Lazy and incremental program generation
Heering, J.; Klint, P.; Rekers, J.

Published in:
ACM Transactions on Programming Languages and Systems

DOI:
10.1145/177492.177750

Citation for published version (APA):
Lazy and Incremental Program Generation

J. HEERING, P. KLINT, J. REKERS

CWI

Current program generators usually operate in a *greedy* manner in the sense that a program must be generated in its entirety before it can be used. If generation time is scarce, or if the input to the generator is subject to modification, it may be better to be more cautious and to generate only those parts of the program that are indispensable for processing the particular data at hand. We call this *lazy program generation*. Another, closely related strategy is *incremental program generation*. When its input is modified, an incremental generator will try to make a corresponding modification in its output rather than generate a completely new program. It may be advantageous to use a combination of both strategies in program generators that have to operate in a highly dynamic and/or interactive environment.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Programming; D.3.4 [Programming Languages]: Processors—compilers; parsing; translator writing systems and compiler generators

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Greedy, lazy, and incremental program generation, lazy and incremental generation of lexical scanners, lazy and incremental generation of parsers, lazy and incremental compilation, program generator

1. INTRODUCTION

1.1 Greedy, Lazy, and Incremental Program Generation

"Automatic programming" necessarily means production of programs by means of other programs. The latter are usually called *program generators*. The use of program generators dates back almost to the beginning of the programmable electronic computer [Hopper 1981]. Compilers for high-level programming languages are the most successful and widely used program generators to date, and the well-known arguments for using them apply to other program generators, as well. The fact that many program generators are tailored toward a specific and rather limited application area does not detract from these arguments.
Usually, the time spent by a program generator is not that important as long as the program produced by it is efficient. If there is ample time available for the generator, the complete program can be generated before it is used. We call this greedy program generation (Section 2.1). There are basically three reasons why greedy program generation is not always an efficient or feasible strategy:

(A) The generated program is used so little that the time invested in generating it is largely lost.

(B) The real-time requirements (interactive response time requirements) that have to be met by the environment in which the generator runs are too stringent for the generator to finish its task completely.

(C) The generated program is too large to be run in its entirety.

So, rather than generate a program all at once, it may be better to generate only those parts of it that are indispensable for processing the particular data at hand. We call this lazy program generation (Section 2.2). Another, closely related strategy is incremental program generation. When its input is modified, an incremental generator will try to make a corresponding modification in its output rather than generate a completely new program. The best known examples of incremental program generators are incremental compilers. It may be advantageous to use a combination of both strategies in program generators that have to operate in a highly dynamic and/or interactive environment. This is our main topic (Section 2.3).

We first came across the above-mentioned weaknesses of greedy program generation while designing a syntax-oriented editor for the ASF + SDF language definition formalism, which has very general user-definable syntax [Heering et al. 1989]. We realized that generating a completely new parser after each syntax change would lead to unacceptable response times. To solve this problem, we converted greedy scanner and parser generators to versions that are both lazy and incremental. These are discussed in Section 3.

To avoid misunderstanding, it should be emphasized that we have not mechanized the process of converting greedy program generators to lazy/incremental ones. The above-mentioned conversions were done by hand. M. J. C. Gordon (personal communication, March 1988) has raised the question whether lazy functional languages like Miranda or Lazy-ML (see a special issue of The Computer Journal, vol. 32, no. 2) can be used to obtain lazy program generation more or less automatically as a special case of lazy evaluation, but our attempts in this direction using Lazy-ML have failed so far. In the same vein, one might ask whether an incremental language like INC [Yellin and Strom 1991] can be used to obtain the incremental behavior for free. Since INC has not yet been implemented, this question remains to be investigated.

1.2 Related Work

In spite of their indisputable importance, very little has been written on the general principles underlying program generators. An interesting paper with
a practical flavor on the construction of application generators is the one by Cleaveland [1988]. Program generation by partial evaluation is a fairly general approach [Sestoft and Zamulin 1988], but we did not use it and have not attempted to interpret our work in that particular context.

