch}, are qualitatively similar to those observed in the ratios of jet fragmentation functions in photon-tagged events [12].

Figure 3 compares the I_{AA} in 0%–10% Pb + Pb events with the following theoretical calculations, where available, which use the same kinematic selections as the data: (1) a perturbative calculation within the framework of soft-collinear effective field theory with Glauber gluons (SCET$_G$) in the soft-gluon-emission (energy-loss) limit, with jet-medium coupling $g = 2.0 \pm 0.2$ [50,51]; (2) the Hybrid Strong/Weak Coupling model [52], which combines initial production using PYTHIA 8 with a parameterization of energy loss derived from holographic methods, including backreaction effects; (3) JEWEL, an MC event generator which simulates QCD jet evolution in heavy-ion collisions, including radiative and elastic energy loss processes, and configured to include medium recoils [53]; and (4) a coupled linearized Boltzmann transport (COLBT) and hydrodynamics model [54,55], which includes jet-induced medium excitations. All models qualitatively reproduce the degree of suppression at large p_T^{ch}, greater than 10 GeV. The Hybrid model, JEWEL and COLBT qualitatively capture the increase at low p_T^{ch}. For these three models, removing the backreaction, medium recoils, and jet-induced medium excitations, respectively, results in a significant underprediction of the data in this region. Several of these models also capture the relative difference in the I_{AA} between the three p_T^{ch} selections. A full evaluation of theoretical uncertainties is needed to further discriminate between the mechanisms of energy loss and medium response in the data.

FIG. 2. Ratio of the charged-particle yield in Pb + Pb collisions to that in pp collisions, I_{AA}, as a function of charged-particle p_T^{ch}, for the selection $\Delta \phi > 3\pi/4$. The vertical bars and boxes correspond to the statistical and systematic uncertainties of the data. The 0%–10% and 30%–80% data are offset horizontally for visibility.

FIG. 3. The I_{AA} ratio as a function of p_T^{ch} in data compared with theoretical calculations (see text), for the selection $\Delta \phi > 3\pi/4$. The vertical bars and boxes correspond to the statistical and systematic uncertainties, while the shaded bands represent the theoretical uncertainty (statistical for JEWEL, Hybrid, and COLBT-hydro, parametric for SCET$_G$). The I_{AA} is shown for 0%–10% Pb + Pb events for $p_T^{ch} = 15–30$ GeV (left), 30–60 GeV (center), and > 60 GeV (right).
In conclusion, this Letter presents a measurement of charged-particle yields produced in the azimuthal direction opposite to a Z boson with $p_T > 15$ GeV. The measurement is performed using 260 pb$^{-1}$ of $p\bar{p}$ and up to 1.7 nb$^{-1}$ of $Pb + Pb$ collision data at 5.02 TeV with the ATLAS detector at the Large Hadron Collider. The per-Z yields are systematically modified in $Pb + Pb$ collisions compared with $p\bar{p}$ collisions due to the interactions between the parton shower and the hot and dense QGP medium. The charged-particle p_T distribution in $Pb + Pb$ collisions is softer than that in $p\bar{p}$ collisions, with a suppression at high p_T^{ch} and an enhancement at low p_T^{ch}. The degree of modification varies with $Pb + Pb$ event centrality, consistent with a larger and hotter QGP being created in more central events. At high p_T, the modification pattern is qualitatively similar to that observed in measurements of photon-tagged jet fragmentation functions. In addition to the particular theoretical comparisons presented here, the data will allow systematic tests of models across centrality and p_T selections. The data can also test energy loss models for low-p_T partons that are otherwise difficult to access experimentally at the LHC, but which are valuable for direct comparison to future measurements at RHIC.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNIW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [56].

Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
Also at Department of Physics, California State University, Fresno, USA.
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
Also at Centro Studi e Ricerche Enrico Fermi, Italy.
Also at Department of Physics, California State University, East Bay, USA.
Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
Also at Graduate School of Science, Osaka University, Osaka, Japan.
Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at CERN, Geneva, Switzerland.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Hellenic Open University, Patras, Greece.
Also at The City College of New York, New York, New York, USA.
Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy.
Also at Department of Physics, California State University, Sacramento, USA.
Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.