Modulation of the selectivity of CO2 to CO electroreduction in palladium rich Palladium-Indium nanoparticles

DOI
10.1016/j.jcat.2021.08.021

Publication date
2021

Document Version
Final published version

Published in
Journal of Catalysis

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Modulation of the selectivity of CO₂ to CO electroreduction in palladium-rich Palladium-Indium nanoparticles

Davide Pavesi a,b, Federico Dattila c, Rim C.J. Van de Poll d, Dimitra Anastasiadou d, Rodrigo García-Muelas c, Marta Figueiredo d, Gert-Jan M. Gruter a,e, Núria López c,⇑, Marc T.M. Koper b, Klaas Jan P. Schouten a,⇑

a Avantium Chemicals BV, Zekeringstraat 29 1014 BV, Amsterdam, the Netherlands
b Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
c Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paı̈sos Catalans 16, 43007 Tarragona, Spain
d Inorganic Materials and Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
e Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, the Netherlands

Corresponding authors.
E-mail addresses: nlopez@iciq.es (N. López), KlaasJan.Schouten@teijinaramid.com (K.J.P. Schouten).

https://doi.org/10.1016/j.jcat.2021.08.021
0021-9517/© 2021 Published by Elsevier Inc.

1. Introduction

The electrochemical reduction of CO₂ is an important topic of research nowadays due to the possibility of using renewable electricity to convert this greenhouse gas to value added chemicals and fuels.[1] The reaction can yield several products such as CO, methane, ethylene and formic acid.[2] Among these, CO is of particular interest because of its large industrial use, both as a pure gas or in combination with H₂ as syngas. Pure CO is used industrially for carbon monoxide-forming reactions in the fine chemicals industry as well as in the production of phosgene, an important intermediate for the production of plastics.[3] Syngas, instead, can be used as feedstock for the Fischer-Tropsch reaction, which would enable the further conversion into fuels. This way, CO₂ converted into CO could serve as a stepping stone for the production of carbon neutral fuels or for fixation into plastic materials.

Typically, precious metals such as Au and Ag show high catalytic selectivity for the reduction of CO₂ to CO at room tempera-
tion surface, while Pd domains remain susceptible to poisoning. The addition of excess In causes the formation of intermetallic Pd-In compounds with no selectivity towards CO₂ reduction products. This behavior is completely different from the one reported for bulk Pd-In electrodes. The use of a similar approach to favor the release of tightly bound "CO or reduce poisoning for other metallic alloys nanoparticles can potentially yield CO selective catalysts not based on precious metals, decreasing the capital costs of low temperature CO₂ to CO electrolyzers.

2. Materials and methods

2.1. Materials and chemicals

InCl₃ 99.999%, Trisodium Citrate dihydrate > 99%, K₂PdCl₄ 99.99%, NaBH₄ 99.99% and Nafion™ solution (5 wt% solution in lower aliphatic alcohols and water (15–20% water content) were purchased from Aldrich. Vulcan carbon (VXC72R) was purchased from Cabot Corp. Carbon cloth (60% Teflon treated) was obtained from Fuel Cell Store. KHCO₃ 99.5% and H₂SO₄ 95% solution in ultrapure water (Millipore 18.2 MΩ) were purchased from Acros Organics.

2.2. Particle production and ink formulation

The particles supported on carbon were prepared in water via a chemical reduction method. The total amount of moles of metals was kept constant at 0.15 mmol and the ratios of In and Pd were varied in order to achieve different compositions. For the synthesis, an appropriate amount of solid InCl₃ was dissolved in about 1.5 mL of ultrapure water (Millipore 18.2 MΩ) along with 353 mg of Trisodium Citrate dihydrate, and a certain volume of a stock solution of 0.1 M K₂PdCl₄. An overview of the different amounts of salts, as well as the different bimetallic compositions used in this study (indicated as atomic % in the catalyst denomination) can be found in Table 1. The resulting solution was diluted in 30 mL of ultrapure water to which 30 mg of carbon black were added. The ink was then sonicated again until the elements in the final material.