In the way of lazy and incremental program generation we mention Brown's [1976] lazy Basic compiler for small machines, the lazy LL(1) parser generator developed by Koskimies [1990] (both of which are discussed in Section 2.2), Szafron and Ng's [1990] interactive incremental scanner generator LexAGen, Horspool's [1989; 1990] incremental LALR(1) parser generator ILALR, (these are discussed in Section 3), and Fritzson's incremental Pascal compiler [1982; 1983]. To the best of our knowledge, program generators that are both lazy and incremental have not been discussed before, except in our papers [Heering et al. 1990; 1992] (cf., Section 3).

2. GREEDY, LAZY, AND LAZY/INCREMENTAL PROGRAM GENERATION

2.1 The Traditional (Greedy) Case

Suppose a dyadic function

\[f: A \times B \rightarrow C \]

has to be implemented in a context in which for each \(a \in A \) the value \(f(a, b) \) is needed for a relatively large number of \(b \in B \). In such cases, the most efficient implementation of \(f \) will often be a higher-order program ("program generator") of curried type

\[G: A \rightarrow (B \rightarrow C) \]

which, when given a particular \(a \in A \), yields ("generates") a specialized program

\[G_a: B \rightarrow C \]

such that for all \(b \in B \), execution of \(G_a \) with argument \(b \) yields the result \(f(a, b) \).

For the sake of concreteness, it may be instructive to consider a parser generator from the general viewpoint. In that case, \(f \) would be a general parsing function; \(A \) would be a domain of grammars (probably described in BNF); \(B \) would consist of sentences to be parsed; and \(C \) would contain parse trees and some failure value. \(G \) would be a parser generator, and \(G_a \) would be a parser for a specific grammar \(a \).

Compilation of a programming language \(L \) is another instructive example. In this case, \(f \) would be the evaluation of \(L \)-programs, \(A \) the collection of \(L \)-programs, \(B \) a domain of input values, and \(C \) a domain of result values. \(G \) would be a compiler for \(L \), and \(G_a \) would be the object code for a specific \(L \)-program \(a \).

2.2 Lazy Program Generation

For the reasons given in Section 1.1, generating \(G_a \) is not always possible or justified. In such cases, lazy program generation may offer a solution. Rather
than generate G_a all at once, a lazy generator produces for each b only those parts of G_a that are actually needed to compute the required result. Except if G_a is too large to be run in its entirety (Section 1.1, case (C)), parts generated for previous inputs b (in any) are retained indefinitely, so the lazy generation process is cumulative. Whether the complete program G_a is ever generated in this way depends on the particular sequence of inputs involved. Parts of G_a that are not needed by any b are never generated.

In view of the foregoing, a rough outline of the lazy counterpart L_a of G_a (expressed in some suitable language) is:

\[
L_a(b:B):C
\]

constant $a: A$

static $g: B \rightarrow C$ with initial value g_0 (where indicates a partial function)

begin
 return $g(b)$
 when attempting to execute gap γ in g
 do $g := \text{EXPAND}(a, g, \gamma)$
 resume
 od
end.

For each new $b = b_n$, L_a initially tries to compute the required result by means of the incomplete program g_{n-1} generated during the previous activations of L_a, that is, by means of the value of the static function variable $g: B \rightarrow C$, where indicates a partial function. The fact that g is static means that its value is retained between different activations of L_a. For $n = 1$ the value of g is its initial value g_0, which consists of nothing but a single gap and is undefined everywhere. Only if execution of g_{n-1} with argument b_n hits a gap γ in g_{n-1}, L_a generates an additional piece of program by calling procedure EXPAND in the body of the exception handler. This procedure, which is a suitably adapted version of the greedy generator G of the previous section, produces the required extension in some unspecified, application-dependent way using a, the incomplete program g_{n-1} generated so far, and the gap descriptor γ (which identifies the gap in question). It fills the gap only to the extent necessary, so part of the gap in the form of one or more new gaps may remain. Computation is then resumed at the point where the exception occurred using the extended version of g_{n-1}. The computation may hit several gaps in succession, so the extension of g_{n-1} to g_n may require several activations of EXPAND. If no gap in g_{n-1} is encountered, no extension is necessary and $g_n = g_{n-1}$. Hence, EXPAND is not called, and L_a runs as fast as G. An extreme and, from the viewpoint of lazy program generation, undesirable case is $g_1 = G$. L_a has to generate the whole program G_a just to handle b_1. Obviously, the lazy character of L_a is lost in this case. Lazy program generation may alleviate the problems mentioned in Section 1.1 if EXPAND has to generate only relatively small extensions at each step and if the total generation time is distributed more or less evenly.

