Metastable Helium Reveals Ongoing Mass Loss for the Gas Giant HAT-P-18b

K. Paragas1, S. Vissapragada2, H. A. Knutson2, A. Oklopcic3

1Astronomy Department, Wesleyan University, Middletown, CT,
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA,
3Anton Pannekoek Institute of Astronomy, University of Amsterdam, Amsterdam, Netherlands

Published on: Jan 11, 2021

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)
The helium (He) 1083 nm line offers insight into the atmospheric mass loss of close-in exoplanets, which is likely to be significant in sculpting their population. Most studies of atmospheric escape have been done at UV wavelengths using the hydrogen Lyman-alpha line, but in the last few years the metastable He 1083 nm line has emerged as a more observationally accessible alternative. By measuring the amount of excess absorption in this line during a transit, we can characterize the spatial extent of the planet's exosphere and its corresponding present-day mass loss rate. We used an ultra-narrow band filter to observe two transits of the gas giant HAT-P-18b, using the 200” Hale Telescope at Palomar Observatory, and report the first-ever detection of outflowing gas from its upper atmosphere. With a J-band magnitude of 10.8, this is the faintest system for which such a measurement has been made, demonstrating the effectiveness of this approach for surveying mass loss on a diverse sample of close-in gas giant planets.