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Abstract Climate changes affect the abundance, geo-

graphic extent, and floral composition of vegetation, which

are reflected in the pollen rain. Sediment cores taken from

lakes and peat bogs can be analysed for their pollen con-

tent. The fossil pollen records provide information on the

temporal changes in climate and palaeo-environments.

Although the complexity of the variables influencing vege-

tation distribution requires a multi-dimensional approach,

only a few research projects have used GIS to analyse

pollen data. This paper presents a new approach to paly-

nological data analysis by combining GIS and spatial

modelling. Eastern Colombia was chosen as a study area

owing to the migration of the forest–savanna boundary

since the last glacial maximum, and the availability of

pollen records. Logistic regression has been used to iden-

tify the climatic variables that determine the distribution of

savanna and forest in eastern Colombia. These variables

were used to create a predictive land-cover model, which

was subsequently implemented into a GIS to perform

spatial analysis on the results. The palynological data from

the study area were incorporated into the GIS. Recon-

structed maps of past vegetation distribution by interpola-

tion showed a new approach of regional multi-site data

synthesis related to climatic parameters. The logistic

regression model resulted in a map with 85.7% predictive

accuracy, which is considered useful for the reconstruction

of future and past land-cover distributions. The suitability

of palynological GIS application depends on the number of

pollen sites, the distribution of the pollen sites over the area

of interest, and the degree of overlap of the age ranges of

the pollen records.

Keywords Climate change � Pollen data � Geographic

information system (GIS) � Savanna � Logistic regression �
Predictive modelling � Land-cover distribution �
Interpolation maps

1 Introduction

Climate change at glacial-interglacial cycle time scales has

had an impact on the vegetation in many parts of the world.

Vegetation change is reflected by changes in the abun-

dance, geographic extent, location of source areas, and

floral composition of plant populations. The pollen grains

from these changing plant populations are preserved in

lakes and peat bogs. Sediment cores can be obtained which

show temporal changes in the fossil pollen assemblages.

Palynologists present these data in pollen diagrams and

interpret the downcore changes in pollen spectra, and the

variation in pollen representation of individual pollen taxa

in terms of past vegetation change and inferred environ-

mental conditions.

One area of palynological research has been the tropical

lowlands of northern South-America. Here, savanna eco-

systems occur north of a vast region of tropical rainforest.

These savannas, located in Colombia and Venezuela, ex-

tend from the Eastern Cordillera to the eastern coast of

Venezuela. The southern boundary of the savanna vege-

tation, which is transitional to tropical rainforest, has

migrated in the past (Behling and Hooghiemstra 1998).

Shifts of this savanna–forest transition depend heavily on

annual precipitation values and the length of the dry season
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while temperature change has little impact. Such a clear

relationship between climate parameters and environmen-

tal setting is attractive to explore for changes in the past.

Although these pollen records have revealed temporal

changes in vegetation dynamics, the degree of environ-

mental change has only been expressed in general quali-

tative terms, such as ‘‘drier’’ or ‘‘wetter’’ conditions, or

suggestions about changes in the seasonality, such as

‘‘shorter’’ or ‘‘longer dry period’’ (Behling and Hoog-

hiemstra 1998; Berrı́o 2002).

So far, little research has been carried out where paly-

nological data has been analysed by software specially

designed for spatial analysis, such as geographical infor-

mation systems (GIS) (Paez et al. 2001; Davis et al. 2003).

Most palynological publications, which include pollen

mapping, use isopollen or isochrone maps (e.g. Birks 1989;

Yu et al. 2001) and mapped pollen percentages (Brubacker

et al. 2005). The integration of GIS in palynological re-

search seems to be in an explorative stage where the

applications of GIS are diverse but scarce, e.g., mapping

plant-distributions (Jago and Boyd 2003; Giesecke and

Bennett 2004); habitat suitability analysis (e.g., Lyford et al.

2003); and the reconstruction of past vegetation (e.g., Ray

and Adams 2001; Bickford and Mackey 2004; Veski et al.

2005). Due to the complexity and the spatial heterogeneity

of the variables influencing the spatial distribution of veg-

etation, palynological analysis thus far has mainly been

limited to non-spatial methods: the search for structure in

multidimensional data sets using 1D tools. There are several

reasons to implement palynological datasets into GIS: pal-

ynological datasets in general are large and complex to

interpret; the data consists of changes which have occurred

over an area (2D surface), and over time (the 3D-variable);

and frequently, data from different sites must be compared

by the researcher to make an interpretation of a complete

area rather than of one single site only. For this reason it has

become necessary to introduce GIS as a new analytic tool

for palynological research.

The aim of this paper is to detail a new approach to

pollen data analysis by combining GIS and predictive

modelling into a new potential palynological GIS appli-

cation. A methodology is explained that can be exploited

by palynologists to explore their area of research and

capture it in a predictive model, which can be used to make

reconstructions of past and future land-cover distributions

under changing climatic conditions. In the same database,

the palynological data can be implemented to use GIS to

evaluate patterns of land-cover changes based on pollen

counts. Furthermore, this study aims to provide a better

understanding of the dynamics of the savanna distribution

in Colombia, and so allow further insight into future vege-

tation responses to global climate change.

The questions approached by this study are: (a) Can GIS

and logistic regression be used to model the spatial distri-

bution of the Colombian savanna ecosystem? and (b) Is

data from palynological site studies suitable for imple-

mentation into GIS, where it is synthesised for selected

time windows?

In this paper, the employment of GIS is divided into two

different but related applications. The first application is to

construct a predictive model, in which the climatic vari-

ables are determined that influence the spatial distribution

of the savanna ecosystem. The statistical model, derived

from logistic regression, is subsequently introduced into a

GIS and re-run to create land-cover maps, which are

compared to the actual land-cover distribution in order to

assess the model accuracy. The second application imple-

ments data from pollen records of the Colombian savanna

into GIS to create land-cover maps for the last 10,000

radiocarbon years before present.

