GABA-A receptor beta 1-3 subunit gene expression in the hippocampus of kindled rats.
Kamphuis, W.; de Rijk, T.; Lopes da Silva, F.H.

Published in:
Neuroscience Letters

DOI:
10.1016/0304-3940(94)90105-8

Citation for published version (APA):
GABA_A receptor β_1-3 subunit gene expression in the hippocampus of kindled rats

W. Kamphuis*, T.C. De Rijk, F.H. Lopes da Silva

Graduate School for the Neurosciences, University of Amsterdam, Institute of Neurobiology, Kruislaan 320, 1098 SM Amsterdam, The Netherlands

Received 15 February 1994; Revised version received 13 April 1994; Accepted 13 April 1994

Abstract

The effect of Schaffer collateral/commissural fiber kindling on the expression levels of GABA_A receptor β_1, β_2, and β_3 subunit mRNA in the pyramidal and granular neurons of the rat dorsal hippocampus was studied, using semi-quantitative in situ hybridization. In pyramidal neurons of CA1 and CA3, only small changes (10-15%) were found. In dentate granule neurons, the expression level of GABA_AR-β_3 mRNA was significantly enhanced, bilaterally, in animals that were partial or fully kindled. At long-term, 4 weeks after the last convulsion no significant changes were found in pyramidal or granular neurons.

Key words: Kindling; GABA_A receptor β subunit; γ-Aminobutyric acid; mRNA; Hybridization, in situ; Hippocampus; Fascia dentata; Epileptogenesis

The repeated application of a high-frequency electrical stimulation to discrete regions of the brain results in the occurrence of epileptiform afterdischarges of increasing duration and intensity and in the gradual appearance of behavioural epileptiform seizure activity [4]. This process of epileptogenesis, called ‘kindling’, leads to a long-lasting increased seizure susceptibility and has been extensively studied as an experimental model of focal epilepsy [8,12].

In previous work we have reported several changes that take place in the GABAergic inhibitory system in the hippocampus as a result of kindling stimulations. In CA1 area, a reduction of the inhibition takes place as evidenced by a reduced paired-pulse inhibition of local evoked field potentials [7,9,27], a decreased sensitivity of the pyramidal neurons for iontophoretically applied GABA [6], and a reduced binding of the GABA_A receptor agonist [3H]muscimol [22]. In contrast to the decreased inhibition in CA1, in the fascia dentata paired-pulse inhibition is strengthened [7,23,28], together with a robust increase in [3H]muscimol binding in this area [14,18,22].

Structurally, the GABA_A-receptor is a hetero-oligomeric complex composed of several subunits (α, β, γ, δ, ρ), each of which exists in the brain in different variants [11,16]. In recombinant expression studies, the association of different cloned subunit variants leads to a functional diversity of the GABA_A receptor complexes with regard to GABA-activated chloride currents, benzodiazepine pharmacology and sensitivity for agonists [11,16,20]. In purified preparations of GABA_A receptors of the brain, the binding of [3H]muscimol shows a preference for bands that co-migrate with those that stain with a β subunit-specific antibody [1,2,3,15]. Therefore, we have investigated whether the observed alterations in [3H]muscimol binding in the two hippocampal areas may be related to a modified expression of the genes that encode for the three identified variants of the β-class [10,24,26]. To allow a differential measurement of the GABA_AR-β_1, -β_2, and -β_3 subunit mRNA levels in the hippocampal subregions, we used the technique of in situ hybridization.

Male Wistar rats (n = 54) were used in this study. Stainless-steel electrodes were implanted in the CA1 area of the left dorsal hippocampus of rats under pentobarbital anaesthesia. The stimulation bundle was placed in the Schaffer-collateral/commissural fiber pathway and the
The value obtained in the control group was used as reference and set at 100%. Statistical comparisons with respect to controls were carried out on the determined extinction values using the Student's t-test. \(*P < 0.05; **P < 0.03; ***P < 0.01; ****P < 0.002 \) (two tailed).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Kindle-pooled</th>
<th>6-AD</th>
<th>14-AD</th>
<th>FK</th>
<th>LK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 21)</td>
<td>(n = 7)</td>
<td>(n = 6)</td>
<td>(n = 8)</td>
<td>(n = 8)</td>
</tr>
<tr>
<td>CA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABA<sub>A</sub>α<sub>1</sub></td>
<td>9.2 ± 2.1****</td>
<td>4.3 ± 2.8</td>
<td>9.6 ± 4.5</td>
<td>9.4 ± 3.0**</td>
<td>2.6 ± 2.6</td>
</tr>
<tr>
<td>GABA<sub>A</sub>α<sub>2</sub></td>
<td>-7.5 ± 2.1*</td>
<td>-8.8 ± 3.4</td>
<td>-9.8 ± 2.8</td>
<td>-2.5 ± 2.9</td>
<td>-9.9 ± 3.9</td>
</tr>
<tr>
<td>GABA<sub>A</sub>α<sub>3</sub></td>
<td>3.4 ± 2.5</td>
<td>4.1 ± 5.7</td>
<td>-1.2 ± 4.0</td>
<td>7.2 ± 2.4*</td>
<td>0.4 ± 4.8</td>
</tr>
<tr>
<td>CA3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABA<sub>A</sub>α<sub>1</sub></td>
<td>5.6 ± 1.5*</td>
<td>0.5 ± 2.2</td>
<td>6.2 ± 1.8</td>
<td>7.1 ± 3.4</td>
<td>-2.3 ± 1.8</td>
</tr>
<tr>
<td>GABA<sub>A</sub>α<sub>2</sub></td>
<td>-11.4 ± 2.6***</td>
<td>-12.6 ± 2.7</td>
<td>-14.3 ± 3.1</td>
<td>-6.4 ± 5.3</td>
<td>6.6 ± 4.6</td>
</tr>
<tr>
<td>GABA<sub>A</sub>α<sub>3</sub></td>
<td>7.4 ± 2.1**</td>
<td>5.9 ± 3.7</td>
<td>2.3 ± 2.4</td>
<td>14.5 ± 2.9***</td>
<td>-2.2 ± 4.2</td>
</tr>
</tbody>
</table>

