Glucosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae
van Berkel, M.A.A.; Caro, L.H.P.; Montijn, R.C.; Klis, F.M.

Published in:
FEBS Letters

DOI:
10.1016/0014-5793(94)00631-8

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Glucosylation of chimeric proteins in the cell wall of *S. cerevisiae*

M.A.A. van Berkel*, L.H.P. Caro, R.C. Montijn, F.M. Klis

Institute for Molecular Cell Biology, University of Amsterdam, BioCentrum Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands

Received 6 June 1994

Abstract

Extension of a reporter protein with the carboxyterminal thirty amino acids of the wall mannoprotein α-agglutinin of *S. cerevisiae* resulted in incorporation of the chimeric protein in the cell wall. By Western analysis it was shown that the incorporated protein contained β-1,6-glucan similar to endogenous cell wall proteins, whereas excreted reporter protein was not glucosylated. This suggests that β-1,6-glucan is involved in anchoring mannospolysaccharides, N-glycosidically linked to asparagine residues, and short oligomannosides, O-glycosidically linked to serine or threonine. Although some mannospolysaccharides can be extracted from cell walls by detergent, most mannospolysaccharides can only be released by digesting walls with a β-1,3-glucanase, indicating that they are tightly associated with the glucan layer (see [1] for recent review about the cell wall).

We recently demonstrated that several β-1,3-glucanase-extractable wall proteins are covalently linked to a β-1,6-glucan [2,3]. This raised the question whether this type of side-chain is involved in anchoring glucanase-extractable mannospolysaccharides in the cell wall. To answer this question, we investigated the incorporation of α-agglutinin, the sexual adhesion protein in the cell walls of *MATα* cells. The N-terminal part of this protein is involved in sexual adhesion [4]. The C-terminal half consists for about 50% of serine and threonine [5], suggesting that it might function as a spacer domain due to a high density of O-linked oligomannosides [6]. At the C-terminus, a functional addition signal for a glycosylphosphatidylinositol (GPI) membrane anchor is present [4]. We show here that a reporter protein extended with the carboxyterminal thirty amino acids of α-agglutinin is incorporated in the cell wall and contains β-1,6-glucan. In contrast, reporter protein that is recovered from the culture fluid and apparently is secreted is not glucosylated, suggesting that the attachment of a β-1,6-glucan side-chain plays a role in anchoring β-1,3-glucanase-extractable mannospolysaccharides in the cell wall.

Key words: Glycosylation; Glucan; Mannoprotein; GPI-anchor; α-Agglutinin; α-Galactosidase; Yeast

1. Introduction

The cell wall of *S. cerevisiae* consists of a glucan layer covered by a layer of mannospolysaccharides. Mannoproteins carry large, branched mannansaccharides, N-glycosidically linked to asparagine residues, and short oligomannosides, O-glycosidically linked to serine or threonine. Although some mannospolysaccharides can be extracted from cell walls by detergent, most mannospolysaccharides can only be released by digesting walls with a β-1,3-glucanase, indicating that they are tightly associated with the glucan layer (see [1] for recent review about the cell wall).

We recently demonstrated that several β-1,3-glucanase-extractable wall proteins are covalently linked to a β-1,6-glucan [2,3]. This raised the question whether this type of side-chain is involved in anchoring glucanase-extractable mannospolysaccharides in the cell wall. To answer this question, we investigated the incorporation of α-agglutinin, the sexual adhesion protein in the cell walls of *MATα* cells. The N-terminal part of this protein is involved in sexual adhesion [4]. The C-terminal half consists for about 50% of serine and threonine [5], suggesting that it might function as a spacer domain due to a high density of O-linked oligomannosides [6]. At the C-terminus, a functional addition signal for a glycosylphosphatidylinositol (GPI) membrane anchor is present [4]. We show here that a reporter protein extended with the carboxyterminal thirty amino acids of α-agglutinin is incorporated in the cell wall and contains β-1,6-glucan. In contrast, reporter protein that is recovered from the culture fluid and apparently is secreted is not glucosylated, suggesting that the attachment of a β-1,6-glucan side-chain plays a role in anchoring β-1,3-glucanase-extractable mannospolysaccharides in the cell wall.

