Experts and the science-policy interface in China’s climate policy

Chen, L.-Y.

Publication date
2022

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
This thesis explores the ways in which experts engage in China’s climate policies at four different administrative levels (i.e. international, national, provincial, and prefectural) and how politics simultaneously influences the science-policy interface (SPI) in an authoritarian context and a multi-level governance framework.

First, experts play an essential role in shaping China’s foreign climate policy by loading science/politics co-constituted ammunition to negotiate with their counterparts in global climate politics. At the national level, the demand of Chinese policymakers is setting the related targets and developing the policy framework for both climate change mitigation and adaptation. While the experts provided sufficient scientific advice, policymakers tend to add some political considerations due to different timing and factors at the higher (international) and lower (subnational) governance levels before making the final decision. Given that local Chinese officials, in general, lack capacity and expertise for addressing climate change, experts engage not only in formulating low-carbon development-related plans but also in carrying out such policy programmes. Political performance and accomplishment, feasibility and achievability of policy goals, and regional competition are considerations regarding the uptake of experts’ advice at the lower government levels.

While the past SPI literature focuses primarily on the scientification of policymaking, the political considerations and conditions for explaining SPI identified in the thesis can be a hypothesis to test in other countries to improve our understanding of the science-policy-politics nexus.
Experts and the Science-policy Interface in China’s Climate Policy

Liang-Yu Chen
Experts and the Science-policy Interface in China’s Climate Policy
Promotiecommissie

Promotor: prof. dr. J. Gupta
Copromotor: dr. C.L. Vegelin
Overige leden:
- prof. dr. J. Grin
- prof. dr. W.H.M. Leung
- prof. dr. M.A. Schreurs
- dr. A.M.C. Loeber
- prof. dr. R.C. Kloosterman

Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam
Technische Universität München
Vrije Universiteit Amsterdam
Universiteit van Amsterdam

Faculteit der Maatschappij- en Gedragswetenschappen
Executive Summary

The Problem: Although a considerable amount of climate change related scientific knowledge and information has been provided to policymakers, there is a persistent gap between knowledge production and use in human response to climate change. Even after three decades of efforts to tackle climate change since 1990, the incremental progress of the international climate negotiations and the slow-moving policy implementation at the domestic level is unlikely to meet the long-term objective of the 2015 Paris Agreement on Climate Change. Understanding when, why, and how policymakers use scientific evidence and expert knowledge to tackle climate change is critical. Further, as international climate negotiations are moving from a top-down to a more bottom-up process where countries state what they are willing to do, bridging the gap between science and climate policy at multiple levels of governance in varied political environments becomes more challenging.

While there is growing knowledge on how science and policy interact in general and in the climate change field in particular, there are at least four knowledge gaps in the existing literature: (1) A lack of exploration of the science-policy interface (SPI) in the Global South context; (2) A lack of exploration of SPI from a multi-level or cross-level perspective; (3) A lack of theoretical discussion and concept definition of SPI; and (4) A lack of exploration of SPI and China’s climate policy together.

Research questions: To address these knowledge gaps, this thesis studies China and addresses the overarching question: Under what conditions and in which ways do experts influence China’s climate policy across multiple levels of governance, and what does this mean for the future of China’s climate policy? Related sub-questions are: (1) Who are the experts that are engaging with the policy process? Who are the policymakers? (2) What kinds of science do experts generate and what kinds of science do policymakers need in order to make decisions, and why? (3) What kinds of political considerations do policymakers take into account before making the decisions?