In the previous section we mentioned parser generation and compilation as examples of greedy program generation. Both can be done in a lazy manner.
Koskimies [1990] has developed a lazy parser generator for modular LL(1) grammars. Each module is supposed to contain the definition of a single nonterminal symbol of the grammar. It would be nice if the parser for the complete grammar could be obtained by linking parsing procedures generated separately for each individual module. For an ordinary recursive-descent parser this is impossible, however, since each parsing procedure depends on the set of first symbols of the corresponding nonterminal. In general, computation of this set requires access to the definition of other nonterminals and hence to other modules. Koskimies circumvents this problem to some extent by generating a hybrid recursive-descent/table-driven parser consisting of separately generated procedures incorporating a rule selection mechanism driven by so-called start trees. These are built by need during parsing to minimize the initial generation delay. In this case, incomplete programs g_n consist of a fixed recursive-descent part and a possibly incomplete set of start trees. A gap γ is a nonterminal whose start tree has not yet been computed. If such a nonterminal is encountered during parsing, the corresponding start tree is computed by the function StartTree_γ, which is generated separately for each module. So instead of a single EXPAND function that handles all gaps, each gap has its own specialized version.

A lazy Basic compiler for small machines was developed by Brown [1976]. Statements are compiled by need when encountered during execution. Each compiled statement is placed in the workspace immediately after the previously compiled statement. If the workspace is full, all object code accumulated in it is thrown away. This radical strategy eliminates the problem of dangling jumps to object code that no longer exists, except for stacked return addresses. To prevent these from doing harm, they must refer to source code rather than object code. Returns are therefore effected by indirect transfers through the lazy compiler. Thus, in this case an incomplete program g_n is a series of compiled statements possibly with embedded gaps containing references to source code. If such a reference is encountered during execution, the corresponding statement is compiled and placed in the workspace. The reference that triggered the compilation is replaced with a direct jump to the compiled statement or even with the compiled statement itself if the reference was the last item of the object code. It may turn out that the statement had already been compiled. In that case, the reference is merely replaced by a direct jump to the compiled statement. Obviously, unreachable parts of the program will never be compiled.

2.3 The Combination of Lazy and Incremental Program Generation

In the previous section α was kept constant. Now suppose that α is subject to modification, perhaps because it is being developed and experimented with interactively. Ordinarily, a completely new program would have to be generated for each new version of α. If modifications follow each other in quick succession, chances are that only a small part of each α is used before it is modified. This fact may be exploited by a lazy program generator. The program generated for the old version of α is still thrown away, but, as it will
be incomplete most of the time, less time is wasted than before. As explained in the previous section, this is the strategy used in Brown’s lazy Basic compiler, albeit for a different reason.

Although lazy generation may certainly offer a partial solution, the above scheme is still rather crude in that it does not attempt to retain the largest possible part of the old program. This part can be characterized in terms of the greatest lower bound of two incomplete programs with respect to the subsumption order, which is the natural partial order on incomplete programs. More specifically, an incomplete program g subsumes an incomplete program $h (g \leq h)$ if h can be obtained from g by partially or completely expanding the gaps in g. Except if G_ω is too large to be run in its entirety, the lazy generator L_ω of the previous section produces a sequence of incomplete programs $(g_n)_{n \geq 0}$ such that

$$g_0 \leq g_1 \leq g_2 \leq \cdots \leq G_\omega.$$

The greatest lower bound $g \wedge h$ of two incomplete programs g and h with respect to \leq has the usual properties, namely,

- $g \wedge h \leq g$,
- $g \wedge h \leq h$, and
- $f \leq g \wedge h$ for all f such that $f \leq g$ and $f \leq h$.

It is the most specific (least general) incomplete program that can be expanded to both g and h. In the worst case it is equal to the program that consists of nothing but a single gap.

