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Abstract

In this paper, we propose variational prototype inference
to address few-shot semantic segmentation in a probabilis-
tic framework. A probabilistic latent variable model infers
the distribution of the prototype that is treated as the latent
variable. We formulate the optimization as a variational
inference problem, which is established with an amortized
inference network based on an auto-encoder architecture.
The probabilistic modeling of the prototype enhances its
generalization ability to handle the inherent uncertainty
caused by limited data and the huge intra-class variations
of objects. Moreover, it offers a principled way to incor-
porate the prototype extracted from support images into the
prediction of the segmentation maps for query images. We
conduct extensive experimental evaluations on three bench-
mark datasets. Ablation studies show the effectiveness of
variational prototype inference for few-shot semantic seg-
mentation by probabilistic modeling. On all three bench-
marks, our proposal achieves high segmentation accuracy
and surpasses previous methods by considerable margins.

1. Introduction
Semantic segmentation perceives the visual-world with

pixel-level precision to help recognize and localize ob-
jects with rich details. Deep learning based models have
achieved astonishing progress in semantic segmentation [2,
17]. However, they usually require a large amount of pixel-
wise annotations for supervision which is expensive to ob-
tain in practice. Moreover, the categories of objects to be
segmented in the test stage must always be included in the
�These authors contribute equally.
yCorresponding Author.

training stage, which restricts its generality for practical use.
Thus, few-shot semantic segmentation [25, 4] has recently
emerged as a popular task to deal with the aforementioned
issues in traditional semantic segmentation. The goal of
few-shot segmentation is to segment the object of an un-
seen category in a query image with the support of only a
few annotated images.

A critical challenge in few-shot semantic segmentation is
the scarcity of annotated data for each object category to be
segmented. Hence, faithfully extracting the class of the ob-
jects from the support images is key to guiding the segmen-
tation of objects in the query image. Inspired by the proto-
type theory from cognitive science [24, 38] and prototypi-
cal networks for few-shot classification [28], the prototype-
based framework has recently become popular for few-shot
segmentation as well [19, 36, 4, 31, 26]. Generally, the pro-
totype refers to some characteristic representation of a cate-
gory, which is obtained by a deep neural network that takes
support images and segment annotations as input. Subse-
quently, it guides the segmentation procedure of a query
image by learning a certain metric [4]. The prototype-based
methods have achieved good progress in few-shot semantic
segmentation tasks. By mapping scarce support images to
a deterministic class prototype, those methods learn trans-
ferable knowledge for segmenting arbitrary unseen classes.
However, deterministic models suffer from two shortcom-
ings: (1) Representing the prototype by a deterministic vec-
tor can be ambiguous and is vulnerable to noise because of
the limited training data. (2) Capturing the information of
objects by a single vector is inadequate, since objects in the
same category usually exhibit great intra-class variations, as
illustrated in Fig 1 (a). We address few-shot semantic seg-
mentation by a new, probabilistic model that tackles these
shortcomings.
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Figure 1. Deterministic model (previous work) vs. probabilistic model (this work): The deterministic model embeds the support set into a
single deterministic vector as the prototype, measuring the distance between the prototype vector and feature vectors of pixels on the query
image. The deterministic prototype tends to be biased and lacks the ability to represent categorical concepts. The proposed probabilistic
model infers the distribution of the prototype, which is treated as a latent variable, from the support set. The probabilistic prototype is more
expressive of categorical concepts and endows the model with better generalization to unseen objects.