2 Setting of the study area

The Colombian savannas are vast plains stretching from

the Guaviare River (an eastern tributary of the Orinoco

River) to the Venezuelan border (Fig. 1). They lie in the

Orinoco Basin and cover approximately 500,000 km2

(Sarmiento 1983). This area of low lying savannas forms a

level plain between 200 and 600 m altitude (Blydenstein

1967). Most of this area is covered with grass, with ribbons

of gallery forests along the creeks and rivers, and patches

of forest scattered on the plains. The typical combination of

an open tree layer and a continuous herbaceous layer is

characteristic of the Colombian savanna, although the

vegetation physiognomy varies across the area from tree-

less savanna grassland to savanna woodland with up to

Fig. 1 Topography of the study area. Altitude in the study area is

exaggerated compared to true elevation levels outside the study area

(grey colours )
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80% tree cover, and gallery forest (Sarmiento 1984). Riv-

ers are numerous: the main ones are the Meta, Vichada,

Guaviare and Inı́rida rivers, which are tributaries of the

Orinoco River.

The climate in the savannas of the Llanos Orientales is

characterized by a warm and humid climate during the

rainy season from April to November (Mistry 2001). There

is a gradient of higher precipitation towards the Colombian

Amazon region in a southern and southwestern direction,

and lower amounts in the northern part towards the Vene-

zuelan border (Botero 1999). At the same time, the length of

the dry season increases from 2 to 5 months (San José et al.

1998). The small annual temperature amplitude of <3�C

contrasts with the daily variation of 10–15�C (Blydenstein

1967).

The study area was chosen so that the savanna–tropical

rainforest transition zone would be centred in the defined

region, providing a comparable surface area of savanna and

forest. The Andes forms the western boundary of the study

area, the Orinoco River the eastern limit, and the rivers

Meta and Arauca outline the study area in the north (Fig. 1).

3 Modelling methods

3.1 Logistic regression basics and formula

Logistic regression is a variation of ordinary regression,

which is a method used to determine the impact of inde-

pendent variables on a dependent variable (Hosmer and

Lemeshow 1989). In binary logistical regression, the

dependent variable is an event occurrence. The observed

outcome is restricted to two values, representing the pres-

ence or absence of a specific event. It produces a formula

that predicts the probability of the occurrence as a function

of the independent variables. The attractive aspect of lo-

gistic regression is that the impact of multiple variables can

be measured at the same time, the relative importance of

independents can be ranked, and the interaction effects can

be evaluated.

The goal of logistic regression is to find the best fitting

model to describe the relationship between the dichoto-

mous dependent (response) variable and the set of inde-

pendent (predictor) variables of the training data. A single

formula is built, which calculates the logistic (LP) as a

linear combination of the predictive variables. The inverse

logistic transformation

pðyÞ ¼ expðLPÞ=ð1þ expðLPÞÞ

is then applied to acquire response values between 0 and 1.

Depending on a chosen threshold probability value,

everything above this threshold indicates one condition of

the binomial outcome (i.e., the presence of savanna), while

everything below equals the other condition of the variable

(i.e., absence of savanna; in this case, the presence of

forest). This threshold is usually chosen at the default value

of [0.5], but this will depend on the aims of the research

project, as it can be more important to predict either the

absence or the presence of any given characteristic. All

these computations were performed in SPSS (Edition 11.0

for Windows). By implementing the formula and the cal-

culated coefficients directly into GIS, probability values are

obtained for every cell of the GIS grid, which results in a

probability map of savanna occurrence.

3.2 Fitting the predictive model

To find the structure in the relationships between variables,

Principal component analysis (PCA) was used. Using a

multi-dimensional coordinate system, it groups the vari-

ables with the highest correlation into distinctive compo-

nents and serves to make a first selection of model

components. Variables can be entered into the logistic

model in the order specified by the researcher, or logistic

regression can test the fit of the model after each variable is

added or deleted, called ‘‘stepwise regression’’ (Hosmer

and Lemeshow 1989). Backward stepwise regression is a

method, where the analysis begins with a full model and

variables are eliminated from the model in an iterative

process (Hosmer and Lemeshow 1989). The fit of the

model is tested after the elimination of each variable to

ensure that the model still adequately fits the data. When no

more variables can be added or removed from the model,

owing to reduced model accuracy, the analysis is then

complete.

3.3 Measures of model evaluation

In ecological modelling literature, the different accuracy

measurements are subject to debate (e.g., Fielding and Bell

1997; Foody 2002; McPherson et al. 2004; Guisan and

Thuiller 2005). Therefore, various methods of accuracy

assessment have been used during the process of selecting

the best model.

The predictive success of binary models can be

described in terms of false positive and false negative

prediction errors. A false positive means that the model

predicted presence when absence of savanna was deter-

mined. A false negative means that the model predicted

absence when actually savanna is present. Sensitivity is the

percentage of correctly predicted savanna occurrences to

the total number of savanna pixels. Conversely, specificity

is defined as the proportion of correctly predicted absences

of savanna to the total number of absences. The overall

accuracy is defined as the percentage of correctly predicted

S. G. A. Flantua et al.: Application of GIS and logistic regression to fossil pollen data 699
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raster-pixels to the total number of pixels in the area of

interest (Fielding and Bell 1997).

Cohen’s Kappa coefficient is designed to reflect the

models performance in absence and presence simulta-

neously. This coefficient has been used extensively as an

index to classify accuracy (e.g., Foody 2002), and as an

inter-comparison between models (Manel et al. 2001).

Although the effect of prevalence—the number of occur-

rences in relation to the number of samples—has been

judged negligible among ecologists (e.g., Fielding and Bell

1997; Manel et al. 2001), Kappa has been criticised due to

its sensitivity towards a variation in prevalence. As we do

not have presumptions about the prevalence in the data set,

we also include an alternative measure for the kappa sta-

tistic proposed by Allouche et al. (2006), the so-called True

skill statistic (TSS). This measure is suitable for models

that generate presence–absence predictions. TSS is stated

to compensate for the supposedly shortcomings of the

Kappa coefficient by possessing the same advantages but at

the same time being independent of prevalence (Allouche

et al. 2006). We used different evaluation methods to

decide upon the predictive capacity of the created models.

From a confusion matrix (Table 1) that records the

number of (a) true presence, (b) false presence, (c) false

absence and (d) true absence, all accuracy measures are

calculated (Table 2). To interpret the power of the model

calculated by the Kappa and the TSS measurement, the

classification by Landis and Koch (1977) is used that

proposes that a [0.0–0.19] represents poor agreement, [0.2–

0.39] fair agreement, [0.4–0.59] moderate agreement, [0.6–

0.79] substantial agreement, and a [0.8–1.00] designates an

almost perfect agreement.