<table>
<thead>
<tr>
<th>Catalyst Composition</th>
<th>Reagent Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg InCl₃</td>
</tr>
<tr>
<td>In/C</td>
<td>33.17</td>
</tr>
<tr>
<td>Pd₀.8In₀.2/C</td>
<td>16.59</td>
</tr>
<tr>
<td>Pd₀.3In₀.7/C</td>
<td>3.31</td>
</tr>
<tr>
<td>Pd₀.8In₀.2/C</td>
<td>0.8</td>
</tr>
<tr>
<td>Pd/C</td>
<td>0</td>
</tr>
</tbody>
</table>

2.3. H-Cell electrolysis

The controlled potential electrolysis was carried out in an H-Cell connected to a Bio-logic MPG2 (with EC-lab software version 11.10) potentiostat. The catholyte was 0.5 M KHCO₃ (100 mL) and the anolyte was 0.5 M H₂SO₄ (100 mL). The two chambers were separated by a reinforced Nafion® N324 membrane. The catholyte was continuously purged with CO₂ and stirred to ensure reactant availability on the electrode surface. The potential was applied on the working electrode (exposed area of 1.5 cm²) against a leak free Ag/AgCl electrode and progressively stepped down from −0.5 to −1.25 V vs RHE (ir-corrected) in 30-minute steps. At the end of every step a sample of the catholyte was collected and analyzed for soluble products with an Agilent 1260 HPLC. Gas chromatography was performed on a Varian 4900 micro GC equipped with four modules: CO₂ module, MSS (mol sieve) module, PPQ (poraplotQ) module and 52C WAX module. The head space of the cell was automatically sampled every 4 min to detect gaseous products. All the potentials throughout this work will be referenced to the Reversible Hydrogen Electrode, unless otherwise specified.

2.4. Electrochemical measurements

Cyclic voltammetry was carried out in a cell connected to a Bio-logic MPG2 (with EC-lab software version 11.10) potentiostat. A leak free Ag/AgCl electrode was used as the reference electrode and the counter electrode was a Pt gauze. The working electrode was carbon cloth with the airbrushed catalytic ink. The electrolyte was a 0.5 M KHCO₃ solution, saturated with either CO₂ or N₂ before running the experiments. The electrodes, with an exposed area of 1.5 cm², were cycled at a scan rate of 50 mV s⁻¹ with N₂ or CO₂ continuously purging the headspace of the cell. Cyclic voltammograms were also recorded directly after CO₂ reduction in the H-Cell for the Pd-rich catalysts in order to estimate the relative amounts of Pd sites on the surface of the particles from integration of the Pd(II) to Pd(0) reduction peak.

2.5. Particle characterization

X-Ray diffraction patterns of the particles supported on carbon were obtained by a Philips X’pert equipped with X’lerator in a 2θ range from 20 to 80 degrees. SEM was performed on an Apreo SEM equipped with an energy dispersive X-ray (EDX) analyzer. The analysis was performed to determine if the theoretical atomic ratios of Pd and In were obtained in the final product. The atomic ratios of Pd and In were measured in different parts of the carbon cloths and averaged to obtain the final result. TEM imaging was performed on a FEI Tecnai 20 transmission electron microscope. X-ray photoelectron spectroscopy measurements were performed on the catalyst powders with a Thermo Fisher K-alpha instrument. The adsorption properties of the particles were investigated using CO as a probe molecule in the gas phase and recording difference Attenuated Total Reflectance (ATR) spectra. In order to do this, the catalyst inks prepared as described above were drop-cast on a Si hemisphere internal reflection element. The hemisphere was then mounted into a custom cell that allowed to control the composition of the headspace by flowing different gases and positioned into a Bruker Vertex 80 V Infrared spectrophotometer. The catalysts were pre-reduced in pure H₂ and after purging with Ar and recording a background spectrum the headspace of the cell was saturated with CO and difference spectra were collected. When a stable signal was obtained, the headspace of the cell was again purged with Ar in order to see the irreversibly adsorbed CO.
2.6. Computational details

Density functional theory (DFT) calculations were performed through the Vienna Ab Initio Simulation Package (VASP),[12,13] using a plane-wave basis set and the Perdew – Burke – Ernzerhof (PBE) exchange–correlation functional.[14] Inner electrons were represented by the PAW formalism.[15,16] The basis set cut-off energy was 450 eV. Throughout the whole study we model the experimentally synthesized nanoparticles following the Wulff theorem: the lower the surface energy of a given facet, the larger its surface extension on nanoparticles in the absence of an external potential.[17,18] Thus, we first calculated the surface energy of several surface terminations and then assessed the adsorption of intermediates on the ones with lowest energies, expected to be the most abundant. Different supercells were considered to mimic the experimentally synthesized catalysts, namely: (i) metallic and intermetallic surfaces such as In(001), Pd(111), PdIn(110), Pd$_2$In(010), Pd$_3$In(100); and (ii) In-Pd(111) solid solution. Structural relaxation was performed until the forces on the atoms were below 0.02 eV Å$^{-1}$. The Brillouin zone was sampled by a Γ-centered k-points mesh from the Monkhorst-Pack method,[19] with a reciprocal grid size smaller than 0.03 Å$^{-1}$. For every model employed, the vacuum between the slabs was at least 10 Å. To assess CO$_2$ reduction, we placed reaction intermediates only on one side of the slabs, thus we included dipole correction in the simulations to remove spurious contributions from the asymmetric slab model.[20] Adsorption energies were calculated including dispersion through the D2 method,[21,22] with our reparametrization of the C$_6$ coefficients for metals.[23] Entropic terms at $T = 298.15$ K were considered to determine the Gibbs free energy profiles, whereas solvation contributions were included through the implicit model VASP-MGCM [24,25].