Our main contribution is to provide the first probabilistic
framework for few-shot semantic segmentation. We model
the class prototype as a distribution rather than a determin-
istic vector, which is able to better handle the uncertainty
caused by limited support images and enhances the gen-
eralization for handling large intra-class variations of ob-
jects. Our second contribution is an optimization formu-
lated as a variational inference problem, which we call vari-
ational prototype inference (VPI). The optimization objec-
tive is built upon a newly derived evidence lower bound,
which well fits the few-shot segmentation problem and of-
fers a principled way to incorporate the prototype into seg-
mentation by conditional inference. To evaluate our pro-
posal, we conduct extensive experiments on three bench-
marks, i.e., Pascal-5i [25], MS-COCO [16] and FSS-1000
[32]. The ablative results demonstrate the benefit of the
proposed probabilistic modeling for few-shot semantic seg-
mentation. The comparison results show that our VPI out-
performs the previous deterministic models on both 1-shot
and 5-shot semantic segmentation tasks, showing its effec-
tiveness for few-shot semantic segmentation.

2. Related Work
Many-Shot Semantic Segmentation Semantic segmen-
tation aims to segment given images within several pre-
defined classes and is often regarded as a pixel-level classi-
fication task. State-of-the-art semantic segmentation meth-
ods based on deep convolutional neural networks [17, 37,
2, 23, 1, 15] have achieved astonishing success. The fully
convolutional network [17] was the first model to intro-
duce end-to-end convolutional neural networks into seg-
mentation tasks, in which a fully convolutional architec-
ture was designed. DeepLab [2] introduced the dilated
convolution operation to enlarge the perception field while

maintaining the resolution. However, to achieve good per-
formance, fully convolutional networks must be heavily-
parameterized and trained on a large number of images
with pixel-level annotations, which are laborious to obtain.
Moreover, the deep semantic segmentation models usually
perform modest on new categories of objects that are un-
available in the training set, which restricts their use in prac-
tical applications.

Few-Shot Semantic Segmentation In contrast to many-
shot semantic segmentation, few-shot semantic segmenta-
tion aims to segment images from arbitrary classes by learn-
ing transferable knowledge with limited annotated support
images. It has recently gained popularity in computer vi-
sion due to its promise in practical applications. Sha-
ban et al. [25] introduced the first few-shot segmenta-
tion network based on a two-branch architecture, which
uses a support branch to predict the parameters of the last
layer of the query branch for segmentation. Recent works
[4, 33, 36, 20, 26] follow the two-branch architecture for
few-shot semantic segmentation. Dong and Xing. [4] intro-
duced the idea of prototype learning from few-shot recog-
nition for few-shot segmentation. They designed the PLNet
in which the first branch learns a prototype vector that
takes images and annotations as input and outputs the pro-
totype; while the second branch takes both a new image and
the prototype as input and outputs the segmentation mask.
Since then, the prototype-based methods have been further
developed in different ways [36, 20, 26, 31, 34]. Rakelly
et al. [20] concatenated the pooled support features and the
query image to generate the segmentation maps. Zhang et
al. [36] introduced a masked average pooling operation to
extract the representative prototype vector from support im-
ages and then estimated the cosine similarity between the
extracted vector and the query feature map for predicting
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the segmentation map. These works have demonstrated the
effectiveness of prototype learning for few-shot semantic
segmentation. However, a deterministic prototype vector is
not sufficiently representative for capturing the categorical
concept of the objects and therefore can cause bias and re-
duced generalization for handling huge variations of objects
in the same categories.

Variational Inference Variational inference [11] approx-
imates the probability densities of an unknown quantity
through optimization given input data. The variational auto-
encoder (VAE) [13, 22] is a generative model that intro-
duces variational inference into the learning of directed
graphical models. Sohn et al. [29] developed the condi-
tional variational auto-encoder (C-VAE) by extending VAE
into the conditional generative model for supervised learn-
ing. Kohl et al. proposed the probabilistic U-net [14] which
combines C-VAE with U-net [23] for medical image seg-
mentation. It learns a distribution over segmentation masks
to handle ambiguities in medical images. [35, 7] introduced
probabilistic models to few-shot learning to handle the un-
certainty caused by scarce training data. Zhang et al. [35]
deployed a latent variable to denote the distribution of the
entire dataset, which is inferred from support set. They also
showed that their variational learning strategy can be mod-
ified to classify proposals for instance segmentation [18].
Finn et al. [7] proposed a probabilistic meta-learning al-
gorithm by extending the model agnostic meta-learning [6]
to a probabilistic framework. The model incorporates a pa-
rameter distribution that is trained via a variational lower
bound, which handles uncertainty by sampling from the in-
ferred parameter distribution.