3.4 Model validation

Model validation requires checking the model against

independent data to see how well it predicts (Fielding and

Bell 1997). The outcome of the model (logit equation) is

introduced into the GIS to let the model run with the re-

lated climate layers as a data source. A map of the

predicted land-cover distribution is the result of this

implementation. This map is subsequently compared to the

actually observed spatial distribution of savanna to evalu-

ate how well the model performs. By subtracting the layers

of the observed and predicted spatial distribution of

savanna from one another in the GIS, the accuracy of the

model can be illustrated, and a differentiation made be-

tween false presence and false absence predictions of sa-

vanna. According to Manel et al. (2001) ‘‘many users of

ecological models are assuming good performance because

their data fits well statistically and because they can predict

many occurrences correctly’’. But as explained by the same

author, when models are required to predict occurrence by

the use of independent data, the weakness of the model

becomes apparent. Therefore, implementing the logistic

regression outcome into the GIS does not only test an

independent data set for the models predictive capacity, but

also provides insight into the models weaknesses.

3.5 Model assumptions

This section specifies the most important assumptions and

simplifications in the model.

1. All species have different climatic tolerances and will

respond independently to change (Eeley et al. 1999). In

this study, the focus of attention is on the distribution

of savanna and forest vegetation. Although present-day

plant communities may temporally represent transient

association, in the created model the forest and the

savanna are considered as completely separate units

and stable systems in the present-day situation.

2. The model includes only climatological and physical

geographical parameters, which are assumed to be the

most important factors influencing the distribution of

the vegetation in the study area. Anthropogenic factors

or fire are not taken into account, although both are

important in the Colombian savanna, and have played

Table 1 The performance of the model is specified in an error matrix

Predicted

distribution

Observed distribution

Presence Absence

Presence a b

Absence c d

a, the model correctly predicted the presence of the characteristic

(savanna); b, the false predictions of presence; c means absence was

falsely predicted as presence; and d, the correctly predicted absence

cells. The total of all values (a + b + c + d) are summed in N

Table 2 Overview of measures for evaluating the predictive perfor-

mance of the model calculated from the error matrix

Measure Formula

Prevalence aþc
N

Sensitivity a
aþc

Specificity d
bþd

Overall accuracy aþd
N

Kappa Statistics
ðaþdÞ�½ððaþcÞðaþbÞÞþððbþdÞðcþdÞÞ�=N

N�ððaþcÞðaþbÞðbþdÞðcþdÞÞ=N

TSS
ðaxdÞ�ðbxcÞ
ðaþcÞðbþdÞ ¼ Sensitivityþ Specificity� 1

The probability that the model will correctly classify presence of

savanna is indicated by ‘‘sensitivity’’. ‘‘Specificity’’ is the probability

that the model correctly classifies an absence. The rate of correctly

classified cells is specified in the ‘‘overall accuracy’’. The Kappa

coefficient and the true skill statistic (TSS) comprise the effect of

chance in the calculation of the overall accuracy
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a considerable role in the recent past. Nevertheless, in

this model the climatic variables are considered as the

most dominant influence on patterns of plant distri-

bution.

3. The model is one of an equilibrium state and is

developed on the basis of present day climatic data.

The process of change is not considered, for example

the impact of C3 and C4-dominated vegetation through

time, only representations of the current conditions of

climate and vegetation.

4. The model is a representation of the present-day cli-

mate–vegetation relationship.

5. Although generally considered an important influence,

soil data are not further considered for this study, be-

cause of the interdependency between soil character-

istics and land-cover. A study in the Gran Sabana in

Venezuela by Dezzeo et al. (2004) even failed to show

a significant relation between edaphic conditions and

the distribution of savanna and forest.

4 Datasets and maps

4.1 Land-cover and elevation layers

The land-cover dataset is derived from the global land-

cover characteristics (GLCC) Data Base Version 2.0

(Loveland et al. 2000a). Advanced very high resolution

radiometer (AVHRR) was used to achieve the high 1-km

resolution (Loveland et al. 2000b). The classification,

known as the international geosphere biosphere program

(IGBP) land-cover classification (Belward 1996), embraces

17 classes of land-cover (Table 3). However, in this study a

binary data set is required, which should comprise of either

savanna or forest. In the GIS, a selection has been made

excluding all redundant land-cover categories, and group-

ing the forest-, and savanna-categories. The following

classes have been grouped to form the two categories:

[Forest] = 2 + 5 and [Savanna] = 6 – 10. The classes 3,

11–17 are removed from the land-cover layer. In addition

the land-cover data above 500 m altitude has been ex-

cluded (owing to the variable environmental conditions).

The forest adjacent to water courses has also been omitted,

since gallery forest occurrence can only be explained by

the presence of water and is therefore not relevant to the

characterisation of the savanna–forest transition zone. The

elevation data (Belward 1996) have a 1-km horizontal

resolution, which matches to that of the land-cover data.

4.2 Climate layers

The monthly values of precipitation, temperature and

potential evapotranspiration form the basis for the climatic

component of the database. Legates and Willmott (1990a,

b) acquired the data of the precipitation and temperature

using traditional land-based gauge measurements and

shipboard estimates spanning the period from 1920 to

1980. The values were then interpolated to a 0.5� lat./long.

grid using an enhanced distance-weighting interpolation

procedure (Legates and Willmott 1990a, b). Ahn and

Tateishi (1994) produced the potential evapotranspiration

data set by applying the Priestley–Taylor formula to a

global data set of air temperature, albedo, cloudiness and

elevation. To provide insight in the seasonality of the

12-month data series, several descriptive calculations were

performed for each cell within the raster and each climate

variable. This resulted in new maps, e.g., a map showing

the minimum/maximum values or the range of values of

each cell. An additional calculation was made for the

precipitation- and potential evapotranspiration values,

namely the sum of the 12-month values (the total precipi-

tation and evapotranspiration over a year). To derive

information about the dry period, we calculated during

which months a water deficit would occur. As potential

evapotranspiration (PET) approaches higher values during

the warmer months of the year, precipitation (PREC) falls

off. By the time evapotranspiration reaches the maximum

values, it has exceeded precipitation. This results in a water

deficiency for the vegetation. In the GIS the precipitation-

layers were subtracted from the evapotranspiration-layers

(PET–PREC); any surplus (PET > PREC) in the resulting

layers indicates a water deficiency. To characterise the dry

Table 3 Units of land-cover according to the IGPB land-cover

classification

Land-cover

Code Description

1 Evergreen Needleleaf Forest

2 Evergreen broadleaf forest

3 Deciduous Needleleaf forest

4 Deciduous broadleaf forest

5 Mixed forest

6 Closed Shrublands

7 Open Shrublands

8 Woody savannas

9 Savannas

10 Grasslands

11 Permanent wetlands

12 Croplands

13 Urban and Built-up

14 Cropland/natural mosaic

15 Snow and Ice

16 Barren or sparsely vegetated

17 Water bodies
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period of the year, the degree of dryness (water deficit

categorization) and the duration of water deficiency during

a continuous period of the year (‘‘duration long period’’)

were also calculated in the GIS. To provide a continuous

data set visually comparable to higher resolution variables,

all climate layers were interpolated and smoothed by trend

surface analysis in the GIS. The same points from which

data is extracted for model creation, serve as interpolation

points.