2. Materials and methods

S. cerevisiae BJ2168 (*MATα*, *leu2*, *trpl*, *ura3–52*, *prbl–112*, *pep4–4*, *pca1–407* gal2) was obtained from the Yeast Genetic Stock Centre (Berkeley, CA, USA). Cells were transformed with plasmids encoding the fusion proteins depicted in Fig. 1. Plasmid pSY13 [7] encodes αGal, plasmid pPGA1 [7] encodes the chimeric protein αGal-320AGa1, and plasmid pPGA2 encodes the chimeric protein αGal-30AGa1. pPGA2 was constructed using pSY13 and the AGa1 gene encoding α-agglutinin [5], kindly provided by Dr. J. Kurjan. The StyI restriction site at position 1143 in the coding sequence of αgal in pSY13 was ligated to the BspHI restriction site at position 1,839 in the coding sequence of the AGa1 gene. To obtain an in-frame fusion, the StyI and BspHI overhanging ends were filled in with Klenow DNA polymerase. The HindIII site in the 3′ untranslated part of the AGa1 gene was ligated to the HindIII site preceding the PGK terminator in pSY13.

α-Galactosidase activity of transformants was detected on plates containing 5-bromo-4-chloro-3-indolyl-α-D-galactose (X-α-Gal) and was quantified using p-nitrophenyl-α-D-galactopyranoside (pNPG) as described previously [7]. Cultures were grown to an OD₆₀₀ of 2.0. Cell walls were isolated as in [2], boiled in the presence of SDS, EDTA and β-mercaptoethanol to obtain detergent extracts as in [7] and subsequently digested with laminarinase to obtain β-1,3-glucanase extracts as in [2]. Proteins present in the culture fluid were precipitated using deoxycholate [8]. Western analysis was carried out as described previously [3], except that enhanced chemiluminescence (ECL) detection was used according to the manufacturer’s protocol (Amersham International, Little Chalfont, Buckinghamshire, UK). Fractions for Western analysis were equivalent to 250 μl of culture fluid, or to the detergent or β-1,3-glucanase extract of 1 mg cell walls (wet weight). α-Galactosidase anisomer was raised in rabbits using purified α-galactosidase from guar (kindly provided by Dr. J. Verbake, Unilever, Vlaardingen, The Netherlands) and was purified by adsorption on acetone powder of BJ2168 cells [9]. β-1,6-Glucan anisomer was raised in rabbits using BSA-pustulan glycoconjugates [3] and was purified by affinity chromatography on a pustulan-Sepharose column.

*Corresponding author. Fax: (31) (20) 525 7934 or (31) (20) 525 7715.

Abbreviations: GPI-anchor: glycosylphosphatidylinositol anchor; X-α-Gal: 5-bromo-4-chloro-3-indolyl-α-D-galactose; pNPG: p-nitrophenyl-α-D-galactopyranoside; SDS: sodium dodecyl sulfate; EDTA: ethylenediaminetetraacetic acid
Fig. 1. Schematic representation of the proteins agal, agal-30AGal and agal-320AGal. SP: signal peptide of yeast invertase; reporter: guara-galactosidase; a-agglutinin part: 30 carboxyterminal amino acids (agal-30AGal) or 320 carboxyterminal amino-acids (agal-320AGal).

Fig. 2. Colonies of BJ2168 cells expressing agal (panel a), agal-30AGal (panel b) or agal-320AGal (panel c) on medium containing X-a-Gal.

Table 1

Distribution of a-galactosidase activity in BJ2168 cells expressing agal, agal-30AGal, or agal-320AGal

<table>
<thead>
<tr>
<th>Expressed protein</th>
<th>a-Galactosidase activity (U/g fresh weight cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth medium</td>
</tr>
<tr>
<td>agal</td>
<td>53.1 + 6.5 (n = 5)</td>
</tr>
<tr>
<td>agal-30AGal</td>
<td>0.4 ± 0.1 (n = 5)</td>
</tr>
<tr>
<td>agal-320AGal</td>
<td>4.6 ± 0.4 (n = 5)</td>
</tr>
</tbody>
</table>

One unit of activity corresponds to the hydrolysis of 1 μmol pNPG per min at 37°C, pH 4.5. Figures are means ± S.E.M. with the number of independent transformants tested in parentheses.