3. Methodology
For few-shot semantic segmentation, our purpose is to

train a model on the training set Dtrain and then perform
segmentation on a test set Dtest where a few annotated im-
ages are available for each category. Note that the object
categories in Dtest are disjoint from those in Dtrain. We uti-
lize the episodic paradigm [30] for training and testing in
a k-shot segmentation scenario. Specifically, both Dtrain
and Dtest contain several episodes. Each episode is com-
posed of (1) a support set S = f(xi

s;y
i
s)gk

i=1 where the
xi

s 2 Rh�w�3 denotes the support image, where h and w
denote the height and width, respectively, and yi

s 2 Rh�w

denotes the corresponding support mask; (2) a query set
Q = f(xq;yq)g where xq is the query image and yq is
the associated ground-truth mask of the object to be seg-
mented. In particular, the input of the model is the support
set S for learning transferable knowledge and a query image
xq to be segmented, and the output is the segmentation map
~yq for xq . Once the model is trained on Dtrain, we evaluate
performance on the test set Dtest across all the episodes.

We address few-shot semantic segmentation based on

prototype learning by a probabilistic latent variable model.
We treat the prototype that represents the concept of the ob-
ject category as a latent variable. We model the prototype
as a distribution instead of a single deterministic vector.

3.1. Variational Prototype Inference

We introduce variational prototype inference (VPI),
which finds a variational posterior to approximate the true
posterior over the prototype through optimization based on
the evidence lower bound (ELBO).
Evidence Lower Bound From a probabilistic perspective,
a few-shot semantic segmentation model aims to find the
conditional predictive distribution p(yqjxq; S) over the seg-
mentation map yq given the associated query image xq and
the support set S. We assume that the class prototype z is
generated from a prior distribution p�(zjxq; S). Here, sim-
ilar to previous variational models for supervised learning
[29, 14], we also use a modulated prior by making z de-
pendent on the query image xq and the support set S. The
segmentation map yq is modeled by a conditional genera-
tive distribution p (yqjz;xq; S).

In order to infer the latent variable z, we maximize
the conditional log-likelihood log p(yqjxq; S), which is ex-
panded by incorporating the prior over z:

log p(yqjxq; S)

= log

Z
p (yqjz;xq; S)p�(zjxq; S)dz

= log

Z
q�(zjxq;yq)

p (yqjz;xq; S)p�(zjxq; S)

q�(zjxq;yq)
dz;

(1)
where we introduce a proposal distribution q�(zjxq;yq) to
approximate the intractable true posterior. By applying the
Jensen’s inequality to (1), we obtain

log p(yqjxq; S)

�
Z
q�(zjxq;yq) log

p (yqjz;xq; S)p�(zjxq; S)

q�(zjxq;yq)
dz

= �DKL[q�(zjxq;yq)jjp�(zjxq; S))

+ Eq�(zjxq;yq) [log p (yqjz;xq; S)]

= ELBO:
(2)

The DKL [�] is the Kullback-Leibler (KL) divergence be-
tween the estimated posterior distribution q�(zjxq;yq) and
the prior distribution p�(zjxq; S). The second term of the
ELBO is the expectation of a conditional generative distri-
bution p (yqjz;xq; S). We derive a variational objective
based on the above ELBO.