4.3 Preparation of the data base: retrieving

the variables

To understand how the variables spatially relate to each

other, all layers were overlaid in the GIS. A GIS layer was

created in which a random point raster was built. For every

point, the underlying data of the variable layers was ex-

tracted into a DBF-format document. To investigate the

influence of randomly distributed and evenly allocated

sample points (motivated by a paper by Hirzel and Guisan

2002), a second point layer of evenly spaced grid points

was constructed, and the underlying data was extracted in a

similar way (‘‘regular sampling’’, Hirzel and Guisan

2002). To derive at least 300 data points for both savanna

and forest, the random point raster consisted of a layer of

2000 points scattered out over the area of interest, whereas

the regular sample layer consisted of a square of 18 · 18

data points.

The variables as used for the predictive modelling are

listed in Table 4. The land-cover layer has been converted

to a presence/absence layer of savanna and the outcomes of

the descriptive statistics each form a separate GIS layer.

5 Logistic regression results and discussion

The results of the factor analysis in which all climatic

variables are included are shown in Table 5. The matrix

shows how significantly variables belong to which com-

ponent, and the order of importance. Three components

were extracted, which together explain 89.1% of the total

variance (41.7; 29.3; 18.1, respectively). The stron-

gest component consisted of the total water deficit

(PET > PREC), dry period in months (DRY_PER), annual

precipitation (PREC_SUM), water deficit balance (PET–

PREC) and the driest month in a year (PREC_MIN). The

second component was composed of temperature variables

in combination with the total evapotranspiration in mm/

year. The third and weakest component included the range

of the precipitation values (PREC_RNG), the value of the

wettest month (PREC_MAX) and the temperature range

(TEMP_RNG). Based on the backward stepwise regression

methodology, the best model for the logistic predictor was:

LP ¼ 0:822� 0:0162 PET SUMþ 0:585 DRY PER

þ 0:0136 DRY SUMþ 0:00100 PREC SUM

þ 0:0107 PREC MINþ 0:653 TEMP MAX

� 0:539 TEMP RNG

PET_SUM, total potential evapotranspiration [mm/year];

DRY_PER, duration dry period [months/year]; DRY_-

SUM, total water deficit [mm/year]; PREC_SUM, total

precipitation [mm/year]; PREC_MIN, precipitation of dri-

est month [mm]; TEMP_MAX, maximum temperature

[�C]; TEMP_RNG, temperature range [�C].

This equation was implemented into the GIS, with the

different data layers as input for the calculation. Subse-

quently, the application of the inverse logistic transfor-

mation (Sect. 3.2) resulted in a layer showing the

probability of savanna occurrence in values ranging from 0

to 1. The actual land-cover distribution in Fig. 2a was

compared to the probability surfaces in Fig. 2c, d, that

show the logistic regression model output of respectively

randomly and evenly distributed points. First the default

[0.5] threshold was used to differentiate between the

presence and absence of savanna (yellow lines in Fig. 2c,

d). However, after comparing the map of the savanna

probability (Fig. 2c, d) to the actual land-cover distribution

Table 4 Overview of all variables implemented into the predictive modelling

Variable Abb. Data type Function Unit Distribution Skewness Kurtosis Derived layers

Savanna Binary (1,0) Dependent – Binomial – – Presence/absence

Elevation ELEV Numeric Independent Meters App. normal 0.779 0.292 Elevation, slope, aspect

Precipitation PREC Numeric Independent mm/m App. normal 0.313 –0.581 Descriptive statisticsa

Temperature TEMP Numeric Independent �C/m No normality –1.284 2.139 Descriptive statisticsa

Potential

evapotranspiration

PET Numeric Independent mm/m Normal 0.09 0.172 Descriptive statisticsa

Water deficit PET > PREC Numeric Independent mm/m App. normal –0.412 –0.275 Duration dry period,

annual deficit

a Descriptive statistics performed on variables: mode, mean, range, variance, maximum, minimum values

702 S. G. A. Flantua et al.: Application of GIS and logistic regression to fossil pollen data

123



(Fig. 2a), it became appealing to increase the 0.5 threshold

to 0.6 (red lines in Fig. 2c, d), which means that the

boundary between savanna and forest ‘‘moves up’’. Fig-

ure 2e, f show the difference between the predicted land-

cover distribution and the observed values at a 0.5

threshold, when samples where taken from random points

(Fig. 2e) and evenly sampled points (Fig. 2f). When the

threshold of 0.5 was changed to 0.6, the predicted land-

cover (Fig. 2e) for the random sampling changed (Fig. 2g).

Figure 2h shows the outcome of the 0.6 threshold for

regular sampling. The accuracy measurements derived

from both the threshold values are shown in Table 6.

5.1 Predictive variables in model

The variables indicated by the predictive model as deter-

minants of the savanna distribution, correspond to earlier

publications (Sarmiento 1983; San Jose et al. 1998; Ripp-

stein et al. 2001; Hooghiemstra et al. 2002).

The components of the factor analysis assemble the

variables, which are closely correlated to each other. The

first component consists of just the precipitation and water

deficit variables. It explained 41.7% of the total variance

found in the data base, indicating a strong influence of the

precipitation gradient and the dry period in the study area.

The second component, composed of temperature related

variables and the potential evapotranspiration, explained

29.3% of the total variance. The inclusion of potential

evapotranspiration in this component made sense as high

air temperatures generally increase the loss of moisture

from soil and plants. The third component explained only

18% of the total variance, but was still considered impor-

tant enough to include in the logistic regression formula.

In the logistic regression, the important predictors of

savanna distribution were the same key variables as before:

the precipitation and water deficit variable were best rep-

resented in the predictive model.

