Glucosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae
van Berkel, M.A.A.; Caro, L.H.P.; Montijn, R.C.; Klis, F.M.

Published in:
FEBS Letters

DOI:
10.1016/0014-5793(94)00631-8

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Glucosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae

M.A.A. van Berkel*, L.H.P. Caro, R.C. Montijn, F.M. Klis
Institute for Molecular Cell Biology, University of Amsterdam, BioCentrum Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
Received 6 June 1994

Abstract
Extension of a reporter protein with the carboxyterminal thirty amino acids of the cell wall mannoprotein α-agglutinin of Saccharomyces cerevisiae resulted in incorporation of the chimeric protein in the cell wall. By Western analysis it was shown that the incorporated protein contained β-1,6-glucan similar to endogenous cell wall proteins, whereas excreted reporter protein was not glucosylated. This suggests that β-1,6-glucan is involved in anchoring mannoproteins in the cell wall.

Key words: Glycosylation; Glucan; Mannoprotein; GPI-anchor; α-Agglutinin; α-Galactosidase; Yeast

1. Introduction
The cell wall of Saccharomyces cerevisiae consists of a glucan layer covered by a layer of mannoproteins. Mannoproteins carry large, branched mannan polysaccharides, N-glycosidically linked to asparagine residues, and short oligomannosides, O-glycosidically linked to serine or threonine. Although some mannoproteins can be extracted from cell walls by detergent, most mannoproteins can only be released by digesting walls with a β-1,3-glucanase, indicating that they are tightly associated with the glucan layer (see [1] for recent review about the cell wall).

We recently demonstrated that several β-1,3-glucanase-extractable wall proteins are covalently linked to a β-1,6-glucan [2,3]. This raised the question whether this type of side-chain is involved in anchoring glucanase-extractable mannoproteins in the cell wall. To answer this question, we investigated the incorporation of α-agglutinin, the sexual adhesion protein in the cell walls of MATα cells. The N-terminal part of this protein is involved in sexual adhesion [4]. The C-terminal half consists for about 50% of serine and threonine [5], suggesting that it might function as a spacer domain due to a high density of O-linked oligomannosides [6]. At the C-termi-

nus, a functional addition signal for a glycosylphosphatidylinositol (GPI) membrane anchor is present [4]. We show here that a reporter protein extended with the carboxyterminal thirty amino acids of α-agglutinin is incor-

*Corresponding author. Fax: (31) (20) 525 7934 or (31) (20) 525 7715.

0014-5793/94/$7.00 © 1994 Federation of European Biochemical Societies. All rights reserved.
SSDI 0014-5793(94)00631-5
3. Results

The fusion protein αgal consists of guar α-galactosidase preceded by the signal sequence of yeast invertase. The chimeric proteins αgal-30AGal and αgal-320AGal were constructed by C-terminal extension of αgal with carboxyterminal parts of α-agglutinin (Fig. 1). Fig. 2 shows that colonies of cells expressing αgal formed large, faint-blue halos in the presence of the chromogenic substrate X-α-Gal due to secretion of α-galactosidase into the medium. On the other hand, colonies of cells expressing either αgal-30AGal or αgal-320AGal became dark-blue and formed only very small halos, indicating that both chimeric proteins were largely retained at the cell surface. Assay of α-galactosidase activity with the chromogenic substrate pNPG confirmed that clgal was almost entirely secreted into the medium, whereas the activity in cells expressing either αgal-30AGal or αgal-320AGal was largely associated with the cell walls (Table 1). Western analysis of components of the growth medium of αgal-cells with α-galactosidase antiserum showed the presence of a predominant form of α-galactosidase with an A4, of 40 kDa (Fig. 3, lane 1) as expected from the sequence data [10]. A considerable part of the cell wall protein αgal-30AGal1 could only be released by digesting the walls with a β-1,3-glucanase and had an M, of 50 kDa (Fig. 3, lane 3). Material released by detergent extraction had a slightly smaller M, of 45 kDa (Fig. 3, lane 2), suggesting that it is either a precursor or a degradation product of the glucanase-extractable form. In contrast, the chimeric protein αgal-320AGal1 was almost entirely recovered in the β-1,3-glucanase extract of isolated walls. The most abundant form had an M, of 350 kDa (Fig. 3, lane 5). A ladder of products of lower molecular mass probably representing degradation products was also present. The detergent extract contained a very faint band of 75 kDa (Fig. 3, lane 4). Control experiments showed that no α-galactosidase activity was detected biochemically or immunologically in untransformed cells (not shown).