Variational Objective Based on the ELBO, we construct
a simplified variational objective, which allows efficient op-
timization and easy implementation. We replace the prior
with p(zjS) by conditioning it solely on the support set. We
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Figure 2. Variational prototype inference for one-shot semantic segmentation, implemented in the amortized neural network of an auto-
encoder architecture. The prior net produces the prior distribution p�(zjS); the posterior net infers the posterior q�(zjxq; yq) over z; and
the segmentation net takes the query image xq and the prototype z sampled from the prior distribution to generate a distribution of the
segmentation map: p (yqjz; xq).

further remove the condition on S in the predictive poste-
rior, which makes it computationally cheaper. We therefore
attain the following objective:

L =�DKL[q�(zjxq;yq)jjp�(zjS)]

+ Eq�(zjxq;yq) [log p (yqjz;xq)]
(3)

In the above optimization objective, minimizing the KL
term narrows the gap between the posterior distribution
q�(zjxq;yq) and the prior distribution p�(zjS). This en-
courages the inferred prototype from the query image to
match that from the support images. Maximizing the expec-
tation of log-likelihood log p (yqjz;xq) guarantees maxi-
mally precise prediction of the segmentation map. Based
on (3), we attain the empirical objective for stochastic opti-
mization as follows:

~L =
X

i

�
DKL[q�(zjxi

q;y
i
q)jjp�(zjSi)]

+
1

L

LX
l=1

� log p (yi
qjxi

q; z
(l))
�
;

(4)

where i indexes over the number of support-query pairs in
the training data Dtrain, z(l) � p�(zjS) and L is the number
of samples.

We take the multivariate Gaussian with a diagonal co-
variance structure for the distributions, and then the prior
p�(zjS) and the posterior q�(zjxq;yq) can be parameter-
ized by N (z;�prior;�

2
prior) and N (z;�post;�

2
post). As

for the second term in the empirical loss ~L, we adopt pixel-
wise cross-entropy loss to penalize the difference between
the predicted segmentation map ~yq and the ground truth yq .
We deploy the reparameterization trick proposed in [13] to
solve the non-differentiable problem existing in the sam-
pling process. Specifically, the class prototype z is obtained

by z(l) = �(l) � �prior + �prior, where � denotes the
element-wise multiplication and �(l) � N(�; 0; 1). The
number of samples L is set to 1 during training, as sug-
gested in [13].

In the learning stage, as shown in Fig. 2 (a), we esti-
mate the prior distribution p�(zjS) over the prototype z and
the posterior distribution q�(zjxq;yq) conditioned on the
query image xq and ground truth yq . To efficiently train the
parameters with gradient descent, we rely on Monte Carlo
sampling to draw L samples fz(l)gL

l=1 from p�(zjS) and
combine them with the query image to generate the seg-
mentation map.

Inference The inference of segmentation maps is shared
across learning and test stages. As shown in Fig. 2 (b), we
utilize Monte Carlo sampling to drawL potential prototypes
fzlgL

l=1 from p�(zjS). The ~yq is obtained by taking the
average of L segmentation maps based on the samples z.

~yq =
1

L

LX
l=1

p (yqjxq; z
(l)); z(l) � p�(zjS): (5)

For the k-shot setting, we generate a prior by each of the k
pairs of support images and masks: fNi(zi;�i;�

2
i )gk

i=1,
obtaining k priors. We aggregate those k priors with a
variance-weighted average operation, which produces the
overall aggregated distribution N (z;�;�2):

� =

Pk
i=1

1
�2

i
�iPk

i=1
1
�2

i

; �2 =
kPk

i=1
1
�2

i

: (6)