Temperature plays an important role as predictor vari-

able in the form of the warmest month value, and also more

surprisingly, as the annual temperature range. The area of

the Colombian savanna has a small amplitude of annual

temperature change which should not influence the vege-

tation distribution significantly (Rippstein et al. 2001).

However, in logistic regression the variables are combined

to achieve a certain degree of predictive accuracy, i.e.,

variables form a model when in combination, not indi-

vidually. The temperature range value may indeed be

considered as a relevant predictor variable, because it is

related to the precipitation or evapotranspiration values.

The temperature variable when considered separately does

not play a significant part in the predictive capacity of the

model. However, when included in the logistic regression

model, it increased the overall accuracy of the predictions.

5.2 Model evaluation: overall accuracy, sensitivity

and specificity

When the logistic regression procedure was completed

within the statistical programming, the model generated an

overall accuracy of 80.7%, for the random sampling

method at the 0.5 threshold. Based on only this statistical

outcome, it could be concluded that this model is a suffi-

ciently accurate representation of the real land-cover dis-

tribution. According to Manel et al. (2001), about 36% of

the users of presence–absence models in ecological publi-

cations during the period of 1989–1999 confined their

model evaluation to this general prediction success value,

while many more did not carry out any evaluation (55%).

In our study we also used the Kappa’s coefficient and the

TSS to evaluate the models performance. By running the

logistic model in the GIS, the different patterns of the

predicted and the actual land-cover distribution could be

better understood.

Based on the general accuracy measurements—overall

accuracy, sensitivity and specificity—all created models

achieved an acceptable predictive power with an overall

accuracy range of 81–86%. The deviating values of sen-

sitivity and specificity are noticeable, where there exists a

certain trade-off of predictive capability in achieving a

higher overall accuracy. In the random sampling method,

the threshold of 0.6 reaches a higher overall accuracy

(84.5%) than the 0.5 cut-point (80.7%). This can be ex-

plained by the shifting of the savanna-boundary further

north in Fig. 2c (the savanna boundary shifts from the

yellow to red line), which resulted in a larger area correctly

predicted as forest, with an increase in specificity (Table 6,

Table 5 Rotated component matrix from PCA, with three explana-

tory components extracted

Component

1 2 3

PET > PREC 0.946

DRY_PER 0.935

PREC_SUM –0.915

PET–PREC 0.913

PREC_MIN –0.906

TEMP_MN 0.972

TEMP_MED 0.964

TEMP_MIN 0.947

TEMP_MAX 0.916

PET_SUM 0.744

PREC_RNG 0.965

PREC_MAX –0.584 0.769

TEMP_RNG 0.697
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81.0–91.7%). However, the trade-off exists in the decrease

of the sensitivity which fell from a 80.0 to 70.9% correctly

predicted savanna area. When the aim is to create a model

representing the savanna distribution, the power to predict

the occurrence of savanna (sensitivity) is evidently thought

to be of more value than to predict its absence (the speci-

ficity). In the regular sampling methodology, the evaluation

of the different accuracy measurements is clearly impor-

tant. At a 0.5 threshold, the overall accuracy is at a good

predictive capacity of 81.7% of the cases. However, when

considering the large area that the model included within

the 0.5 threshold for savanna, it is surprising that the model

performed well in predicting savanna presence (90.4%).

When random sampling and regular sampling were

compared (Table 6), the values of Kappa and TSS are both

higher for regular sampling. Regular sampling on a raster

of 18 by 18 grid points therefore gives more robust results

than random sampling, despite the fact that less points were

used (324 data points as opposed to 2,000 points used for

the random sampling). The model that seems to fit all

requirements is the regular sampled model at a 0.6 cut-

Fig. 2 Study area and

outcomes of predicted land-

cover distribution by logistic

model: a South-America

indicating the location of the

study area and the actual land-

cover distribution, green is

forest and yellow is savanna;

b location of the Colombian

savanna biome between the

Andes and the Guyana Shield

(03–07�N, 68–71�W);

c probability map of savanna

occurrence based on random

data sampling; d Probability

map of savanna occurrence

based on regular sampling.

Yellow lines indicate the 0.5

threshold, red lines delineate the

0.6 cut-point; e–h Differences

between observed land-cover

distribution and model

prediction; e based on random

sampling at 0.5 threshold;

f random sampling at 0.6

threshold; g regular sampling at

0.5 threshold; h regular

sampling at 0.6 threshold. The

letters correspond to the letters

of Table 1: (a) indicates

correctly predicted savanna

[Dark yellow]; and (b)

represents where the model

falsely predicted savanna

[Bright green]; (c) indicates

correctly predicted forest [Dark
green]; while (d) shows where

the model failed to predict

savanna [Red]. The statistical

accuracy of these outcomes is

detailed in Table 6

Table 6 Predictive accuracy of the created models (using either a

random or a regular sampling method, and setting the threshold at a

0.5 and a 0.6 cut-point)

Random sampling

distribution

Regular sampling

distribution

Threshold value 0.5 0.6 0.5 0.6

Prevalence (%) 34.7 34.5 34.5 34.9

Overall accuracy (%) 80.7 84.5 81.7 85.7

Sensitivity (%) 80.0 70.9 90.4 79.0

Specificity (%) 81.0 91.7 77.0 89.3

Kappa 0.588 0.647 0.624 0.685

TSS 0.610 0.626 0.674 0.683

Simple accuracy measures have been expressed as percentages
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point (Fig. 2h). The overall accuracy is highest, predicting

85.7% of the cases correctly, while both Kappa and TSS

values range up to a value of 0.68, which is stated to be

within ‘‘substantial agreement’’ (Landis and Koch 1977).

In both sampling methods the Kappa and TSS values show

an increase of the models agreement with the true distri-

bution land-cover, when changed from a 0.5 to 0.6

threshold.

When comparing all models in Fig. 2, the random

sampling resulted in more smoothed outcomes, while the

evenly distributed samples yielded more irregular shapes.

Taking into account that the original climate database has a

resolution of 0.5� (55 km), from which it was interpolated

into more detailed climatic patterns, the regular distribution

of points resulted in some unrealistic variation. However,

the regular sampling still provided more powerful predic-

tive models, which concurs with the findings of Hirzel and

Guisan (2002), who showed that systematic sampling is

more accurate and robust than random sampling strategies.