To test whether the chimeric cell wall proteins αgal-30AGal1 and αgal-320AGal1 contained β-1,6-glucan, cell wall extracts were subjected to Western analysis with β-1,6-glucan specific antiserum. In the β-1,3-glucanase extract of walls of untransformed cells, four proteins were detected of 205, 145, 80 and 55 kDa (Fig. 4, lane 2). In the β-1,3 glucanase extract of cells that expressed the small chimeric protein, an additional protein was detected with an A4, of 50 kDa (Fig. 4, lane 1), corresponding with the β-1,3-glucanase-extractable form of this protein (Fig. 3, lane 3). Likewise, in the β-1,3 glucanase extract of cells expressing the large chimeric protein, an additional protein was detected with an M, of 350 kDa (Fig. 4, lane 3). However, the antiserum did not bind to secreted αgal (Fig. 4, lane 7), nor to the detergent-extractable 45-kDa form of αgal-30AGa or the faint 75-kDa band in the detergent extract of αgal-320AGal1 cell walls. Interestingly, the detergent extracts of all cell types contained some high molecular weight material that

Table 1

<table>
<thead>
<tr>
<th>Expressed protein</th>
<th>α-Galactosidase activity (U/g fresh weight cells)</th>
<th>Growth medium</th>
<th>Intact cells</th>
<th>Isolated cell walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>αgal</td>
<td>53 ± 6,5 (n = 5)</td>
<td>0.13 ± 0.09 (n = 3)</td>
<td>0.06 ± 0.03 (n = 5)</td>
<td></td>
</tr>
<tr>
<td>αgal-30AGal1</td>
<td>0.4 ± 0.1 (n = 5)</td>
<td>6.9 ± 2.2 (n = 3)</td>
<td>9.1 ± 1.3 (n = 5)</td>
<td></td>
</tr>
<tr>
<td>αgal-320AGal1</td>
<td>4.6 ± 0.4 (n = 5)</td>
<td>28.0 ± 6.2 (n = 3)</td>
<td>19.3 ± 3.4 (n = 5)</td>
<td></td>
</tr>
</tbody>
</table>

One unit of activity corresponds to the hydrolysis of 1 μmol pNPG per min at 37°C, pH 4,5. Figures are means ± S.E.M. with the number of independant transformants tested in parentheses.
hardly entered the gel (Fig. 4, lanes 4, 5 and 6). Competition experiments confirmed that the antiserum specifically bound to β-1,6 glucan. Addition of pustulan (β-1,6-glucan) abolished the reactivity of the proteins to the antiserum, but addition of laminarin (β-1,3-glucan) or mannan had no effect. In addition, periodate, which destroys β-1,6-glucan but has no effect on β-1,3-glucan, abolished the reactivity of the proteins to the antiserum (not shown). These results demonstrate that the chimeric glucanase-extractable wall proteins αagal-30AGal1 and αagal-320AGal1 contain β-1,6-glucan, whereas secreted αgal is not glucosylated.

4. Discussion

We show here that fusion of a carboxyterminal part of α-agglutinin as short as thirty amino acids to a reporter enzyme leads to incorporation of the chimeric protein in the cell wall. Wojciechowicz et al. [4] have demonstrated that deletion of the carboxyterminal fifteen amino acids of α-agglutinin allows efficient secretion of biologically active α-agglutinin. It seems therefore likely that the addition of a terminal GPI-anchor to α-agglutinin is essential for incorporation of the adhesion molecule in the cell wall. However, several GPI-anchored proteins are plasma membrane-linked [11,12], suggesting that addition of a GPI-anchor is in itself not sufficient for cell wall incorporation. Since the carboxyterminal thirty amino acids of α-agglutinin do not contain many serine and threonine residues and lack potential N-glycosylation sites [5], extensive mannosylation cannot play a role in binding. We show here that chimeric glucanase-extractable wall proteins consisting of a reporter enzyme and a carboxyterminal part of α-agglutinin contain β-1,6-glucan similar to endogenous wall proteins. In contrast, secreted reporter enzyme recovered from the growth medium is not glucosylated. This suggests that the attachment of β-1,6-glucan plays a role in anchoring glucanase-extractable mannoproteins in the glucan layer of the cell wall. This β-1,6-glucan might be attached to a cell wall-specific type of GPI-anchor, as was recently hypothesised by De Nobel and Lipke [13]. According to this view, glucose should be absent from the carbohydrate part of GPI-anchors of plasma membrane-bound proteins. Indeed, so far no glucose has been detected in these structures [14,15].

Acknowledgements: We thank M.P. Schreuder for constructing plasmid pPGA2, Dr. J. Verbakel for making available purified guar α-galactosidase and Dr. H. van den Ende for critically reading the manuscript.

References