Analytical Framework: This thesis reviews the scholarly literature on science-policy interface and problem solving in order to formulate an analytical framework to look upon SPI in China’s climate policy across multiple levels of governance. It examines three elements of SPI: (1) the input of science, (2) the intersection process of science and politics, and (3) the output of SPI. First, it investigates four types of knowledge policymakers demand and experts provide as input for China’s climate policy: (1) Fundamental knowledge that contains scholarly/technical information and scientific understanding of
an issue; (2) Applied knowledge for designing projects, policies, and laws for achieving social goals; (3) Stakeholder knowledge based on common sense and local practice; and (4) Discursive knowledge that presents a frame, narrative or discourse, indicating a certain way of dealing with the given issue. Second, it applies three models to explain the intersection process of science and politics in China’s climate policy: (1) The science-push model focuses on the ways in which the experts influence policymaking; (2) The policy-pull model highlights how policymakers’ demand for policy-relevant knowledge pulls experts to provide assistance; and (3) The co-production model stresses that rather than ‘science speaking truth to power,’ science and politics are ‘making sense together’ to co-generate a policy. While the three models of SPI may co-exist in a policy issue, they provide insightful lenses to examine the relationship between experts, policymakers, and policy. Lastly, regarding the output of SPI, I develop a five-level cumulative scale of policymakers’ response to the experts’ scientific input to evaluate science’s impact on policy: (1) Policymakers are informed and have taken note of the input; (2) Policymakers put the suggested ideas on the policy agenda for debate; (3) Policymakers agree with the recognition of policy problems but are contesting regarding the solutions; (4) Policymakers accept the experts’ advice and make decisions based on political considerations; and (5) Policymakers accept all advice and directly put it into policy practice. This thesis assumes to some extent that there is consensus among the scientists regarding what should happen at the respective governance levels. Concerning the theoretical lens for analysing SPI, the thesis builds on a typology of policy problems with four types of structures mapped out in two dimensions: (1) Structured, (2) Unstructured, and two kinds of moderately structured problems: (3) Moderately structured problem (means) and (4) Moderately structured problem (ends). A problem is termed structured when there is a high consensus on norms and values among policy stakeholders and can be solved by standardised techniques and procedures since there is a certainty on what kind of knowledge is relevant and the values that should underlie policy instruments. Meanwhile, a problem is labelled as unstructured when there is a disagreement on values and relevant knowledge among policy stakeholders. Further, a moderately structured problem (ends) occurs when there is consensus on relevant values but uncertainty or dissent on what kind of knowledge is relevant. Lastly, a moderately structured problem (means) indicates that there is a certainty of relevant knowledge, yet the norms and values remain contested.

Methods: This research assumes a constructivist ontology and a hermeneutic epistemology while employing an interpretive policy analysis (IPA) approach to examine SPI and China’s climate policy. It adopts the single-country case study approach and the embedded multiple case study design. The People’s Republic of China (PRC) is chosen as the case study since China is the largest greenhouse gas (GHG) emitter and is an
authoritarian regime; this allows me to investigate SPI in a non-democratic situation. Based on the analysis of nine selected policy issues, I examine the ways in which Chinese experts engage in climate policies at four different administrative levels (i.e., international, national, provincial, and prefectural levels) and the output of SPI. Research methods include an extensive review of varied sources of publications and academic literature, content analysis of policy documents, fieldwork, and 67 semi-structured in-depth interviews with experts and other categories of policy actors in Beijing and Guangzhou City (Guangdong Province). The research focused on 9 policy issues (see Table).

Table. Nine policy issues analysed in this research

<table>
<thead>
<tr>
<th>Selected cases</th>
<th>Level of governance</th>
<th>Problem type</th>
<th>Stages of a policy cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The principle of counting cumulative emissions per capita</td>
<td>International</td>
<td>Unstructured</td>
<td>Agenda-setting; policy formulation</td>
</tr>
<tr>
<td>2. The carbon budget proposal</td>
<td>International</td>
<td>Unstructured</td>
<td>Agenda-setting; policy formulation</td>
</tr>
<tr>
<td>3. The negotiation on technology development and transfer</td>
<td>National</td>
<td>Moderately structured (ends)</td>
<td>Agenda-setting; policy formulation</td>
</tr>
<tr>
<td>4. National target-setting on CO₂ emissions reductions</td>
<td>National</td>
<td>Moderately structured (ends)</td>
<td>Agenda-setting; policy formulation</td>
</tr>
<tr>
<td>5. The Climate Law</td>
<td>National</td>
<td>Unstructured</td>
<td>Agenda-setting; policy formulation</td>
</tr>
<tr>
<td>6. Policy choice between carbon tax and carbon trading</td>
<td>Provincial / prefectural</td>
<td>Moderately structured (ends)</td>
<td>Agenda-setting; policy formulation</td>
</tr>
<tr>
<td>7. Low-carbon province and city pilot programme</td>
<td>Provincial / prefectural</td>
<td>Moderately structured (means)</td>
<td>Agenda-setting; policy formulation; implementation</td>
</tr>
<tr>
<td>8. The GHG emissions inventory</td>
<td>Provincial / prefectural</td>
<td>Moderately structured (ends)</td>
<td>Implementation</td>
</tr>
<tr>
<td>9. The pilot emissions trading scheme (ETS)</td>
<td>Provincial / prefectural</td>
<td>Moderately structured (ends)</td>
<td>Agenda-setting; policy formulation; implementation</td>
</tr>
</tbody>
</table>
Chapter 4 examines how Chinese politics and policymaking have been changing and what this implies for the distinctive features of China’s climate politics and policymaking today. China’s climate policy has evolved since 1990 in five phases: Phase 1 (before 1997) identified the international scientific and environmental aspects; Phase 2 (1998~2006) focused on how this issue became a domestic challenge focusing on economics and energy; Phase 3 (2007~2009) signified a big proactive change towards climate policy; Phase 4 (2010~2019) moved from central planning to local operationalisation; and Phase 5 (2020~) focuses on operating the domestic ETS to ensure that CO\textsubscript{2} emissions in China peak before 2030 and carbon neutrality is achieved by 2060. The features of current Chinese politics and policymaking are: (1) Fragmented authoritarianism and bureaucratic competition at the horizontal level; (2) Centre-local relations, implementation gaps, and vertical bargaining between different levels of government; (3) The use of policy experimentation/pilot projects before scaling up; and (4) The emphasis on scientific decision-making. When moving from Phase 1 to Phase 2, the National Development and Reform Commission (NDRC) and the Ministry of Foreign Affairs (MOFA) incrementally became the two dominant players that held the decision-making power during the progress of international climate negotiations. The two Ministries’ dominant position was a result of bureaucratic competition where the economic development and energy ministry took control from the environmental and meteorological sector in steering China’s climate policy. During Phase 3 and Phase 4, tackling climate change has been translated domestically by the Chinese government as ‘energy-conservation and emissions-reduction’ and ‘low-carbon development’ as the dominant discourse. Apart from bureaucratic competition, experts play a critical role in shaping China’s climate policy as a repackaging of energy policy. From Phase 4 to Phase 5, China has launched a series of low-carbon related pilot programmes at the local levels and the nationwide emissions trading system, showing its ambition to peak its carbon emissions before 2030 and carbon neutrality by 2060.