5.3 False prediction of absence (forest)

The red areas in Fig. 2e indicate that the model predicted

an absence of savanna at 7.9% of the total area of interest,

when actually the savanna is present. This suggests that

according to the model, this specific area differs markedly

from the savanna region northward, due to differences in

climatic conditions. Figure 3 shows an evaluation of the

data in the GIS, showed for one climatic variable, the total

annual precipitation, a diverging distribution. The encircled

area shows precipitation values up to 3,800 mm/year,

which compares to the values at the south eastern precip-

itation front—rainforest-area of the shown map (Fig. 3,

pointer). To consider the possibility that these interpola-

tions overestimated the precipitation values, the precipita-

tion maps of the Geographic Institute Agustin Codazzi

(IGAC) were consulted. Focusing on high precipitation

areas in the Colombian savanna, similar high rates were

found in the corresponding region with values ranging from

4,000 to 5,000 mm per year (IGAC 2002) and as early as

1967, Blydenstein observed that in the Llanos Orientales

‘‘total annual rainfall ranged between 1,700 and 2,000 mm,

increasing sharply near the base of the mountains to over

4,000 mm at Villavicencio’’ (Blydenstein 1967). It is

therefore possible that in this region with steep precipita-

tion gradients and few meteorological stations, the high

precipitation rates at Villavicencio have been extrapolated

over a region that is too large in area. Comparison of our

precipitation map with Latorre (1977) supports this

hypothesis.

By simulating the world’s distribution of ecosystems in

the absence of fire, Bond et al. (2005) discovered that large

areas in South America are dominated by grasslands and

savannas, when the climatic conditions could support

woodlands and forests. Although confined to a very coarse

resolution, as the simulations are set for a global scale, it

becomes evident from the reconstructed maps that forest

and woodlands would replace large areas of the Colombian

savanna in the absence of frequent burns. This partly ex-

plains the model’s ‘‘inaccuracy’’ of predicting forest, when

the current land-cover is savanna.

5.4 False prediction of presence (savanna)

The bright green area in Fig. 2e indicates that the model

predicted presence of savanna for 14.1% of the total area of

interest, when actually savanna is absent. This suggests that

the model identified this specific area as dissimilar to the

forest-region southward owing to the differences in cli-

matic conditions.

An evaluation of the data in the GIS, showed that the

area of false presence resembles the spatial limits of the

total annual water deficit. In Fig. 4, ‘‘water deficit’’

(PET > PREC) is shown, with the yellow line indicating

the boundary of savanna distribution according to the

model. The southern border of the false prediction area

appears to be strongly related to the isolines of the water

deficit. The layer of the duration of the dry period (not

shown here) has similarly situated isolines, indicating a

strong influence of the degree of dryness.

5.5 Best fit model and possible improvements

Owing to the general increase of the model-accuracy, the

0.6 cut point is preferred for the predictive model. The

85.7% overall accuracy of this model is considered as an

acceptable performance. Nevertheless, the inaccuracy of

the model is greatest, not surprisingly, in the zone where

the transition of forest to savanna takes place. This tran-

Fig. 3 Distribution of total annual precipitation
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sition zone is of considerable relevance to this study as it is

the focus of attention of palynological research, as most of

the pollen sites are located in this zone. Although the

model performs well, the characterisation of the transition

zone model therefore remains difficult.

Several factors may have influenced the predictive

performance of the model. The first factor is within the

model itself: the absence of one (or more) explanatory

variable(s), which could increase the ability to differentiate

between savanna presence and absence—a general goal to

improve the accuracy of the model, in particular, the effect

of fire. To further develop the model, consisting only of

climate variables, the introduction of a more complex form

of logistic regression modelling with more discriminant

components may be useful.

The second factor is the precision of the data. The readily

available surface layers of the climatic variables were

interpolated from local measurements at meteorological

stations to produce maps. However, if there is a lack of

evenly distributed stations, especially in areas with strong

gradients, the interpolation is inaccurate. The created data-

sets still depend greatly on the expert knowledge of the area

to correct erroneous interpolation values. Furthermore, the

model assumes the vegetation is in pseudo-equilibrium with

its environment. Nonetheless, this area of vegetation could

well be in a phase of shifting towards a new equilibrium

after an environmental change. Part of the deficiency in the

model’s predictive capacity may actually be adequately

explained by ecological theory and historical events, if the

temporal and stochastic dimensions of population dynamics

are taken into account (Guisan and Thuiller 2005).

By implementing the logistic regression model into GIS,

the weaknesses of the model have become evident. It is in

this part of the ecological modelling process that the utility

of GIS is demonstrated, showing that the spatial patterns of

the models are directly comparable to the true land-cover

patterns. Not only can the interpretation of the pattern of

errors contribute to an improvement of the model, but can

aid the understanding of the responsiveness of land-cover

to different environmental conditions, and therefore to the

system as a whole.

6 Palynological GIS application

Fossil pollen spectra are translated into palaeo-environ-

mental and palaeo-climatological conditions following the

papers by, e.g., Behling and Hooghiemstra (1998, 1999).

Berrio et al. (2000) discuss how pollen from savanna

vegetation may be over/under represented in the pollen

record. In previous studies pollen data of the study area

were assessed in the vegetation model Biome-3 (Marchant

et al. 2004, 2006). In this study, pollen data of the savannas

of the Colombian Llanos Orientales were introduced into

the GIS through pollen percentages implementation and

interpolation methods, to evaluate the application of paly-

nological data in GIS. An assessment is made of the suit-

ability of the pollen data for a GIS analysis, in which both

limitations of the present approach and recommendations

for future work are discussed.

6.1 Pollen sites and time series

The ten pollen records available in our study area are

positioned in an east to west transect as can be seen in

Fig. 5. Site-specific data are listed in Table 7. The transect

covers a distance of approximately 480 km. The data of the

pollen records are organized in pollen diagrams, which

display the percentages of pollen taxa found. The pollen

taxa are classified into the following ecological groups,

according to Behling and Hooghiemstra (1999, 2000): (1)

trees of forest and gallery forest; (2) shrubs and trees of

savannas; (3) savanna herbs; (4) aquatics; (5) ferns. In

order to make a dichotomous land-cover layer (savanna/

forest) in the GIS, all ecological groups, which are con-

sidered as representative for savanna vegetation (groups 2

and 3), are grouped together. Forest vegetation is based on

the pollen from group 1. The data from the aquatics and

ferns are not taken into account.