Actually, the greatest lower bound is maximal only in a relative sense. It depends on the domain of incomplete programs in which it is interpreted. From the viewpoint of abstract syntax the simplest incomplete programs are Ω-terms, in which the special constant Ω acts as a gap. For instance,

$$\text{program}(\text{if}(\Omega, \Omega, \Omega)) \leq \text{program}(\text{if}(\text{eq}(x, 0), \text{assign}(y, \Omega), \text{assign}(\Omega, \Omega))).$$

and

$$\text{program}(\text{if}(\text{eq}(x, 0), \text{assign}(y, \Omega), \text{assign}(\Omega, \Omega))) \wedge \text{program}(\text{if}(\text{lt}(x, 0), \text{assign}(y, 1), \Omega)) = \text{program}(\text{if}(\Omega, \text{assign}(y, \Omega), \Omega)).$$

A better greatest lower bound is obtained if incomplete programs are generalized Ω-terms containing n-adic gaps for any $n \geq 0$ rather than conventional Ω-terms containing only zero-adic gaps. For instance, in that case

$$\text{program}(\text{if}(\text{eq}(x, 0), \Omega)) \wedge \text{program}(\text{while}(\text{lt}(x, 0), \Omega))$$

would be equal to

$$\text{program}(\Omega(x, 0, \Omega))$$

rather than to

$$\text{program}(\Omega).$$
Now, suppose \(a \) is changed to \(a' \) after the lazy generator \(L_a \) has processed its \(k \)th input. The largest part of the incomplete program \(g_k \) generated so far that can be retained in the context of \(a' \) is

\[
g' = g_k \land G_{a'}.\]

Obviously, computing \(G_{a'} \) is contrary to the rationale of the lazy generation strategy, so the above characterization of the largest part \(g' \) of \(g_k \) that can be retained in the context of \(a' \) is useless from a computational viewpoint. Fortunately, in many concrete cases a reasonable approximation to \(g' \) can be computed efficiently on the basis of the incomplete program \(g_k \) generated so far, the modification \(\Delta \) to be made to \(a \), and \(a \) itself, without computing \(G_{a'} \). Whether this is feasible has to be investigated separately in each specific case. This is crucial to the success of the proposed lazy/incremental strategy.

A rough outline of the lazy/incremental counterpart \(I_a \) of \(L_a \) is

\[
L_a(\Delta : A \rightarrow A, b : B, C) \quad \text{where} \quad \Delta = \text{id}A
\]

\[
\text{static } \alpha : A \text{ with initial value } a
\]

\[
\text{static } g : B \text{ with initial value } g_0
\]

\[
\text{begin}
\]

\[
\text{if } \Delta + \text{id}A \text{ then } \alpha, g = \text{MODIFY}(\alpha, \Delta, g) \text{ fi}
\]

\[
\text{return } g(b)
\]

\[
\text{when attempting to execute gap } \gamma \text{ in } g
\]

\[
\text{do}
\]

\[
g = \text{EXPAND}(\alpha, g, \gamma)
\]

\[
\text{resume}
\]

\[
\text{od}
\]

\[
\text{end.}
\]

In \(I_a \), \(a \) is no longer constant, but the initial value of static variable \(\alpha \) is subject to modifications \(\Delta \) of type \(A \rightarrow A \). \text{MODIFY} computes (a suitable approximation to) the largest part of the old value of \(g \) that remains valid in the modified context in terms of the old value of \(g \) itself, the modification \(\Delta \), and the old value of \(a \) (see above). It also updates the value of \(\alpha \) by applying \(\Delta \) to it. In view of the above, the definition of \text{MODIFY} is the difficult point. Although we are unable to give a general recipe for this, the next section presents definitions for two specific cases.

3. Lazy/Incremental Scanner and Parser Generation

In this section we discuss the lazy/incremental lexical scanner and parser generators ISG and IPG. As mentioned in Section 1.1, we use the combination ISG/IPG in a syntax-oriented editor for the ASF + SDF language definition formalism, which has very general user-definable syntax.