Chapter 5 examines how Chinese experts engage in China’s foreign climate policy, particularly how they participate in the Intergovernmental Panel on Climate Change (IPCC) Working Groups (WGs) as well as the international climate negotiations. The science-push and the co-production models can be applied to depict the feature of Chinese experts’ involvement at this level. Concerning the Chinese experts’ impact on IPCC, the experts in WGI (the physical science basis) are more influential than those in WGII (impacts, adaptation, and vulnerability) and WGIII (mitigation of climate change) in terms of the number of selected participants and the publications cited as references in the Assessment Reports (ARs). In order to gain influence in global climate politics, Chinese policymakers need not only fundamental but also discursive knowledge. Hence, the Chinese experts who
come from top universities and semi-official think tanks speak on behalf of China, not only as scientists but as political representatives, to other countries. Yet, the space for negotiation is based on what has been decided at China’s domestic level, indicating that Chinese experts are putting forward views that have been internally negotiated in order to guide policy in international climate talks. The three case studies show that experts play a key role in shaping China’s foreign climate policy by loading science/politics co-constituted ammunition to negotiate with their counterparts in global climate politics.

Chapter 6 analyses the experts’ engagements with China’s climate policy at the national level and the results show that the science-push and policy-pull model can best describe the science-policy intersection. The demand of Chinese policymakers at this level is setting the related targets and developing the policy framework of both climate change mitigation and adaptation. Concerning the input for policymaking, not only semi-official research institutes but also universities, NGOs, and other categories of expert institutes are involved in the policy process. Yet, while each research institute can undertake research, Chinese policymakers often listen to voices from some specific institutes. Among all, the Energy Research Institute (ERI), the National Centre for Climate Change Strategy and International Cooperation (NCSC), and Tsinghua University are the most influential knowledge suppliers for the central government. In terms of the output of SPI, my study shows that while the experts provided sufficient scientific advice, some political considerations influence the policymakers’ final decision. First, timing matters. Different timing leads to different considerations (e.g., to set an ambitious goal and ensure the goal is achievable). Second, scale matters. While making a policy decision, not only the factors at the present governance level, but factors at the higher (international) and lower (subnational) governance levels will be considered by Chinese policymakers. Third, the features of China’s political system (i.e., fragmented authority and bureaucratic competition) remains an obstacle that hinders policy uptake of experts’ scientific input.