To obtain a reconstruction of temporal land-cover

changes, pollen spectra at successive time slices have been

compared. The time slices of interest were selected based

on the amount of available data and the degree of change

compared with earlier time slices to make meaningful

temporal intervals (Fig. 6). To be able to use the interpo-

lation tool of the GIS—Geostatistical Analyst, more than

nine points are required (ESRI 2001). The age ranges of the

Fig. 4 Distribution of the annual water deficit layer (mm), with

delineation of the 0.5 threshold by the yellow line and the 0.6 in red

706 S. G. A. Flantua et al.: Application of GIS and logistic regression to fossil pollen data

123



available pollen records of the Colombian savanna are

shown in Fig. 7. The chart shows already that interpola-

tion-attempts are not useful for time slices older than 8,000
14C year BP, because they include data from only four or

less sites. To overcome this problem of point interpolation,

more data points were added in the far north and south of

the area of interest, which were assumed to have 90 and 0%

pollen of savanna taxa, respectively (Table 7). The pollen

sites in the north correspond to places where lakes have

been cored, but where the cores did not contain enough

pollen to construct a reliable time series. The presence of

gallery forest in a savanna area explains why the proportion

of savanna taxa never reaches values close to 100% (e.g.,

Berrio et al. 2000), and a lower value reflects the savanna–

forest transition.

Furthermore, to facilitate extrapolation outside the

geographical area of the pollen sites, four extra outlier

points were created to enlarge the area covered by the

interpolations (Table 7c). These additional data points

were set at 0% savanna pollen, given the fact that these

additional points are complementary to the palynological

pollen sites and are located far outside the savanna area.

Solving the problem of insufficient point data also gives

a useful trend direction to the interpolated surface, i.e., a

Fig. 5 Location of pollen sites. The numbers are according to

Table 7. Green reflects forest and yellow reflects savanna

Table 7 Site-specific data of the pollen records used in this study

a. Name of

Pollen site

Coordinates Elevation

m.a.s.l.

Age range

(14C year BP)

14C No. References

1 Mozambique 3�58¢N,73�03¢W 175 0–3,450 7 Berrio et al. (2002)

2 Agua Sucia 3�35¢N,73�31¢W 300 0–5,500 4 Wijmstra and Van der Hammen (1966)

3 Las Margaritas 3�23¢N,73�26¢W 290 850–9,760 9 Wille et al. (2003)

4 Loma Linda 3�18¢N,73�23¢W 310 0–8,720 8 Behling and Hooghiemstra (2000)

5 El Angel 4�28¢N,70�34¢W 200 2,000–10,030 5 Behling and Hooghiemstra (1998)

6 El Piñal 4�08¢N,71�23¢W 180 0–18,000 6 Behling and Hooghiemstra (1999)

7 Chenevo 4�05¢N,70�21¢W 150 0–7,260 6 Berrio et al. (2002)

8 Carimagua 4�04¢N,70�14¢W 180 0–8,270 6 Behling and Hooghiemstra (1999)

8 Carimagua-Bosque 4�04¢N,70�13¢W 180 0–1,300 9 Berrio et al. (2000)

9 Sardinas 4�58¢N,69�28¢W 180 0–11,600 6 Behling and Hooghiemstra (1998)

b. Name of

extra point

Coordinates Extra point Pollen % References

1 Caño La Mata 6�90¢N,70�45¢W North 90 Hooghiemstra, personal info

2 La Maporita 6�93¢N,70�47¢W North 90 Hooghiemstra, personal info

3 Grimonero 7�03¢N,72�00¢W North 90 Hooghiemstra, personal info

4 Las Tres Marias 6�98¢N,70�58¢W North 90 Hooghiemstra, personal info

5 La Porfira 6�92¢N,70�50¢W North 90 Hooghiemstra, personal info

6 La Viga-Porfira 6�95¢N,70�48¢W North 90 Hooghiemstra, personal info

7 Pantano de Monica 0�42¢S,72�04¢W South 0 Behling et al. (1999)

c. Outliers points

1 North-east corner 7�05¢N,66�50¢W
2 North-west corner 7�05¢N,75�00¢W
3 South-east corner 1�50¢S,66�50¢W
4 South-west corner 1�50¢S,75�00¢W
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high probability of savanna in the north compared to a low

probability in the south and periphery of the study area.

6.2 Incorporating the pollen data into the GIS

The pollen percentages of the sites come from the original

Excel files on which the original pollen diagrams were

based. Pollen percentages per site and per sample have

been inserted into dbf-format documents, which form the

basis of datasets for selected time slices. The data of a time

slice were interpolated to form maps of savanna pollen

percentages, which are indicative of the land-cover distri-

bution.

6.3 Interpolation methods

Choosing a proper interpolation method depends on the

specific database. Some methods demand hardly any

specifications, while others, like co-kriging, require an

experienced GIS practitioner. There have been a number of

comparisons of interpolation methods enabling the creation

of guidelines for researchers to choose the best interpola-

tion method. This issue is out of the focus of this paper.

The usefulness of any interpolation method depends on the

characteristics of the data set. However, we aim to evaluate

how the distribution of pollen sites affects the capacity to

make interpretations of the complete area.

A variety of interpolation techniques are available,

which all have their own characteristics (Erdogan et al.

2005). In this study, two different interpolation methods

were used, (1) Local Polynomial: this is a quick deter-

ministic extrapolator that is smooth and therefore less

exact. Few decisions are required to make the interpola-

tion. There is no assessment of prediction errors, and there

are no assumptions required of the data. (2) Radial Basis

Functions: this technique is used for creating surfaces

from measured points based on the degree of smoothing.

The surface must go through each measured point loca-

tion. It is a moderately quick deterministic interpolation

technique, which is more robust and thus more exact than

Local Polynomial. However there are more parameter

decisions, which allow a variety of map outputs. This

flexibility of the different applications within the inter-

polation functions requires decision-making. There is no

assessment of prediction errors and no assumptions about

the data. There are five different Radial Basis functions,

from which the ‘‘multiquadratic function’’ is considered

the best (Erdogan et al. 2005), and therefore used in this

study.

These interpolation methods are applied using the

Geostatistical Analyst (ESRI 2001) within ArcGIS. In the

Local Polynomial interpolation, a power of two is used and

the weight distance optimised. Interpolated values less than

zero were omitted from the analysis.