3.1 ISG — A Fully Lazy/Incremental Lexical Scanner Generator

ISG is a fully lazy/incremental lexical scanner generator. In this case, \(A \) is the domain of regular grammars; \(B \) contains the sentences to be scanned; and \(C \) consists of legal strings with their lexical type(s) and a failure value. For each regular grammar there is a deterministic finite automaton (DFA) recognizing the language generated by the grammar. ISG constructs this
automaton by need, so the incomplete programs \(g \) produced by ISG are partial DFAs (PDFAs), which may be viewed as approximations to the complete automaton for the input grammar. Modifications \(\Delta \) are additions and deletions of a single regular expression.

We now summarize the operation of ISG in relation to the general scheme outlined in Sections 2.2 and 2.3. More details can be found in Heering et al. [1992]. Let \(a \) be a regular grammar with alphabet \(\Sigma \). A PDFA \(g \) for \(a \) consists of a set of states and a binary transition function mapping state-symbol pairs to states. A state is a set of positions \(p \) in \(a \) indicating to which points in the grammar the scanning process has progressed. The start state is the set of initial positions. A gap \(\gamma \) in \(g \) is a state whose transitions have not yet been computed. Whereas a greedy scanner generator can throw away the positions making up a state after the full DFA has been constructed, ISG has to retain the structure of states for the purpose of further expansion and incremental modification of the PDFA.

If the PDFA \(g \) generated so far for \(a \) hits a gap \(\gamma \) while scanning its input string, \(g \) is expanded by an instance of EXPAND (Section 2.2) which, apart from error handling, looks as follows:

\[
\text{EXPAND}(a, g, \gamma) \begin{align*}
\text{begin} \\
\text{assertion expanded}(\gamma) = \text{false} \\
\text{for all } s \in \Sigma \text{ such that symbol}(p, a) = s \text{ for some } p \in \gamma \\
\text{do} \\
\delta := \bigcup_{p \in \gamma; \text{symbol}(p, a) = s} \text{followpos}(p, a) \\
\text{if } \delta \notin g.\text{States} \\
\text{then add } \delta \text{ to } g.\text{States}; \text{expanded}(\delta) := \text{false} \\
\text{fi} \\
g.\text{Transition}(\gamma, s) := \delta \\
\text{expanded}(\gamma) := \text{true} \\
\text{return } g \\
\text{end.}
\end{align*}
\]

EXPAND computes all legal transitions \(\gamma \rightarrow \delta \) of \(\gamma \), where \(s \) is a symbol and \(\delta \) the state to which the (partial) automaton moves from state \(\gamma \) when encountering symbol \(s \) in the input string. For any \(s \) there is at most one such state since we are dealing with deterministic automata. It consists of the positions that may follow the positions \(p \) in \(\gamma \) at which the symbol \(s \) occurs (if any). Accepting states need not have any legal transitions. The symbol occurring at a position \(p \) in the regular grammar \(a \) is returned by symbol, while followpos returns the set of positions in \(a \) that may follow \(p \). The positions making up the successor state \(\delta \) are computed by repeated application of followpos.

It might seem as if EXPAND could be made even lazier by adding only the legal transition for the current symbol rather than all legal transitions. In that case, gaps in the automaton would correspond to unexpanded transitions rather than to unexpanded states. Unfortunately, this approach would require the introduction of error transitions or something equivalent, which is not very attractive.
ISG uses the following instance of MODIFY (Section 2.3):

\[
\text{MODIFY}(a, \Delta, g)
\]

\[
\begin{align*}
\text{begin} & \\
\text{assertion} & : \Delta \neq \text{id}_A \\
\text{anew} & : = \Delta(a) \\
\sigma & : = \text{firstpos}(\text{anew}) \\
\text{gtmp}.\text{Start} & : = \sigma \\
\text{gtmp}.\text{States} & : = g.\text{States} \\
\text{if} & \sigma \in \text{gtmp}.\text{States} \\
\text{then} & \text{add } \sigma \text{ to } \text{gtmp}.\text{States}; \text{expanded}(\sigma) = \text{false} \\
\text{fi} \\
\text{gtmp}.\text{Transition} & : = g.\text{Transition} \\
\text{if} & \text{expanded}(\sigma) = \text{false} \\
\text{then} & \text{gtmp} \leftarrow \text{EXPAND}(\text{anew}, \text{gtmp}, \sigma) \\
\text{fi} \\
\text{gnew}.\text{Start} & : = \sigma \\
\text{gnew}.\text{States} & : = \{ \delta \in \text{gtmp}.\text{States} | \delta = \text{gtmp}.\text{Transition}(\ldots \text{gtmp}.\text{Transition}(\sigma, s_1), \ldots, s_k) \} \\
\text{gnew}.\text{Transition} & : = \text{gtmp}.\text{Transition}|_{\text{gnew}.\text{States}} \\
\text{return} & \text{anew}, \text{gnew} \\
\text{end}.
\end{align*}
\]