Taking Guangdong Province and three prefecture-level cities (Guiyang, Guangyuan, and Qingdao) in Western and Eastern regions of China as examples, Chapter 7 and Chapter 8 address the experts’ engagement in China’s provincial and local climate governance respectively. All the three models—the science-push, policy-pull, and co-production model can be found in policy practice. Instead of fundamental knowledge, local Chinese policymakers need primarily applied knowledge and stakeholder knowledge that help to carry out the climate-related policy projects and facilitate the compliance of local industries and enterprises. Considering that the officials at the lower government levels, in general, lack capacity and expertise for addressing climate change, experts have a higher degree of impact on both policymaking and implementation. In terms of who ‘the’ experts
are, the research centres for addressing climate change established by provincial and local governments, alongside local universities and expert institutes, provide key scientific input for local climate policy. Meanwhile, quite often local officials accept assistance provided by research institutes that come from the higher (i.e., provincial and national) levels. At the initial stage, experts play the role of ‘policy entrepreneurs’ that introduce the concept of low-carbon development (LCD) and low-carbon economy (LCE) to local officials through capacity building. Then, they act as advisors with expertise that assist local officials by generating plans and guidelines. When stepping to the stage of policy implementation, experts play the role of practitioners with an administrative professional that helps officials carry out the policy projects. In terms of the output of the SPI, the case studies showed that the experts have a substantial impact on China’s local climate policy. Yet, the political environment at the local levels (characterised e.g., by parochialism and regional competition) and the priorities and considerations of local officials (e.g., achieving their target responsibilities set by the centre) are decisive to the policymakers’ final policy decisions.

While Chapters 5 to 8 deal with experts’ involvement in China’s climate policy from the international, national, provincial to the prefectural level, respectively, Chapter 9 explains how the experts and policymakers interact across multiple levels of governance. First, it shows that the international-domestic linkages between foreign and Chinese research institutes and the centre-local and provincial-municipal interactions among expert institutes jointly form the scientific input for China’s climate policy. While foreign research institutes and international donors consistently provide scientific, technology and funding support, expert institutes in Beijing play an essential role in: (A) Lobbying the officials to experiment with pilot programmes; (B) Developing methodological instructions for capacity-building training; and (C) Reviewing policy documents submitted by the localities. Meanwhile, local experts facilitate bottom-up knowledge travel by sharing local experiences of low-carbon related pilot programmes. Apart from the division of labour (cooperation), there are also tensions between experts at different administrative levels regarding the core concerns of policy and the strategies for completing the work. For instance, while the Beijing experts develop a meticulous framework aiming to compile a comprehensive GHG emissions inventory, local experts adopt the strategy of ‘grasping the large and releasing the small’ to complete the work in a practical way. Second, all the three SPI models occur in cross-level dynamics of China’s climate policy. Specifically, the science-push model is more appropriate to depict the experts’ engagement with China’s climate policy at the higher levels of governance, and the policy-pull model appears more often at the lower government levels. Third, in terms of the output of the SPI in China’s climate policy, it is more likely that experts at the lower governmental levels successfully influence
policymaking and implementation than experts at the higher governmental levels.

Chapter 10 revisits the relationships between science and climate policy in China, and the theoretical reflections we can learn from the Chinese case study. The answers to the sub-questions are: (1a) Concerning who ‘the’ experts are, rather than only semi-official think tanks being dominant in the policy process, there are multiple scientific input providers (e.g., experts from universities, NGOs, and international organisations) into China’s climate policy at different levels of governance; (1b) Regarding who ‘the’ policymakers are, the powerful ministry has evolved from the scientific and environmental protection administration (the CMA and NEPA) in the early 1990s to the energy and economic development ministry (the NDRC) ever since the 2000s. Recently, the distinctive institutional change of China’s climate policy is that the Ministry of Environmental Protection (MEP) was reorganised as the Ministry of Ecology and Environment (MEE) and took over the NDRC’s role in leading the planning and coordination for addressing climate change in 2018. The government restructuring indicates the Chinese government’s dual attempts. First, China seeks to resolve the long-standing problem of fragmentation of authority—while the MEP is responsible for regulating carbon monoxide (CO), control of carbon dioxide (CO₂) falls under the NDRC. Second, highlighting the concept of ecological civilisation (EC) as the core doctrine of its global and national development strategy, China attempts to situate climate change with environmental governance and pollution control under the EC discourse; (2) Regarding the types of knowledge policymakers need in order to make decisions: (a) Policymakers at the higher levels of governance (i.e., international and national level) demand and accept more fundamental and discursive knowledge to gain influence in global climate politics and to guide domestic policy directives. For instance, a science-based proposal to negotiate with China’s allies and opponents for fair burden sharing of GHG emissions reductions, and an understandable narrative with vision to convince domestic stakeholders to guide China’s low-carbon development; (b) Policymakers at the lower governmental levels (i.e., provincial and prefectural levels) demand and accept more applied knowledge due to their limited capacity and expertise for policy planning and implementation. This includes, for instance, the toolkits for developing the low-carbon plan for provinces and cities and the administrative guidelines for emissions inventories and running the ETS; (3) Regarding SPI in cross-level dynamics of China’s climate policy, the science-push model is more appropriate to depict the experts’ engagement with China’s climate policy at the higher governmental levels, and the policy-pull model appears more often at the lower levels.