3. Results

3.1. H-Cell electrolysis

Fig. 1 summarizes the Faradaic Yield (FY) towards CO of the five investigated catalysts at four different potentials (bars) and the partial current density towards CO per Pd surface site (dots). To obtain this latter value, we measured a cyclic voltammogram immediately after electrolysis and we integrated the Pd(II) to Pd (0) reduction peak to calculate the reduction charge. Then, we estimated the moles of Pd on the electroactive surface from this reduction charge and finally we used this value to normalize the CO partial current. We applied this procedure to exclude any dependence of CO partial current density on particle size, catalyst loading or inhomogeneous distribution of the catalyst particles on the carbon cloth for Pd-rich systems. In fact, as can be seen in Fig. S1, the geometrical current density of the Pd$_{98}$In$_2$/C and Pd$_{90}$In$_{10}$/C is significantly higher than the pure Pd/C particles. The only other gaseous product detected is H$_2$ for all the catalysts, as reported in Fig. S2 while In, as expected,[4] produces formate as the main CO$_2$ reduction product with a FY of about 70% at −0.95 V and 40% at −1.25 V. Pure Pd, as expected,[10] also produces small amounts of formate at −0.5 V.

At mild cathodic bias, the CO selectivity correlates with particle composition, with Pd/C being the most selective and the other catalysts showing decreasing selectivity as a larger amount of In is present. In/C and Pd$_{90}$In$_{10}$/C do not produce CO in detectable amounts at any of the investigated potentials. Despite the voltammetric analysis showing the presence of CO poisoning on the surface of Pd/C, Pd$_{98}$In$_2$/C and Pd$_{90}$In$_{10}$/C (see Fig. 2), these catalysts evolve CO with appreciable selectivity. For example, at −0.75 V, the potential at which the highest CO selectivity is observed, pure Pd/C has a faradaic yield of about 80%, Pd$_{98}$In$_2$/C of about 70%, and Pd$_{90}$In$_{10}$/C of about 50%. For less negative potentials (−0.5 V), gasous products were below the detection limit of the instrument due to the low currents achieved. On the other hand, the current density achieved at −1.25 V is very high for a H-cell (50–60 mA cm$^{-2}$): this value is likely well above the CO$_2$ reduction limiting current in our conditions and it can potentially lead to degradation of the catalyst layer. This could explain the more erratic behavior of both the current density (Fig. S1) and the selectivity towards CO at this potential.

Despite the lower CO selectivity, for the Pd$_{98}$In$_2$/C system a higher partial current density towards CO is reached compared to Pd/C, both as geometrical current density (see Fig. S1) and as cur-

![Fig. 1. Faradaic yield towards CO for the five catalysts at four different potentials (bars) and partial current density towards CO per μmol of Pd on the electroactive surface (dots).](image-url)
rent density per Pd surface site. This especially holds at –0.95 V and –1.15 V, while this difference is less marked at –0.75 V and –1.25 V. Since, apart from the data point at –1.15 V, the partial current densities for Pd$_{98}$In$_2$/C and Pd/C are equivalent within the error bars, it is alternatively possible that, in spite of a decrease in selectivity, a similar CO partial current per Pd site is retained. The CO partial current density then decreases on Pd$_{90}$In$_{10}$/C and goes to zero on Pd$_{50}$In$_{50}$/C.

3.2. Electrochemical measurements

The electrodes were cycled at a scan rate of 50 mV s$^{-1}$ in N$_2$ saturated and CO$_2$ saturated 0.5 M KHCO$_3$ between –1.5 and +1.3 V (before applying ohmic drop correction a posteriori), to allow the re-oxidation of adsorbed \(^{\ast}\)CO formed on the surface during the cathodic part of the voltammetry.