After applying \(\Delta\) to \(a\), MODIFY computes the new start state \(\sigma\), which consists of the new set of initial positions, by means of \text{firstpos} and constructs an intermediate partial automaton \(\text{gtmp}\) by adding \(\sigma\) and its legal transitions to the old PDFA \(g\). Since \(\text{gtmp}\) may be partially obsolete, MODIFY performs a garbage collection on it by retaining only states \(\delta\) that are reachable from \(\sigma\) by \(k \geq 0\) applications of the transition function \(\text{gtmp}.\text{Transition}\), and by restricting the transition function to these states. This yields the new PDFA \(\text{gnew}\).

Rather than the greatest lower bound in the sense of Section 2.3 (which is empty since the new automaton always has a different start state), MODIFY computes

\[
\text{EXPAND}(\Delta(a), \{\sigma\} \cup g, \sigma) \land G_{\Delta(a)},
\]

where \(G_{\Delta(a)}\) is the complete DFA for the regular grammar \(\Delta(a)\). Actually, it may compute somewhat less since all states of the old automaton that are not reachable from the new start state are removed. Such states may become reachable after further expansion, however, in which case they could have been retained. This can be achieved at the expense of an increase in space complexity by postponing garbage collection and allowing further lazy expansion of \(\{\sigma\} \cup g\) in the context of \(\Delta(a)\). This is the approach taken in the lazy/incremental parser generator IPG discussed in the next section. The ISG approach has the advantage of simplicity. In practice, the number of states retained after a modification is generally quite close to the theoretical maximum.

ISG has been implemented in Lisp. In so far as a meaningful comparison can be made, the total generation time used by ISG is typically 2.5 times less than that used by the greedy lexical scanner generator FLEX [Paxson 1989], while the lexical scanners produced by it (in Lisp) are typically 5 times slower than those generated by FLEX (in C). The total generation time includes

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994
compilation of the generated scanners in both cases. ISG uses negligible time updating the generated scanner after a modification to the regular grammar. More detailed measurement results are given in Heering et al. [1992].

Szafron and Ng's [1990] interactive incremental scanner generator LexAGen is an interactive development environment for lexical grammars. It maintains a DFA incrementally on the basis of a regular grammar entered by the user. The DFA can be tested interactively after each change to the grammar, or it can be compiled nonincrementally to high-quality C-code with approximately the same performance as that generated by FLEX. The test mode of LexAGen is maintained incrementally, but no performance figures for it are given by Szafron and Ng, so it cannot be compared to ISG.

ISG is used in conjunction with the lazy/incremental parser generator IPG described in the next section.

3.2 IPG — A Fully Lazy/Incremental Context-Free Parser Generator

Taking Tomita's [1985] general context-free parsing algorithm as our point of departure, we developed the fully lazy/incremental parser generator IPG. In this case, A is the domain of context-free grammars; B contains the sentences to be parsed; and C consists of sets of parse trees and a failure value. Modifications A are additions and deletions of a single production rule. The programs g generated by IPG are incomplete LR(0) parse tables which are constructed by need. These may be viewed as incomplete programs for Tomita's general bottom-up parsing algorithm. Since the grammars involved need not be LR(0), the corresponding LR(0) parse tables need not be deterministic, but may contain shift-reduce and reduce-reduce conflicts. Tomita's algorithm interprets nondeterministic table entries by starting as many LR(0) parsers in parallel as required. To keep the number of different LR(0) parsers to a minimum, they are joined at the earliest possible moment.