7 Results and discussion

The layers created by the Local Polynomial interpolation

method are shown in Fig. 8. The selected interpolation

method resulted in general delineations of pollen percent-

ages. From Berrio et al. (2000), we estimated the boundary

Fig. 6 Steps to create a time

series of a variable: a attribute

change; b change over time; c
shape change

Fig. 7 Age ranges (14C year

BP) of the pollen records used

in this study
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between forest and savanna at approximately 40% savanna

pollen. This was taking into account the over-representa-

tion of arboreal pollen owing to: (1) the amount of pollen

produced by trees; (2) the lakes cored were sometimes

fringed by trees, even in savanna conditions. This boundary

is indicated by the black line in Fig. 8. Although these

maps should be interpreted cautiously as they are con-

structed from a few points, several trends are obvious.

Circa 8,000 years ago the savanna covered a greater area.

After this period, the savanna retreated, reaching a mini-

mum coverage at ca. 3,000 year BP. The savanna then

extended, and ca. 1,000 year BP the savanna–forest

boundary seemed to change to a more southeast–northwest

orientation that can still be observed today (Fig. 2a). The

strip of forest at the foot of the Andes, resulting from

orographic rainfall, is not represented in these interpolated

maps, as no cores from that area have yet been taken.

The Local Polynomial method (Fig. 8) is a very general

extrapolator, which connects the points of similar values.

The alternative Radial Basis Functions interpolation

method (Fig. 9) demands more parameter decisions. This

method requires repetitive runs to adjust the selected

parameters to the outcomes. If not, the interpolated maps

show unrealistic distribution of pollen percentages. How-

ever, a continuous adjustment of the outcome to meet the

expected distribution of land-cover seems arbitrary and

subjective. Selecting a proper method requires a trial-and-

error application to see which method is suitable for each

dataset. The GIS offers several different interpolation

methods that demand specifications of the distribution or

number of data points.

The pollen dataset used in this study exhibits several

limitations. The orientation of the transect of sites follows a

west to east direction, when in the past the savanna–forest

transition zone mainly had shifted in a north to south

direction. Interpretation of the pollen graphs only allows

conclusions to be made about relative changes instead of

the desired geographic extent of the vegetation. Pollen sites

distributed more evenly over the study area would allow an

effective interpolation. A transect of data points only re-

sults in a 1D representation of the data (e.g., north–south),

as the points give information about the local circum-

stances and the degree of change along the line of inter-

polated points. A large area will be subject to

extrapolations with a higher uncertainty due to missing

reference points. When the setting of the landscape remains

constant over the length of a transect, the interpolation of

the point data will be limited. The influx of pollen from

edaphically determined gallery forest along the rivers in the

savanna area caused another bias. Climatic conditions

could not sustain forest. According to Berrı́o et al. (2000),

the pollen signal of savanna is under-represented in lake

sediments when the lake is totally surrounded by gallery

forest. Once interpolated pollen maps have been satisfac-

torily produced, it remains to be decided on which per-

centage margin a differentiation is made between savanna

and forest. Based on the influences of gallery forest, one

could easily underestimate the presence of savanna. An

Fig. 8 Interpolated pollen

percentages of taxa reflecting

savanna vegetation based on

Local Polynomial Interpolation

method. The interpolated area

corresponds to the area

delineated in Fig. 2b. Selected

time slices range from 1,000 to

8,000 14C year BP.

(Interpolation specification:

power = 2, Ideal weight

distance activated). The black
line indicates the estimate for

the savanna–forest boundary
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appropriate data set of modern pollen rain data is therefore

necessary. Based on the pollen dataset used in this study,

the transition zone between savanna and forest is cannot be

accurately located.

8 Conclusions: GIS, statistics and palynology

The combination of GIS and logistic regression used in this

study is a novel approach to modelling the spatial distri-

bution of savanna vegetation and the incorporation of

palynological data into GIS. Logistic regression has been

chosen since the relationship between species distribution

and predictor environmental variables is made obvious.

The model resulting from the logistic regression, is run in a

GIS, giving a visual representation of the predictive

capacity of the model, outlining limitations, and so facili-

tating the improvement of the model.

To further improve the performance of the model, the

logistic regression procedure as well as the data set can be

developed further. The introduction of a more complex

form of logistic regression modelling with more discrimi-

nant components (not only climate) may result in a higher

precision of predictions. In addition to improving the reso-

lution of the data set, it would be functional to add one (or

more) explanatory variable(s) to the model, which were not

considered in this study, such as the effect of fire. This

would most probably increase the capacity of the model to

differentiate between presence and absence of savanna

vegetation. Other interesting modifications in the model

would be the incorporation of inter-species competition

effects, migration processes, and the effects of human

disturbance. The incorporation of these factors would

provide greater insight in the dynamic interface of savanna

and forest.

When the model is considered to adequately represent

the vegetation distribution, the model can be further em-

ployed to improve the interpretation pollen database. As

subsequent step the manipulation of one or more climatic

variable(s) by increasing or decreasing the overall climatic

values with a certain percentage is proposed. The logistic

model should then be re-run and introduced into the GIS

according to the same methodology. The degree of vege-

tation change compared to the relative change of a climatic

variable can then be defined and compared with the relative

changes seen in the pollen data of the area of interest, to

understand the response of the vegetation to changing

environmental conditions in both past and future context.

To use this model to reconstruct past and future vege-

tation distributions, the effect of fluctuating atmospheric

pCO2 levels on the vegetation must be taken into account.

As plant species are affected differently by variations in

pCO2 levels, this climatic component has contributed to the

plant distribution in the past (Boom et al. 2002).

A number of recommendations for future modelling

work stem from the results of this study: more complex

forms of logistic regression modelling should be explored;

more advanced interpolation methods should be imple-

mented; one or more predictor variables, such as fire fre-

quency, biotic interaction, and human disturbance should

be implemented. Locations of pollen sites should be more

evenly distributed over the study area to aid the under-

standing of the geographical migration of land cover

boundaries in space and time, with the help of interpolation

methods in GIS.

We conclude that analysis of pollen data in GIS offers

new possibilities to evaluate multi-site data. A regional

synthesis is not merely descriptive or embedded in a vege-

tation model (Biome-3) but the impact of particular climatic

variables and their geographical gradients can be assessed,

Fig. 9 Maps of interpolated

pollen percentages of taxa

reflecting savanna vegetation

based on Radial Based

Functions interpolation method.

The interpolated area

corresponds to the area

delineated in Fig. 2b. Selected

time slices range from 1,000 to

4,000 14C year BP
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while also sensitivity experiments may be carried out with

the dataset.
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