As shown in Fig. 2, the cathodic current density on Pd/C in CO$_2$ is significantly lower than for the N$_2$-saturated electrolyte, due to CO accumulation and consequent surface poisoning. In the presence of CO$_2$, a reduction peak attributed to CO adsorption on the surface appears between approximately –0.1 and –0.7 V,[9] whereas at potentials higher than +0.5 V the adsorbed \(^{\ast}\)CO is oxidized. On In/C nanoparticles the cathodic current density observed in CO$_2$ is significantly higher than in a N$_2$ saturated electrolyte because of the concomitant CO$_2$ reduction to formate.

As for the three bimetallic catalysts, they can be classified in two different groups according to their behavior: Pd$_{98}$In$_2$/C and Pd$_{90}$In$_{10}$/C behave roughly as Pd/C, while Pd$_{50}$In$_{50}$/C exhibits significant differences. For the Pd-rich bimetallics in CO$_2$ saturated electrolyte the large reducing peak assigned to CO adsorption is still present. However, its shape dramatically changes in the case of the Pd$_{98}$In$_2$/C system and the peak is broadened up until the most negative potential. In the case of Pd$_{50}$In$_{10}$/C the CO adsorption peak is more similar to Pd/C. Interestingly, while the cathodic current in CO$_2$ saturated electrolyte is significantly higher than Pd for both Pd$_{98}$In$_2$/C and Pd$_{90}$In$_{10}$/C, the current densities achieved in N$_2$ saturated electrolyte are very similar for these three catalysts. This may indicate the presence of active sites less susceptible to poisoning, which could contribute to a steeper rise in current on the bimetallic particles as more negative potentials are applied in the presence of CO$_2$. Instead, on Pd$_{50}$In$_{50}$/C the current densities in CO$_2$ and N$_2$ are not markedly different, and the CO adsorption peak is not prominent. Minor CO oxidation is only observable above +0.5 V, suggesting that some CO adsorsbs on the surface, but still in lower amount than on pure Pd.

To confirm that CO adsorbs irreversibly on Pd/C, Pd$_{98}$In$_2$/C and Pd$_{90}$In$_{10}$/C, but not on Pd$_{50}$In$_{50}$/C and In/C, we performed cyclic voltammetries between –1.5 and +0.6 V, to avoid re-oxidation of surface adsorbed CO. The results are shown in Figs. S3a (first cycle) and S3b (last cycle). While during the first cycle the CO adsorption peak is visible for Pd/C, Pd$_{98}$In$_2$/C and Pd$_{90}$In$_{10}$/C, the second cycle the peak has disappeared and the voltammetric response is featureless, indicating that the surface of these three catalysts is subject to CO poisoning and fully covered after only one cycle if potentials where the oxidation of surface adsorbed CO are not reached. In the case of Pd$_{50}$In$_{50}$/C a minor adsorption peak is visible in the first cycle, but the shape of the voltammogram remains essentially the same, suggesting that the surface of this catalyst does not interact strongly with CO$_2$. In/C, as expected, does not adsorb CO.

In the case of Pd$_{98}$In$_2$/C and Pd$_{90}$In$_{10}$/C, the shape of the CV is similar to the one of Pd/C (especially in N$_2$ saturated electrolyte),
with distortions and differences caused by the presence of In. In the case of Pd₅₀ln₅₀/C the overall shape of the CV is markedly different from those of Pd/C or ln/C, indicating that one or more intermetallic phases could be predominant.

3.3. Particle characterization

The atomic ratios of Pd and ln in the catalysts were estimated with SEM-EDX and XPS, whereas the loading of metals on the carbon cloths was calculated by weighing the cloth before and after airbrushing. The atomic composition is very close to the value expected from the synthesis and electrode metal loading is almost constant for every system (Table S1).