We now summarize the operation of IPG in relation to the general scheme outlined in Sections 2.2 and 2.3. A more detailed description can be found in Heering et al. [1990] and, in a broader context, in Rekers [1992]. We assume the reader to be familiar with conventional LR parsing [Aho et al. 1986]. In IPG, the LR(0) parse table figures as a set of parse states, a binary transition function, and a unary reduction function. States are sets of dotted rules. A dotted rule n ::= U.U is a BNF rule whose right-hand side contains a dot indicating to which point in the rule parsing has progressed. A state consists of all dotted rules that may be valid simultaneously at some time during parsing and in which some progress has already been made. The latter condition, which does not apply to the start state, means that the right-hand sides of the dotted rules involved do not start with a dot. Gaps γ are states whose transitions and reductions have not yet been computed. Unlike greedy parser generators, IPG cannot throw away the dotted rules making up states, but has to retain them for the purpose of further expansion and incremental modification of the parse table.

The transition function consists of γ → δ triples, where γ and δ are states, and s is either a terminal or a nonterminal symbol of the grammar. If it is a
terminal, the transition corresponds to a *shift* action; otherwise it corresponds to a *goto*.

When a gap γ in the incomplete parse table g is encountered during parsing, IPG calls the following version of *EXPAND*:

```
EXPAND(a, g, $\gamma$)
begin
assertion expanded($\gamma$) = false $\lor$ expanded($\gamma$) = obsolete
------
if expanded($\gamma$) = obsolete
then for all $\gamma \rightarrow \delta \in g$.Transition
  do
    delete $\gamma \rightarrow \delta$ from $g$.Transition
    decrease referencecount($\delta$)
  od
fi
------
$\Gamma := \text{closure}(\gamma, a)$
for all $s$ such that $n ::= u.sv \in \Gamma$
do
  $\delta := \{n ::= u.sv|n \in u.sv \in \Gamma\}$
  if $\delta \not\in g$.States
  then add $\delta$ to $g$.States; expanded($\delta$) := false; referencecount($\delta$) := 0
  fi
  add $\gamma \rightarrow \delta$ to $g$.Transition
  increase referencecount($\delta$)
od
for all $n ::= u \in \Gamma$
do
  if $n \neq \text{start}$
  then add $n ::= u$ to $g$.Reduction($\gamma$)
  else add $\gamma \rightarrow \text{accept}$ to $g$.Transition
  fi
od
------
if expanded($\gamma$) = obsolete
then while referencecount($\delta$) = 0 for some $\delta \in g$.States
  do assertion $\delta \neq \gamma$
    for all $\delta \rightarrow \delta' \in g$.Transition
    do
      delete $\delta \rightarrow \delta'$ from $g$.Transition
      decrease referencecount($\delta'$)
    od
    delete $\delta$ from $g$.States
  od
fi
------
expanded($\gamma$) := true
return $g$
end.
```

For the moment we assume that the incomplete state γ is not *obsolete*, so we skip the first and last *if* statement of *EXPAND*. The remaining part is quite similar to ISG's version of *EXPAND* (Section 3.1). It first uses *closure* to
enrich γ with all dotted rules in which no progress has yet been made, but
which may become applicable, and assigns the result to Γ. Using Γ, it then
computes all transitions and reductions for γ.

Obsolete states γ are produced by MODIFY. The way they are treated by
EXPAND becomes easier to understand if MODIFY is discussed first:

\begin{verbatim}
MODIFY(a, Δ, g)
begin
 assertion $\Delta \neq id_A$
 anew := $\Delta(a)$
 n := nonterminal(Δ)
 for all $\delta \rightarrow \delta' \in g$.Transition
 do expanded(δ) := obsolete
 od
 return anew.g
end.
\end{verbatim}

After applying Δ to a, MODIFY extracts the nonterminal on the left-hand
side of the syntax rule involved in the modification and assigns it to n. It then
sets all states δ that have one or more transitions for n to obsolete. This
means they are treated as gaps, but their old transitions are retained until they are reexpanded (if ever—see below). To increase the chance that parts of the
graph of states that are no longer reachable from the start state are reused, MODIFY does not immediately perform garbage collection like ISG,
but allows lazy expansion of the partially obsolete graph g_{new} and leaves
garbage collection to EXPAND. We therefore resume our discussion of $\text{EX-
PAND}$.