To offer a comprehensive picture of SPI in China’s authoritarian context, this thesis identified several political considerations of Chinese policymakers for the adjustment and
uptake of the experts’ scientific advice and policy suggestions: (A) Timing: Chinese policymakers will not announce a decision when the time is not ripe; (B) National interests: Chinese policymakers will defend their perceived national interests in the international climate negotiations; (C) Scale: Policymakers consider not just factors at the present governance level but also factors at the higher and lower levels; (D) Political performance and accomplishment: When setting a target or deploying a policy instrument, policymakers are concerned more with political performance and accomplishment; (E) Feasibility and achievability: When setting a policy goal, it must be feasible and achievable; (F) The target responsibility system (TRS) set for assessing the performance of local officials and Party cadres; and (G) Regional competition: low-carbon development (LCD) and low-carbon economy (LCE) become local policymakers’ leverages to promote their territories.

Based on the nine case studies, this research demonstrates that the typology of four policy problems could help illuminate the varied roles of experts and their policy impacts. While the experts’ impact on unstructured problems is limited (CEPC, CBP, and the Climate Law), they have a significant effect on moderately structured problems (ends) (TD&T, Target-setting on CO₂ emissions reduction, carbon tax vs carbon trading, EI, and pilot ETS) and moderately structured problems (means) (LCPC). The nine case studies also echo the notion that experts can stimulate problem structuring by mediating SPI to reconstruct the present problem as a structured problem.

Theoretical implications: This thesis contributes to theorising SPI by employing an interpretive policy analysis (IPA) and a multiple/cross-level analysis of SPI in an authoritarian context. First, while the extant SPI literature primarily focuses on the role of science at the stage of policymaking, this thesis expands our understanding of the experts’ engagement with virtually all phases of China’s climate policy. It reveals that China’s climate policy is not just about national policymaking/state regulation vs local implementation/compliance. Rather, local actors are learning and redefining policies based on local knowledge and trial-and-error in each stage of the policy process. Concerning the policy-relevant knowledge, while only high-level political decision-makers demand fundamental (scientific) knowledge, policymakers at all governance levels demand discursive and applied knowledge to make decisions and disseminate to the target groups and stakeholders.

Second, the multiple-/cross-level analysis of SPI shows that both top-down and bottom-up knowledge travel occurs in China’s multi-level climate governance. Meanwhile, policymakers make decisions not just under the political settings at the given governance level; they also have to consider factors from the higher and lower governance levels (e.g.,
the policy choice between carbon taxation and carbon trading in Chapter 6). Additionally, I demonstrate that the same experts’ engagement with the policy process could be interpreted through different SPI models. For instance, while one can adopt the science-push model to describe Beijing experts’ contribution to developing guidelines and toolkits for local actors, it is also a policy-pull model since Chinese central policymakers demand that the experts do so (Chapter 9).

Lastly, while the existing literature has accumulated limited knowledge about SPI in an illiberal and authoritarian context, this research presented the political considerations and conditions for explaining the policymakers’ uptake of experts’ scientific input in China’s authoritarian regime. While the past SPI literature focuses primarily on the scientification of politics and policymaking, this research also contributes to understanding the politics/politicisation of science/knowledge. I argue that the political considerations and conditions for explaining SPI identified in this research (e.g., horizontal/vertical power relations and concerns of timing and political performance) could be a hypothesis to test in other countries, not just authoritarian regimes. Further, I hypothesise on the basis of this thesis that while in authoritarian countries local governments will be satisfied with applied knowledge once the central government has accepted the fundamental and discursive knowledge. This may not be the case in democratic countries where even local governments may need convincing about the fundamental and discursive aspects of the program. To sum up, researchers should consider the nature of politics to better understand the interplay between science and policy.
Contents