Fig. 3 shows the diffractograms of the materials in our study. ln/C and Pd₅₀ln₅₀/C give a flat signal, attributable to very small crystalline domains or to an amorphous nature. Pd/C, Pd₉₈In₂/C and Pd₉₀In₁₀/C show a nanocrystalline pattern with broad peaks. The crystallite sizes calculated with the Scherrer equation are 4.68 nm, 4.18 nm and 3.70 nm for Pd/C, Pd₉₈In₂/C and Pd₉₀In₁₀/C, respectively and are in good agreement with the sizes measured from the TEM images (Table S2) of 4.4 ± 1.2 nm for Pd, 4.1 ± 1.0 nm for Pd₉₈In₂ and 3.8 ± 1.0 nm for Pd₉₀In₁₀. Table S2 also reports the particle sizes of ln/C (3.6 ± 0.9 nm) and Pd₅₀ln₅₀/C (3.7 ± 0.4 nm), while representative TEM pictures are reported in Fig. S4. The diffractograms of Pd₉₈In₂/C and Pd₉₀In₁₀/C present peak shift compared to pure Pd, indicating the formation of a Pd-In solid solution, as is documented in this composition range.[26,27] Correspondingly, the lattice parameter for the bimetallic particles increases. While a lattice expansion is reported upon formation of the solid solution phase, in bulk alloys at 900 °C the expansion is a linear function of In atomic % in Pd up to 17.6%.[27] In our case the expansion is similar for Pd₉₀In₁₀/C and Pd₉₈In₂/C. The amount of ln soluble in Pd as random solid solution at room temperature is probably lower than 10%. This can cause the formation of a saturated solid solution phase and the demixing of excess ln as small crystalline domains of ordered intermetallic Pd-In compounds, invisible to XRD due to the small size. The absence of an annealing treatment after the synthesis could be the cause of this more disordered structure. It is known that Pd and ln can form several intermetallic compounds (for example Pd₅ln, Pd₃ln and Pdln) as well as solid solutions according to the composition range.[26] Increasing the amount of ln increases the tendency to form these regular intermetallic structures over the disordered structure of substitutional alloys. This aspect is discussed in greater detail below.

Fig. 4 shows the ATR spectra of the five catalysts and a more detailed description of the ATR experiments can be found in the Supporting Information. In brief, Pd/C and Pd₅₀ln₅₀/C do not show easily distinguishable behaviors in the binding energy or mode. This indicates that CO adsorbs very similarly on these nanoparticles when used as a probe molecule. This is in accordance with our DFT simulations (see discussion below and Fig. S9). Pd₉₀In₁₀/C shows deviations from the behavior of the other two Pd-rich catalysts in a CO atmosphere, with a higher prevalence of adsorption sites on top, but the spectrum is the same as the other two after stripping with Ar. This could imply that on these particles we have patches of new sites adsorbing CO weakly, but, after stripping with Ar, the CO left is adsorbed on strong binding sites analogous to the other two Pd-rich catalysts. This would suggest the existence of Pd-In solid solution domains and maybe intermetallic regions with a different adsorption behavior. This presence of solid solution plus small domains of intermetallic compounds for Pd₉₀In₁₀/C is partially expected since the ln/Pd ratio is only slightly above the solubility limit of ln in Pd. Instead, Pd₅₀ln₅₀/C adsorbs CO in a radically different way, only showing a weak band and ln does not show any CO adsorption.

It is remarkable that this CO adsorption/poisoning behavior is the same observed in the cyclic voltammetries, where Pd/C, Pd₅₀-ln₂/C and Pd₉₀In₁₀/C need an oxidative treatment to free the surface of CO (in the gas phase, since we do not control the potential, the adsorbed *CO remains on the surface after Ar purging), while Pd₉₀In₁₀ only shows small amounts of CO oxidation and ln does not show any CO poisoning at all. Some changes in the IR spectrum which might explain the different behavior shown during electrolysis start to be observable in Pd₉₀In₁₀/C and are evident in Pd₉₀ln₁₀/C. Instead, in the case of Pd/C and Pd₅₀In₂/C no differences are easily noticeable when the surface is probed with CO, even though Pd₅₀In₂/C shows lower selectivity and higher kinetics for CO evolution during electrolysis.

3.4. Adsorption of reaction intermediates

The particles investigated here, especially the ones selective towards CO evolution, are composed of pure Pd, a solid solution...
of In in Pd (as shown by XRD) and possibly small intermetallic domains. The bonds between In and Pd in the intermetallics are strong and partially covalent. Also, the tendency to form intermetallic compounds increases with increasing In content and it is likely that the Pd$_{50}$In$_{50}$ catalyst will be composed exclusively of intermetallic compounds at least after reduction.

The exact composition of these intermetallics is difficult to define since deviations from the thermodynamically most stable phase are common in bimetallic nanoparticle synthesis. The Computational Details in the Supporting Information show our analysis of the stability of the Pd$_x$In$_y$ systems against segregation and remixing of the solid solution. In summary, the formation of solid solutions and intermetallic compounds is energetically favorable (Table S3). Increasing the amount of In enhances the tendency of the solid solution phase to separate into a pure Pd phase + intermetallic compounds (Fig. S7). Indium substituents in a Pd matrix have a slight tendency to be on the surface and to be isolated, rather than forming In clusters (Fig. S8). Thus, we investigated two different kinds of systems by DFT simulations: (i) a solid solution of In in Pd modelled by substituting an In atom on the surface of a p(4 \times 4) Pd(111) slab (Fig. 5) and (ii) three different intermetallic compounds expected in our composition range, PdIn, PdIn$_2$, and PdIn$_3$ (Fig. 6). The structures and lattice parameters of the model systems employed in this study are reported in Table S4. We note that the presence of In increases the interatomic metal–metal distance with respect to pure Pd, thereby accounting for the experimentally observed lattice expansion in Fig. 3c.