In contrast to the equal-weighted average operation, the
variance-weighted average operation lets the distributions
with small variance receive larger weights, resulting in the
more representative distributions being enhanced, and less
important being constrained.
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Algorithm 1: Variational Prototype Inference
Learning:
Input: Dtrain = fSi; (xi

q;y
i
q)gNtrain

i=1 ; Initialized �,  
and �

for Si; (xi
q;y

i
q) 2 Dtrain do

p�(zjS) : zi  �i
prior + �� �i

prior; � �
N (0; 1);�i

prior;�
i
prior  PriorNet(Si;�)

q�(zjxq;yq) : zi  �i
post + �� �i

post; � 2
N (0; 1);�i

post;�
i
post  PostNet(xi

q;y
i
q;�)

p (yqjz;xq): ~yi
q = SegNet(zi;xi

q; )

g r�;�; 
~L(�;�; ; xi

q; S
i;yi

q; ~y
i
q)

Update parameters �,  , and �
end
Output: p�(zjS), q�(zjxq;yq), p (yqjz;xq)

Inference:
Input: A query image xq and a support set S
p�(zjS): z �prior + �� �prior; � �
N (0; 1);�prior;�prior  PriorNet(S;�).
p (~yqjz;xq): ~yq = 1

L

PL
l=1 SegNet(z(l);xq; )

Output: Segmentation Map ~yq

3.2. Implementation with Amortized Networks
We implement the proposed VPI with neural networks of

the auto-encoder architecture using the amortization tech-
nique [13]. The networks that parameterize the three distri-
butions p�(zjS), q�(zjxq;yq) and p (yjxq; z) are called
the prior net, the posterior net and the segmentation net, re-
spectively. Specifically, as depicted in Fig. 2, 1) the prior
net embeds the support set S into a latent space, where
the conditional prior distribution p�(zjS) of the latent vari-
able z represents the class-specific prototype learned from
the support set S; 2) the posterior net learns to recognize
a proposal posterior distribution q�(zjxq;yq) in the latent
space to approach the true posterior given a query image xq

and the ground truth yq; 3) the segmentation net takes the
query image xq and the prototype vector z sampled from
the prototype distribution to predict the segmentation map
~yq , which is represented as the conditional generative dis-
tribution p (~yqjxq; z). The parameters of the CNN-based
encoders for feature extraction are shared by the prior net,
posterior net and the segmentation net. All the parameters
of the three nets are jointly optimized end-to-end with re-
spect to the objective (4). The optimization of VPI is sum-
marized in Algorithm 1.
Prior Net The prior net deploys a CNN encoder to extract
the deep features of the support image. Then the support
mask is used to filter the background feature while retaining
the foreground features from average pooling [26]. Hence,
the feature map is squeezed into a single vector. As men-
tioned above, we assume that the prior takes the form of a
diagonal covariance Gaussian distribution, so we map the

feature vector to a mean vector �prior and variance vector
�2

prior in the latent space by two fully connected layers:
z � p�(zjS) = N (z;�prior;�

2
prior): (7)

Posterior Net Similar to the prior net, the posterior net
utilizes the same CNN encoder to extract the features of the
query image xq , and then uses the ground-truth mask yq to
acquire a global feature vector. Finally, a mean vector �post

and a variance vector�2
post are output from the posterior net

for the posterior distribution:

z � q�(zjxq;yq) = N (z;�post;�
2
post): (8)

Segmentation Net The segmentation net takes the con-
catenation of the deep feature of the query image xq and the
prototype vector z sampled from the prior (see also Fig. 2
(a)). Taking the feature representations of the query image
xq and the sampled z as input, a CNN-based decoder pro-
duces the output segmentation map:

~yq � p (~yqjxq; z): (9)

In the decoder, we deploy a multi-layer skip-connections
structure [23] to incorporate more spatial information.