Fascia dentata					
GABA_Aα₁	11.6 ± 3.5**	3.2 ± 4.4	9.1 ± 6.0	6.6 ± 5.6	9.7 ± 5.2
GABA_Aα₂	6.3 ± 3.2	-4.2 ± 2.0	0.8 ± 7.7	21.1 ± 6.6**	-0.2 ± 4.8
GABA_Aα₃	29.9 ± 3.0****	26.7 ± 6.1****	31.0 ± 5.7****	29.9 ± 4.2****	4.5 ± 6.0

The value obtained in the control group was used as reference and set at 100%. Statistical comparisons with respect to controls were carried out on the determined extinction values using the Student's t-test. \(*P < 0.05; **P < 0.03; ***P < 0.01; ****P < 0.002 \) (two tailed).
In the LK group no significant changes were detected.

In order to confirm the increased expression of GABA_αR-β_3 in all principal neurons of the hippocampus in fully kindled animals, we studied the mRNA levels in a second series of fully kindled animals. Animals were kindled in a comparable way as described above, and sacrificed 24 h (n = 6) after the last generalized seizure. A significantly enhanced expression level of GABA_αR-β_3 mRNA in all hippocampal areas was found in comparison with controls (n = 6). The relative increase was: in CA1: +17.7 ± 5.2% (P ≤ 0.05), in CA3: +23.5 ± 4.7% (P ≤ 0.02), and in fascia dentata: +31.9 ± 5.3% (P ≤ 0.004). In an additional group of kindled animals, sacrificed 28 days (n = 6) after the last class 5 seizure, again no changes in GABA_αR-β_3 mRNA levels were found that persisted as long as 4 weeks.

Kindling of the Schaffer collateral/commissural path-

way leads to a gradual increase of the GABAergic inhibition in the fascia dentata [7,23,28] whereas in CA1 inhibition decreases [6,7,9,27]. These opposite changes in GABAergic inhibition are accompanied by a bilateral increased binding of GABA_α-receptor agonist [^3H]muscimol in the fascia dentata [14,18,22] and a decreased binding in CA1 [22]. The absence of changes restricted to the stimulated hemisphere is probably due to the rapid spread of the afterdischarge activity from the site of stimulation to the contralateral hippocampus already occurring with the first kindling session.

Based on the observations described here, we conclude that kindling stimulations result only in small (10-15%) changes of GABA_αR-β subunit expression in CA1 and CA3 areas, but in opposite directions; a decrease of GABA_αR-β_2 and an increase of GABA_αR-β_1 mRNA levels. The decreased [^3H]muscimol binding in CA1 in fully kindled animals cannot be related in a straightforward way to an altered expression of the GABA_αR-β subunit encoding genes. It may be possible that changes in the phosphorylation level of the GABA_αR-subunits rather than changes in receptor density or composition are primarily responsible for the reduction in GABAergic inhibition in this brain area [13,19,21]. In the fascia dentata the GABA_αR-β mRNA levels were clearly increased bilaterally in the course of kindling, most prominently the β_1 levels. We hypothesize, that the enhanced expression of the GABA_αR-β genes in this area underlies the robust increase of [^3H]muscimol binding sites in the fascia dentata in fully kindled animals which most likely subserves the observed increase of recurrent inhibition [7,23,28]. Such an alteration would counterbalance changes in the same area that result in enhanced glutamatergic excitatory synaptic transmission [5]. Obviously, further quantification of the receptor complex proteins, using subunit specific antibodies, will be needed to substantiate this conclusion and to establish the precise time course and persistence of the long-term changes.

These investigations were supported by the Royal Netherlands Academy of Arts and Sciences (KNAW) and the Committee on Epilepsy of the Division for Health Research of the National Epilepsy Fund (CLEO, project number A-77). We would like to thank Dr. H. Monyer for kindly providing us with the DNA probes for the GABARs and Dr. P.C. Diegenbach for his assistance on the densitometric analysis of the autoradiograms.