Fig. 5 illustrates the binding energy of COOH and H as well as the desorption energy of CO for different adsorption sites on the Pd-In solid solution at 1/16 (0.06) ML surface coverage. Pd domains of the Pd-In solid solution behave as pure Pd sites for the adsorption of COOH and H and the desorption of CO. On the contrary, the adsorption of H on an fcc 2PdIn hollow site is hindered ($\Delta G_{\text{ads,COOH}} > 0$ eV), whilst the adsorption of COOH on a Pd in proximity of the In atom is exergonic ($\Delta G_{\text{COOH}} = -0.5$ eV). Furthermore, the In atom strongly favors CO desorption, since $\Delta G_{\text{CO-E}}$ decreases from +2.46 (hollow site on pure Pd and Pd domains on the solid solution) to +0.39 eV (2PdIn hollow site), enabling CO evolution.

Even though these low coverage results are already insightful, our models for Pd and Pd-In solid solution surfaces must be further extended to high CO coverages to mimic the Pd-rich surfaces during operation. Thus, we assessed 0.75 ML CO coverage via a (2 \times 2)–3CO geometry (the most stable adsorption configuration on Pd(111) at this coverage[33]) on both Pd(111) and Pd-In (111) solid solution. The results are shown in Fig. S9: the average CO desorption energy is almost equivalent for both cases and is about 1 eV lower than for the low coverage case due to CO-CO repulsion (+1.6 eV vs. +2.5 eV). The overall CO adsorption geometry does not change significantly upon presence of the In substituent, with the only difference that the two CO molecules close to In are repelled and thus move from a hollow to a bridge site (see Fig. S9).

This theoretical evidence is consistent with the infrared spectra of Pd and Pd$_{50}$In$_{50}$. In fact, ATR spectra exhibit similar features for Pd and Pd$_{50}$In$_{50}$ (Fig. 4), since the local shift of CO molecules close to In from hollow to bridge adsorption sites could be hardly detectable due to the convolution of these peaks. The tendency of In atoms toward surface segregation (Fig. S8) is hindered at high CO coverage, since we calculate a thermodynamic driving force of $–1.1$ eV for Pd to segregate at the surface and leave In atoms in the second layer. If In is present as a subsurface substituent, though, its weakening of intermediates binding is screened by the Pd matrix, leading to the absence of an outstanding difference in surface reactivity compared to a pure Pd slab (Fig. S10). Since the behavior of our Pd/C and Pd$_{50}$In$_{50}$/C regarding CO$_2$ reduction is noticeably different, we propose that Pd segregation does not fully remove In from the surface, at least at room temperature and on the short time-scale of our experiments. Nonetheless, this effect could play a relevant role in longer experiments or if these Pd-In materials were used for high-temperature experiments. During our ATR experiments, exposure to a high CO partial pressure could drive Pd surface segregation to some extent, and this phenomenon could alternatively explain the very similar spectra for Pd/C and Pd$_{50}$In$_{50}$.

We can explain the weakening of H^+ and CO binding energy on fcc 2PdIn hollow site through Bader charge analysis. The In atom embedded in the Pd matrix carries a partial positive charge of +0.64 [e$^-$], while electronic density is evenly distributed between the Pd neighbors. The positive polarization of the In substituent is due to the significantly different electronegativity between Pd and In (2.20 vs 1.78 on the Pauling scale, respectively). C atoms in the CO and COOH intermediates are respectively charged by +0.75 [e$^-$] and +1.38 [e$^-$], thus we can expect an electrostatic repulsion...
between the In site and the adsorbate. In fact, COOH adsorption on a pure In surface is slightly endergonic by +0.28 eV, while on a positively charged In atom embedded in the Pd surface it has a \(\Delta G \) of about +1.0 eV. This positively charged In atom destabilizes CO and H adsorption, whereas the reactivity of Pd domains does not change since the increased electronic density is shared between many neighboring atoms. On top of this potential electrostatic repulsion, the In substituent weakens adsorption of intermediates due to the absence of d-orbitals in its valence shell. Overall, even though steps, corners, kinks, and other geometric defects present on nanoparticles also alter the local electronic density, we expect these electrostatic and electronic effects to play a role for the reactivity of Pd-In solid solution.