3. Results

The fusion protein agal consists of guara-a-galactosidase preceded by the signal sequence of yeast invertase. The chimeric proteins agal-30AGal and agal-320AGal were constructed by C-terminal extension of agal with carboxyterminal parts of a-agglutinin (Fig. 1). Fig. 2 shows that colonies of cells expressing agal formed large, faint-blue halos in the presence of the chromogenic substrate X-a-Gal due to secretion of a-galactosidase into the medium. On the other hand, colonies of cells expressing either agal-30AGal or agal-320AGal became dark-blue and formed only very small halos, indicating that both chimeric proteins were largely retained at the cell surface. Assay of a-galactosidase activity with the chromogenic substrate pNPG confirmed that clgal was almost entirely secreted into the medium, whereas the activity in cells expressing either agal-30AGal or agal-320AGal was mainly associated with the cell walls (Table 1). Western analysis of components of the growth medium of agal-cells with a-galactosidase antiserum showed the presence of a predominant form of a-galactosidase with an M, of 40 kDa (Fig. 3, lane 1) as expected from the sequence data [10]. A considerable part of the cell wall protein agal-30AGal could only be released by digesting the walls with a β-1,3-glucanase and had an M, of 50 kDa (Fig. 3, lane 3). Material released by detergent extraction had a slightly smaller M, of 45 kDa (Fig. 3, lane 2), suggesting that it is either a precursor or a degradation product of the glucanase-extractable form. In contrast, the chimeric protein agal-320AGal was almost entirely recovered in the β-1,3-glucanase extract of isolated walls. The most abundant form had an M, of 350 kDa (Fig. 3, lane 5). A ladder of products of lower molecular mass probably representing degradation products was also present. The detergent extract contained a very faint band of 75 kDa (Fig. 3, lane 4). Control experiments showed that no a-galactosidase activity was detected biochemically or immunologically in untransformed cells (not shown).

To test whether the chimeric cell wall proteins agal-30AGal and agal-320AGal contained β-1,6-glucan, cell wall extracts were subjected to Western analysis with β-1,6-glucan specific antiserum. In the β-1,3-glucanase extract of walls of untransformed cells, four proteins were detected of 205, 145, 80 and 55 kDa (Fig. 4, lane 2). In the β-1,3 glucanase extract of cells that expressed the small chimeric protein, an additional protein was detected with an M, of 50 kDa (Fig. 4, lane 1), corresponding with the β-1,3-glucanase-extractable form of this protein (Fig. 3, lane 3). Likewise, in the β-1,3-glucanase extract of cells expressing the large chimeric protein, an additional protein was detected with an M, of 350 kDa (Fig. 4, lane 3). However, the antiserum did not bind to secreted agal (Fig. 4, lane 7), nor to the detergent-extractable 45-kDa form of agal-30AGa or the faint 75-kDa band in the detergent extract of agal-320AGa1 cell walls. Interestingly, the detergent extracts of all cell types contained some high molecular weight material that
hardly entered the gel (Fig. 4, lanes 4, 5 and 6). Competition experiments confirmed that the antiserum specifically bound to β-1,6 glucan. Addition of pustulan (β-1,6-glucan) abolished the reactivity of the proteins to the antiserum, but addition of laminarin (β-1,3-glucan) or mannan had no effect. In addition, periodate, which destroys β-1,6-glucan but has no effect on β-1,3-glucan, abolished the reactivity of the proteins to the antiserum (not shown). These results demonstrate that the chimeric glucanase-extractable wall proteins αgal-30AGal1 and αgal-320AGzl contain β-1,6-glucan, whereas secreted αgal is not glucosylated.

4. Discussion

We show here that fusion of a carboxyterminal part of α-agglutinin as short as thirty amino acids to a reporter enzyme leads to incorporation of the chimeric protein in the cell wall. Wojciechowicz et al. [4] have demonstrated that deletion of the carboxyterminal fifteen amino acids of α-agglutinin allows efficient secretion of biologically active α-agglutinin. It seems therefore likely that the addition of a terminal GPI-anchor to α-agglutinin is essential for incorporation of the adhesion molecule in the cell wall. However, several GPI-anchored proteins are plasma membrane-linked [11,12], suggesting that addition of a GPI-anchor is in itself not sufficient for cell wall incorporation. Since the carboxyterminal thirty amino acids of α-agglutinin do not contain many serine and threonine residues and lack potential N-glycosylation sites [5], extensive mannosylation cannot play a role in binding. We show here that chimeric glucanase-extractable wall proteins consisting of a reporter enzyme and a carboxyterminal part of α-agglutinin contain β-1,6-glucan similar to endogenous wall proteins. In contrast, secreted reporter enzyme recovered from the growth medium is not glucosylated. This suggests that the attachment of β-1,6-glucan plays a role in anchoring glucanase-extractable mannoproteins in the glucan layer of the cell wall. This β-1,6-glucan might be attached to a cell wall-specific type of GPI-anchor, as was recently hypothesised by De Nobel and Lipke [13]. According to this view, glucose should be absent from the carbohydrate part of GPI-anchors of plasma membrane-bound proteins. Indeed, so far no glucose has been detected in these structures [14,15].

Acknowledgements: We thank M.P. Schreuder for constructing plasmid pPGA2, Dr. J. Verbakel for making available purified guar α-galactosidase and Dr. H. van den Ende for critically reading the manuscript.

References