Executive Summary ... i
Contents ... x
List of Tables ... xxii
List of Figures .. xxiv
List of Maps .. xxv
Abbreviation .. xxvi
Note on Publications ... xxxi
Chapter 1: Introduction .. 1
 1.1 Purpose of thesis ... 1
 1.2 Problem definition ... 3
 1.2.1 Societal problem ... 3
 1.2.1.1 Climate change ... 3
 1.2.1.2 Climate change and China ... 5
 1.2.2 Academic problem: knowledge gaps in the existing literature 9
 1.3 Research Questions, focus and limits .. 11
 1.3.1 Overall question and sub-questions ... 11
 1.3.2 Research focus and limits .. 11
 1.3.2.1 Research focus ... 11
 1.3.2.2 Research limitations ... 13
 1.4 Policy relevance ... 13
 1.4.1 Global level ... 14
 1.4.1.1 Why science is important for global climate policymaking 14
 1.4.1.2 How has the IPCC evolved from the AGGG onwards 14
 1.4.1.4 Evolution of the interface of science and global policymaking 20
 1.4.2 Chinese level .. 21
 1.5 Structure of the thesis ... 21
Chapter 2: Theorising the Science-policy Interface ... 23
 2.1 Introduction ... 23
 2.2 A survey of the SPI literature ... 23
 2.2.1 Review of the SPI literature in general ... 23
 2.2.1.1 Diversity in SPI research with a concentration on environmental issues 24
 2.2.1.2 Asymmetrical distribution of case-study regions: 72% from Global North and 28% from Global South ... 25
 2.2.1.3 A lack of exploration of SPI from a multi-level or cross-level perspective 26
 2.2.1.4 Multiple research methods have been adopted for investigating SPI 27
 2.2.1.5 Lack of theoretical foundations for discussing SPI 27
 2.2.2 Review of the literature on SPI AND climate change .. 28
 2.2.3 Review of the literature on SPI AND climate change AND China 30
 2.2.4 Review of Chinese publications on SPI AND climate change 30
 2.3 Defining the science-policy interface .. 32
 2.3.1 What is science? ... 33
 2.3.2 What is policy? ... 35
 2.3.3 What is interface? ... 37
 2.3.3.1 The science-push model ... 37
 2.3.3.2 The policy-pull model .. 38
 2.3.3.3 The co-production model ... 39
 2.4 Introducing a theoretical lens: problem structure and a typology of policy problems 40
 2.4.1 Defining a policy problem .. 40
 2.4.2 Four types of policy problems and the expected roles of science 40
 2.4.3 Climate change: a wicked or unstructured problem? .. 43
 2.4.3.1 Critiques on the concept of wicked problems .. 43
 2.4.3.2 Climate change and problem structuring .. 45
 2.5 Conceptual framework for analysing SPI ... 46
 2.6 Conclusions .. 49
Chapter 3: Methods .. 51
3.1 Introduction ... 51
3.2 Epistemological position of this study 51
3.3 The Case study approach: China as a case and cases in China 52
 3.3.1 The single-case study approach: China as a case 52
 3.3.2 The embedded multiple case study design: cases in China 53
3.4 Units of analysis and units of observation 56
 3.4.1 Defining units of analysis and units of observation 57
 3.4.2 Units of analysis/observation for studying ‘science’ 58
 3.4.2.1 Knowledge .. 58
 3.4.2.2 Experts ... 58
 3.4.2.3 Research institutes ... 58
 3.4.3 Unit of analysis/observation for studying ‘policy’ 58
 3.4.3.1 Policy ... 59
 3.4.3.2 Policymakers ... 59
 3.4.3.3 Policy documents ... 59
 3.4.4 Units of analysis and units of observation for studying ‘politics’ 59
 3.4.4.1 Political settings .. 60
 3.4.4.2 Political considerations 60
3.5 Research methods and data collection 60
 3.5.1 Literature review ... 60
 3.5.2 Content analysis of policy documents 60
 3.5.3 Fieldwork ... 62
 3.5.3.1 Field sites: Beijing and Guangzhou (Guangdong Province) 62
 3.5.3.2 Observation and Field notes 65
 3.5.4 In-depth interviews .. 65
 3.5.4.1 Purposive and snowball sampling of interviewees 66
 3.5.4.2 Composition of interviewees 67
 3.5.4.3 Forms and structure of interview 69
3.5.4.4 Reflections... 70