4. Experiments and Results
Datasets We conduct experiments on three commonly-
used benchmarks including the PASCAL-5i, COCO-20i

and FSS-1000 datasets.
PASCAL-5i, we follow the setting in [25] dividing the
20 original classes in PASCAL VOC12 [5] and Extended
SDS [8] into four folds and conduct cross-validation among
those folds. Specifically, 15 object classes are used during
training, while the remaining 5 classes are for testing for
each fold. During evaluation, we sample the same test set
containing 1,000 support-query pairs for each category as
in [25] for a fair comparison.
COCO-20i [10], the 80 classes in MSCOCO are split into
four folds and we conduct four-fold cross-validation. Sim-
ilar to the setting in PASCAL-5i, 60 object categories are
used during training, while the remaining 20 categories are
used for testing. In each fold, we sample 1000 support-
query pairs from the selected 20 test classes, following [19].
FSS-1000 collected by [32], consists of 1000 object classes,
we choose the same 240 sub classes as in [32] for evaluation
and the remaining classes for training.

Implementation Details We deploy the ResNet101 [9]
backbone pre-trained on ImageNet [3] as the encoder. The
decoder is composed of three convolutional blocks to gen-
erate feature maps, each of which is concatenated with the
corresponding encoded feature through the skip connec-
tions. The support and query images are randomly cropped
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Figure 3. Effect of Monte Carlo Sampling. Left: Segmentation maps produced by sampled individual prototypes tend to be noisy, but the
final segmentation maps by the aggregated prototype have less noise. Right: Trade-off between Class-IoU and inference time according to
the number of samples L. We consider L=6 a good trade-off.

Table 1. The benefit of probabilistic modeling on PASCAL-5i. The proposed probabilistic
modeling shows consistent advantages over deterministic models in terms of different metrics,
with different backbone networks and under both 1-shot and 5-shot settings.

VGG ResNet50 ResNet101

Class-IoU Binary-IoU Class-IoU Binary-IoU Class-IoU Binary-IoU
k-shot 1 5 1 5 1 5 1 5 1 5 1 5

Deterministic model 51.5 52.8 64.0 65.1 54.0 57.1 65.5 68.6 54.8 57.9 66.2 69.4
This paper 53.4 54.5 64.9 65.9 56.6 59.6 69.4 71.5 57.3 60.4 70.3 72.1

Table 2. Comparison of different dis-
tribution aggregation on PASCAL-5i

under the 5-shot setting.

Class-IoU Binary-IoU

�o;�
2
o 59.7 71.4

�o;�
2 59.9 71.6

�;�2
o 60.1 71.9

�;�2 60.4 72.1

to 384 � 384 and augmented by random horizontal flip-
ping and random rotation operations. The model is trained
with the Adam optimizer [12] using a batch size of 16 on
4 NVIDIA GeForce TITAN X GPU for 40,000 iterations.
The learning rate is fixed to 1e � 6 for the backbone and
1e� 5 for other layers, and the BN layers are frozen during
training. The number of the samples L is set to 6 during the
test phase, which is analyzed in detail by our ablation study
in Sec. 4.1.

We adopt two metrics for evaluation, Class-IoU [25] and
Binary-IoU [20]. Class-IoU measures the Intersection-over-
Union IoU = TPc

TPc+FPc+FNc
, where TP, FP and FN are the

number of pixels that are true positives, false positives and
false negatives of the predicted segmentation masks for each
foreground class c. Binary-IoU treats all object classes as
foreground class and averages the IoU of foreground and
background.

4.1. Ablation Study

Benefit of Probabilistic Modeling The main difference
between our probabilistic model and previous deterministic
models is that we estimate the distribution of the class pro-
totype in the latent space instead of learning a deterministic
prototype vector. To demonstrate the advantage of the pro-
posed probabilistic modeling, we implement a deterministic
counterpart. For fair comparison, we roughly keep the same
network architecture and predict a deterministic class proto-

type vector by the � branch and remove the KL divergence
term during training. We implement both models with a
VGG-16 [27], ResNet50 [9], and ResNet101 [9] backbone,
which are commonly adopted in previous works [19, 33].