When given an obsolete state γ, EXPAND first deletes its old transitions.
As a result, some of the states to which γ had transitions may end up having reference count 0, that is, completely disconnected from the start state.
Rather than immediately deleting these, EXPAND first expands γ in the
way explained earlier. As a consequence, some of the disconnected states may
become connected again. Only then does EXPAND remove any remaining
disconnected states. A basic shortcoming of the reference-counting method is
that direct or indirect self-references may lead to garbage that is never
collected. On the other hand, there is still no guarantee that states that are
deleted might not have become connected after further expansion, so the
moment at which garbage collection is done might have been postponed still
further.

Like ISG, IPG has been implemented in Lisp. The parsers produced by it
are typically two times slower than those generated by the LALR(1) parser
generator Yacc [Aho et al. 1986; Johnson 1975]. Of course, IPG is not limited
to LALR(1) grammars, but can handle all context-free grammars. Its initial
generation time is very small, and its total generation time is typically 30
times smaller than that of Yacc. This large factor is primarily due to the fact
that IPG generates a parser in the same Lisp work space in which it runs. A
secondary reason is that the LR(0) tables generated by IPG require less effort
than the LALR(1) tables produced by Yacc. IPG uses negligible time updating
the generated parser after a modification to the corresponding context-free
grammar. More detailed measurement results are given in Heering et al. [1990].

Horspool [1989; 1990] has developed an incremental LALR(1) parser generator ILALR. As is to be expected, it has a less efficient generation phase than IPG, but generates better parsers for LALR(1) grammars that are not LR(0). The incremental maintenance of LALR(1) parse tables turns out to be problematic. Adding a syntax rule to the grammar does not present new problems in comparison with the LR(0) case, but deleting a rule leads to a complete recomputation of the LALR(1) look-ahead sets.

4. FURTHER WORK

Both ISG (Section 3.1) and IPG (Section 3.2) have been extended with a subgrammar selection feature, which allows lazy restriction of the incomplete scanner or parser generated so far to a subgrammar corresponding to one of the modules making up a modular regular or context-free grammar [Klint 1991; Rekers 1992]. If a gap is encountered in subgrammar mode, expansion takes place with respect to the full grammar. Restriction of new parts to the currently selected subgrammar is done by need, as well. Although expansion with respect to the currently selected subgrammar would almost always be faster and would be in better agreement with the lazy approach, expansion with respect to the full grammar facilitates selection of a different subgrammar and requires less modification of ISG and IPG.

Walters [1991] has tailored ISG toward the efficient implementation of term-rewriting systems that are subject to frequent modification. The first phase of term rewriting consists of term matching. Hoffmann and O'Donnell [1982] give a top-down matching algorithm that reduces term matching to string matching. Basically, the set of tree patterns (left-hand sides of rewrite rules) is transformed into a finite automaton similar to the one produced by ISG. Walters first derives a set of regular expressions from the set of tree patterns and then uses his extended version of ISG to produce the automaton. In this way, term-rewriting systems that are subject to modification can be handled smoothly and efficiently. No restrictions are imposed on the set of tree patterns.

As pointed out in Section 1, lazy/incremental program generation remains to be investigated from the perspective of incremental languages and partial evaluation.

We have been unable to ascertain whether a lazy/incremental compiler has been implemented for some language, but something very close to it is bound to exist somewhere.

5. CONCLUSIONS

Our experience with ISG and IPG has taught us that lazy/incremental program generation is an implementation technique that merits serious consideration in highly dynamic applications in which both program generation time and program execution time are scarce. Whether it can actually be applied depends on several factors, which have to be investigated separately in each particular case. Obviously, for lazy program generation to make
sense, most expansion steps should be relatively small so that the total generation time can be distributed more or less evenly over many computations. In addition to this, lazy/incremental program generation requires an efficient way of establishing which part of the already generated program remains valid in a modified context.

REFERENCES

Paxson, V. 1989. FLEX. Lexical scanner generator developed at Lawrence Berkeley Laboratory, Berkeley, Calif.

Received January 1988; revised April 1991 and March 1992; accepted June 1992