3.6 Conclusion... 71

Chapter 4: Evolution of China’s Climate Policy... 73

4.1 Introduction .. 73

4.2 Contours of China’s political system... 73

 4.2.1 A unitary state ... 73

 4.2.2 A Communist Party-state ... 74

 4.2.3 A multi-level governance structure .. 75

 4.2.4 A two-term limit on heads of government units .. 76

4.3 Distinctive features of China’s policy processes ... 76

 4.3.1 Fragmented authoritarianism and bureaucratic competition at the horizontal level ... 77

 4.3.2 Centre-local relations, implementation gaps, and vertical bargaining between different levels of government .. 77

 4.3.3 The use of policy experimentation/pilot before scaling up 78

 4.3.4 The emphasis on scientific decision-making ... 79

 4.3.5 Implications for analysing the SPI in China’s climate policy 80

4.4 Evolution of China’s climate policy.. 80

 4.4.1 Phase 1 (before 1997): Climate change treated as a scientific and environmental issue ... 81

 4.4.2 Phase 2 (1998~2006): Climate change is identified as an economic and energy issue ... 82

 4.4.2.1 Bureaucratic competition as an explanation for China’s focus on economic development ... 82

 4.4.2.2 A science-based explanation for China’s focus on energy issue 83

 4.4.3 Phase 3 (2007~2009): Climate policy is a repackage of energy, economic, and environmental strategies ... 84

 4.4.3.1 Climate change was elevated to the top of the Chinese political agenda 85

 4.4.3.2 Economic development departments take the lead 85

 4.4.3.3 GHG mitigation and energy policies as the core of domestic climate policy . 86
4.4.4 Phase 4 (2010~2019): China’s climate policy includes local pilot programmes and experimentation .. 88
4.4.5 Phase 5 (2020~): China is on the road to operating the ETS to reach carbon peak before 2030 and carbon neutrality by 2060 ... 91
4.5 Conclusions ... 91
Chapter 5: Chinese Experts and China’s foreign Climate Policy .. 93
5.1 Introduction ... 93
5.2 Evolution of China’s foreign climate policy ... 93
 5.2.1 Phase 1 (1990~1997): China sees climate as obstructing development prospects .. 93
 5.2.2 Phase 2 (1998~2006): China turns to support the flexible mechanisms under the KP ... 94
 5.2.3 Phase 3 (2007~2009): China switches to a proactive stance and announces its first-ever voluntary CO₂ emissions reduction target... 95
 5.2.4 Phase 4 (2010~2015): China becomes more active in global climate politics and announces its absolute target for CO₂ emissions reduction ... 95
 5.2.5 Phase 5 (2016~): China is aiming to be a global climate leader ... 96
5.3 Chinese experts in the operation of the IPCC Working Groups .. 97
 5.3.1 Number and proportion of the experts in each WG .. 97
 5.3.2 Assessing their impact: Chinese experts in WGI have more advantages than those in WGII and WGIII ... 101
5.4 Chinese experts as delegates to international climate negotiations .. 102
 5.4.1 The emerging national team of experts ... 102
 5.4.1.1 Phase 1 (1990~1997): officials and technocrats are the main force for negotiation ... 103
 5.4.1.2 Phase 2 (1998~2006): outside experts began to be invited to the climate talks ... 103
 5.4.1.3 Phase 3 (2007~2009): Tsinghua University formed an expert team to support the government ... 103
 5.4.1.4 Phase 4 (2010~2015): experts from the NCSC joined as a new force for negotiation ... 104
5.4.1.5 Phase 5 (2016 onwards): a new generation of younger experts emerges... 104
5.4.2 Experts’ division of labour when engaging with international climate talks 104
5.4.2.1 Directly participation (experts from universities and government-affiliated think tanks) .. 104
5.4.2.2 Contact and coordination (only experts employed at government-affiliated think tanks) .. 105
5.4.2.3 Consultancy and technical assistance (senior experts)............................ 105
5.4.3 The operation of the Chinese delegation and the experts’ perceptions of participating in the international climate talks ... 106
5.4.3.1 The collective decision-making process of China’s foreign climate policy... 106
5.4.3.2 Expert-negotiators are agents that implement some already decided decisions ... 107
5.4.3.3 Experts’ perceptions of participating in global climate politics: ‘science without borders, but scientists have nationalities’ .. 108
5.5 How do Chinese experts speak on behalf of the Chinese government? Three case studies ... 108
5.5.1 Case I: The notion of cumulative emissions per capita (CEPC)................... 108
5.5.1.1 The experts, argument, and the science-policy interaction process 108
5.5.1.2 The result: the international community noted but did not adopt the CEPC approach ... 110
5.5.1.3 Analysis: the co-production of science and politics 110
5.5.2 Case II: The Carbon Budget Proposal (CBP).. 111
5.5.2.1 The experts, argument, and the science-policy interactions process 111
5.5.2.2 The result: the international community noted but did not adopt the CBP 113
5.5.2.3 Analysis: Chinese experts were unable to persuade the audience from industrialised countries ... 113
5.5.3 Case III: The negotiation for technology development and transfer (TD&T) 114
5.5.3.1 The experts and the science-policy interactions process 114
5.5.3.3 The result: experts have stimulated the institutionalisation of the TD&T rules and procedures ... 115
5.5.3.4 Analysis: a broader support as the conditions for the Chinese experts’ success