The results on PASCAL-5i are shown in Table 1. Our
variational prototype inference achieves better performance
than the deterministic models on both the 1 and 5-shot set-
tings for the Class-IoU as well as the Binary-IoU metric.
This is because the proposed probabilistic modeling of pro-
totypes is more expressive of object classes and can better
capture the categorical concept of objects, compared to the
deterministic representation of prototypes. Therefore, the
learned model is endowed with a stronger generalization
ability to query images that usually exhibits huge variations.
The results verify the advantage of probabilistic modeling
for few-shot semantic segmentation. Note that, as expected
the ResNet101 backbone outperforms the one with VGG16
as well as the one with ResNet50, and henceforth we adopt
ResNet101 as our backbone network in our experiments.

Effect of Monte Carlo Sampling During the inference of
segmentation maps, we utilize the Monte Carlo sampling to
obtain multiple prototypes z to produce multiple segmen-
tation maps, which are aggregated into the final segmenta-
tion map. We study the effect of the Monte Carlo sampling
on the segmentation results. As shown in Fig. 3, the seg-
mentation map for each sampled prototype is not always
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Table 3. Comparison with state-of-the-art in terms of Class-IoU on PASCAL-5i.

1-shot 5-shot

fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean
OSLSM [25] 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9
Co-FCN [20] 36.7 50.6 44.9 32.4 41.1 37.5 50.0 44.1 33.9 41.4
AMP [26] 41.9 50.2 46.7 34.7 43.4 40.3 55.3 49.9 40.1 46.4
SG-One [36] 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1
PANet [31] 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7
CANet [34] 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
PGNet [33] 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5
FWB [19] 51.3 64.5 56.7 52.2 56.2 54.8 67.4 62.2 55.3 59.9
VPI 53.4 65.6 57.3 52.9 57.3 55.8 67.5 62.6 55.7 60.4

Table 4. Comparison with state-of-the-art
in terms of Binary-IoU on PASCAL-5i.

1-shot 5-shot

Co-FCN [20] 60.1 60.2
AMP [26] 60.1 62.1
PL+SEG [4] 61.2 62.3
A-MCG[10] 61.2 62.2
OSLSM [25] 61.3 61.5
SG-One [36] 63.9 65.9
CANet [34] 66.2 69.6
PANet [31] 66.5 70.7
PGNet [33] 69.9 70.5
VPI 70.3 72.1

Figure 4. Visualization of one-shot segmentation results on the PASCAL-5i dataset.

adequate. For example, in the first row of the left side of
Fig. 3, the segmentation map generated by sample 2 intro-
duces some noise, and the segmentation map generated by
sample 3 does not completely recover the object. By av-
eraging the segmentation maps produced by the individual
samples, the final segmentation map tends to be more pre-
cise and robust. The segmentation results are more accurate
given more samples, but it will take more time for infer-
ence. We provide the accuracy and the inference time of
VPI under different numbers of the samples to find a sat-
isfactory trade-off between performance and computation
time on the right side of Fig. 3. We can see that the perfor-
mance tends to saturate when L reaches 6, but the inference
time keeps going up. Therefore, in our experiments, we
set L to 6 during inference to achieve precise segmentation
maps with acceptable inference time.

Comparison on Distribution Aggregation For k-shot
learning, we adopt variance-weighted operation in Equation
6 for distribution aggregation. Here we compare it with an-
other ordinary average operation:

�o =

Pk
i=1 �i

k
; �2

o =

Pk
i=1 �

2
i

k
: (10)

Results in Table 2 shows the variance-weighted aggregation
of � and � outperforms the direct average operation.

4.2. Comparison with State-of-the-Art

PASCAL-5i In Table 3, we compare the performance
of VPI with the state-of-the-art deterministic methods on
PASCAL-5i in terms of the Class-IoU metric. In both 1-
shot and 5-shot settings, our VPI outperforms other meth-
ods by considerable margins. We improve over the state-of-
the-art set by Nguyen and Todorovic [19] by 1.1% and 0.5%
for the 1-shot and 5-shot settings. The performance advan-
tage of our VPI is larger on the 1-shot setting, which is more
challenging compared to the 5-shot setting. Due to the prob-
abilistic modeling of the prototype in VPI, it better captures
the nature of objects even with only one support image. Ta-
ble 4 shows the state-of-the-art comparison in terms of the
Binary-IoU metric. Our VPI achieves the best scores in both
the 1-shot and 5-shot settings with 70:3% and 72:1%.