The intermetallic systems show a completely different catalytic behavior. Fig. 6 shows a comparison of Gibbs free energy for CO desorption (panel a, red bars), COOH and H adsorption (green and gray bars, respectively) on the most stable terminations of the investigated intermetallic compounds as well as pure Pd and In. Different terminations as well as different adsorption configurations have been considered and are reported in Tables S5-S6. In Fig. 5, the d-band center of pure Pd and those of Pd in the intermetallic compounds are also plotted for completeness. While for the solid solution the d-band center does not change significantly (–1.81 eV on pure Pd vs –1.79 eV on Pd sites adjacent to the In substituent, not reported in Fig. 6), for the intermetallic compounds this parameter shifts to more negative values due to structural changes, Pd isolation and formation of partially covalent bonds with increasing amount of In. The d-band center shifts to lower energies and this causes a progressive weakening of CO adsorption as expected from the d-band model,[34–36] although never to the levels of the solid solution system in proximity of the In atom. The binding energies of H and COOH also change with increasing In content: while pure Pd binds COOH more strongly than H, the situation is reversed for Pd-In and Pd2In. The compound PdIn shows similar positive binding energies for both intermediates.

4. Discussion

The dependence of the CO selectivity of In-Pd systems on In content must be rationalized by addressing (i) why pure Pd nanoparticles are evolving CO with such high selectivity and (ii) the reactivity of solid solutions, intermetallic compounds or their
interplay, given the Pd-In phase diagram and the experimental and theoretical characterization reported previously.

4.1. Pd

Pure Pd binds CO very strongly, in fact the computed binding energy, even at high coverage, is very high, thus the desorption of this molecule from the surface is extremely endergonic. On bulk Pd electrodes, the reported selectivity towards CO is generally low (around 25%) [4,8] and CO poisoning occurs, leading to a high-overpotential hydrogen evolution as the main electrochemical reaction. The situation is different on carbon supported nanoparticles, especially smaller ones in the range of 2.5 to 4.5 nm, [11] where high CO selectivity can be achieved during steady state electrolysis, despite the high CO coverage and the sluggish kinetics. [9,10] Hydrogen evolution is instead hindered by CO surface poisoning, thus motivating the high selectivity toward CO. Thus, a small number of sites with lower CO affinity exist on the surface of Pd catalysts that can either produce and release CO or alternatively facilitate the desorption of CO formed on crystalline Pd sites. The nature of these active sites is not clear, but some inspiration can be drawn from the field of heterogenous catalysis, where the in-operando formation of Pd carbides, either from the carbon support or from the carbonaceous reactants can cause the formation of sites with considerably lower binding energy for catalytic intermediates, favoring, for example, partial hydrogenation rather than full hydrogenation of hydrocarbons [37–40].

4.2. Pd-In solid solutions

The experimental and theoretical analyses presented above suggest that the presence of In as a solid solution surface substitute, such as in Pd$_{90}$In$_{10}$, is neither drastically altering CO binding nor its adsorption configuration at high CO coverages (Fig. 4 and Fig. S9). Nonetheless, the presence of this positively charged In substituent changes the adsorption properties in its surroundings by creating sites with weaker binding energies for H and COOH (on top of In) and lower desorption energy for CO (Fig. 5). While when using CO as a probe molecule these sites may be avoided by slightly rearranging the adsorption geometry (Fig. S9), during electrolysis these weak CO binding sites close to the In impurity would present a locally lower CO coverage and remain more accessible for electrochemical reactions since the Pd-rich domains will be covered by tightly bound CO. The catalytic behavior of these weak-CO-binding Pd-In sites is not clear-cut and could be influenced by many other factors. They could be selective to hydrogen evolution due to the steric repulsion at high CO coverages, or they may also enable CO formation due to their less endergonic CO desorption energy and favorable COOH adsorption on top of a Pd atom adjacent to the In atom. This can explain the experimental behavior displayed by Pd/C and Pd$_{90}$In$_{10}$/C regarding the CO partial current. We expect CO$_2$ reduction to CO to occur more easily around an In substituent due to the almost thermoneutral CO desorption, which could cause higher overall currents. On the other hand, the lower CO poisoning and steric limitations could promote HER, causing loss of selectivity. In any case, due to the low content of In on the surface and potential Pd surface segregation, the possible promoting effect on CO$_2$R activity may be limited, thus motivating partial current densities per electroactive Pd for Pd/C and Pd$_{90}$In$_{10}$/C being equivalent within the error bars.