Some qualitative results on PASCAL-5i are visualized
in Fig. 4. The proposed VPI achieves accurate segmenta-
tion maps in various challenging scenarios, where the query
images exhibit variation in appearance and object size from
the associated support images. For instance, in the second
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Table 5. Comparison on COCO-20i.

Class-IoU Binary-IoU

1-shot 5-shot 1-shot 5-shot

A-MCG [10] - - 52.0 54.7
FWB [19] 21.2 23.7 - -
PANet [31] 20.9 29.7 59.2 63.5
VPI 23.4 27.8 61.1 62.7

Table 6. Comparison on FSS-1000.

Positive-IoU

1-shot 5-shot

OSLSM [25] 70.3 73.0
Co-FCN [21] 71.9 74.3
FSS-1000 [32] 73.5 80.1
VPI 84.3 87.7

5-shot1-shot

Figure 5. Class-wise comparison between VPI and Wei et al. [32] on FSS-1000.

column, the size and viewpoint of the plane in the query
image is considerably different from the annotated plane in
the support image; in the third column, the annotated bottle
in the support image is much smaller than the one the query
image. Moreover, the bottle in the support image is also
partially occluded.

COCO-20i Compared to PASCAL-5i, the scenes in
COCO-20i are more complicated with large intra-class di-
versity, which poses greater challenges for few-shot se-
mantic segmentation. Therefore few-shot segmentation on
COCO-20i has more ambiguity and it is difficult to acquire
a precise class-specific deterministic prototype. As can be
seen in Table 5, our method outperforms the state-of-the-art
set by PANet [31] by 2:5% and 1:9% in terms of the Class-
IoU and Binary-IOU metrics in the 1-shot setting.

FSS-1000 We evaluate our method following the same
settings as in Wei et al. [32]. The metric used for FSS-
1000 is the intersection-over-union (IoU) of positive labels
in a binary segmentation map, which we adopt for a fair
comparison. The performance comparison with previous
methods in terms of Positive-IoU is shown in Table 6. We
improve over the state-of-the-art set by Wei et al. [32] by
10:8%and 7:6% in the 1-shot and 5-shot settings, show-
ing the effectiveness of our proposal for few-shot seman-
tic segmentation with a large number of categories. Fig. 5
shows the class-wise performance comparison between Wei
et al. [32] and our proposed VPI. On most categories, VPI
outperforms Wei et al. [32] by a good margin. Moreover,
we observe that the performance of VPI does not change
much across classes, indicating its robustness and general-

ization ability. The qualitative segmentation results on the
FSS-1000 dataset are illustrated in supplementary materi-
als, where VPI produces accurate segmentation close to the
ground truth.

5. Conclusion
In this paper, we present a new, probabilistic model for

few-shot semantic segmentation. We formulate the class
prototype as a latent variable, the distribution over which is
inferred from data. We develop variational prototype infer-
ence (VPI) to leverage the technique of variational inference
for efficient optimization. By probabilistic modeling, we
are able to estimate a more robust class prototype distribu-
tion that takes the inherent uncertainty in few-shot segmen-
tation into account. Moreover, the probabilistic representa-
tion of prototypes better captures the categorical informa-
tion of objects, which enhances the generalization ability of
the model to new unseen categories of objects. We perform
comprehensive experiments on three benchmark datasets.
The thorough ablation studies demonstrate the benefit of our
VPI by probabilistic modeling and the extensive compar-
ison with state-of-the-art methods shows the performance
advantage of VPI for few-shot semantic segmentation.
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