4.3. Intermetallic compounds

As presented in Fig. 6, the formation of intermetallic compounds favors hydrogen evolution. By comparing H and COOH binding energy on Pd and the intermetallic compounds within our compositional range, we can see that Pd binds COOH more strongly than H, thus leading to high CO coverage. Instead, Pd$_{9}$In and Pd$_{93}$In will likely catalyze hydrogen evolution, since these intermetallics exhibit stronger affinity for H rather than COOH, resulting in a higher H coverage. The PdIn compound, instead, presents slightly endergonic binding energies for both H and COOH. In this case HER should be favored due to the larger water content in the electrolyte, however the hydrogen evolution catalyst will be suboptimal. In fact, despite the absence of CO poisoning, only a sluggish hydrogen evolution is observed on Pd$_{93}$In$_{07}$, for which we expect to have the highest amount of intermetallic compounds and possibly the compound PdIn. On Pd$_{93}$In$_{07}$, where we expect to have both solid solution and intermetallic phases, we have a somewhat intermediate behavior.

Previous results [41] have shown that the presence of Pd in In-rich bimetallic particles can decrease the selectivity of the In system for the reduction of CO$_2$ to formate. Combined with the present results, we provide a comprehensive investigation of the evolution of the behavior of Pd-In bimetallic nanoparticles in regard to the electroreduction of CO$_2$. Pure In is selective to formate, while the addition of even small amounts of Pd lowers CO$_2$ reduction selectivity, favoring hydrogen evolution. This happens because the solubility of Pd in the In matrix is very low, and even small amounts of Pd result in the formation of intermetallic compounds in an In matrix. Increasing amounts of Pd should result in the exclusive formation of intermetallic compounds, selective to hydrogen evolution. This is what we observe in the central region of the composition range. On the other hand, In is partially soluble in the Pd matrix, and this yields CO-selective electrocatalysts (although less selective than pure Pd) based on Pd-In solid solutions with slightly enhanced kinetics.

While we have strong evidence that the formation of Pd-In intermetallic compounds is detrimental to CO$_2$ electroreduction in general, it is hard to understand which intermetallic compounds are specifically formed in the nanoparticles. As mentioned above, the formation of these intermetallic structures, especially when using low temperature synthetic methods, can be kinetically controlled, leading to deviations from the most thermodynamically stable phase according to the phase diagram. For instance, the preferential formation of the PdIn compounds with a CsCl structure has been reported even in In-rich compositional ranges. [32,42] Interestingly, Pd-In intermetallic compounds have been previously reported to be selective for ethane dehydrogenation and CO$_2$ hydrogenation to methanol using thermal catalysis. [32,42,43] Moreover, the selective electroreduction of CO$_2$ to CO on Pd-In bimetal bulk electrodes has been demonstrated.[8] Therefore, the behavior of these compounds is different not only when used as heterogeneous catalysts or electrocatalysts but also going from bulk to nanoparticulate electrodes.

5. Conclusions

We have shown that the interaction of In and Pd in Pd-In bimetallic catalysts can yield several different phases and that the selectivity of the electroreduction of CO$_2$ can change dramatically depending on the catalytic phase, ranging from formate on In, to HER on Pd-In intermetallics and finally to CO evolution on Pd and Pd-In solid solutions. Interestingly, Pd-In intermetallic compounds do not interact with CO$_2$ in electrochemical conditions, whereas they are able to hydrogenate CO$_2$ to methanol under thermocatalytic conditions. Such complex and tunable behavior in the case of the Pd-In nanoparticles warrants the investigation of similar bimetallic systems to find cheaper, more selective, and stable catalysts for future applications. Also, understanding the effect of the electrochemical environment on the catalytic process can help
sheding light on the very different behavior of intermetallic compounds in thermal and electro-catalysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research has been supported by the European Commission (Research Executive Agency) grant ELCOREL (722614-ELCOREL) under the Marie Skłodowska-Curie Innovative Trainings Network ELCOREL. F.D., R.G.-M. and N.L. further acknowledge funding from the Spanish Ministry of Science and Innovation (RTI2018-101394-B-I00) and the Barcelona Supercomputing Center (BSC-RES) for providing generous computational resources.

Appendix A. Supplementary material

The data sets generated during the current study are available in the ioChem-BD database [44] at DOI https://www.doi.org/10.19061/iochem-bd-1-207. Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2021.08.021.

References