5.6 Inferences

Chapter 6: Experts and China’s National Climate Policy

6.1 Introduction

6.2 Organisation of research institutes in China’s national climate policy

6.3 Case I: National target-setting on CO₂ emissions reductions

6.3.1 Setting China’s first-ever relative CO₂ emissions reduction target in 2009

6.3.2 Setting China’s first-ever absolute CO₂ emissions reduction target in 2014

6.3.3 How did Chinese policymakers make the decision? Timing as a critical consideration

6.4 Case II: Legislation of China’s Climate Law: loud thunder, little rain

6.4.1 Multiple scientific input for drafting China’s Climate Law

6.4.3 When science meets politics: three contestations that hinder the uptake of science

6.4.3.1 Climate Law or Energy Law? Contestation on the necessity of China’s Climate Law

6.4.3.2 Soft law or hard law? Contestation on the attribute of China’s Climate Law

6.4.3.3 Contestation on the content of China’s Climate Law: jurisdictions and policy venues

6.4.4 Indefinite postponement of China’s Climate Law?

6.5 Case III: Market instrument: Carbon tax vs. the ETS

6.5.1 Carbon tax

6.5.2 Experts promoting the ETS in China

6.5.3 Why carbon taxation lost, and the ETS won? Timing, bureaucratic competition, and considerations of governance scale

6.6 Inferences

Chapter 7: Experts and China’s Provincial Climate Policy

7.1 Introduction
7.2 China’s provincial climate policy and the primary source of scientific input 139
 7.2.1 Evolution of China’s provincial climate policy .. 139
 7.2.2 Provincial research centres and expert committees as primary source of scientific
 input .. 140

7.3 Case I: Guangdong Province’s low-carbon province pilot programme 141
 7.3.1 Low-carbon province pilot programmes as a gripper 141
 7.3.2 Science-push: experts lobby both provincial and central officials to launch the LCPPP .. 142
 7.3.3 Policy-pull: experts assist provincial officials with compiling policy documents 143
 7.3.4 Co-production: experts play a mixed role of both experts and agents of the
 officials .. 145
 7.3.5 A higher degree of policymaker’s demand and experts’ impact on Guangdong’s LCPPP .. 145

7.4 Case II: Guangdong Province’s GHG emissions inventory 146
 7.4.1 Emissions inventory as a cornerstone of local climate governance 147
 7.4.2 Policy-pull: expert institutes as appropriate entities to fulfil the work 147
 7.4.3 Co-production: experts defend Guangdong’s inventory data during the central’s
 examination .. 148
 7.4.4 A higher degree of policymakers’ demand and experts’ policy impact 148

7.5 Case III: Guangdong Province’s pilot emissions trading scheme (ETS) 148
 7.5.1 Pilot ETS: the most labour-intensive policy programme 149
 7.5.2 Science-push: experts lobby both provincial and central officials to launch the
 pilot ETS, and organise training sessions for local actors 149
 7.5.2 Policy-pull and co-production: experts contributed to institutional design and
 establishment of the Guangdong ETS .. 150
 7.5.3 A higher degree of experts’ policy impact on Guangdong’s ETS 152

7.6 Contextualising SPI in China’s provincial climate policy 153
 7.6.1 Attributes of the research institutes explain who has more policy impact and on
 which stage of the policy process ... 153
7.6.2 The change of local officials’ needs, preferences, and trust of research institutes explains the change of influential experts ... 154
7.6.3 Provincial officials are more concerned with political achievements than with professional expertise due to the target responsibility system ... 155
7.7 Inferences .. 157
Chapter 8: Experts and China’s Local Climate Policy ... 159
8.1 Introduction ... 159
8.2 China’s local climate policy and the primary scientific input 159
8.2.1 Evolution of China’s local climate policy .. 159
8.2.2 Primary sources of scientific input for China’s local climate policy 160
8.3 Guiyang (Guizhou Province) ... 162
8.3.1 A sketch of Guiyang .. 162
8.3.2 Scientific input for Guiyang’s climate policy ... 163
8.3.3 Process of the interplay of science and Guiyang’s climate policy 163
8.3.4 Output of SPI in Guiyang’s climate policy ... 165
8.4 Guangyuan City (Sichuan Province) ... 165
8.4.1 A sketch of Guangyuan ... 165
8.4.2 Scientific input for Guangyuan’s climate policy .. 165
8.4.3 Process of the interplay of science and Guangyuan’s climate policy 166
8.4.4 Output of SPI in Guangyuan’s climate policy ... 169
8.5 Qingdao City (Shandong Province) ... 170
8.5.1 A sketch of Qingdao .. 170
8.5.2 Scientific input for Qingdao’s climate policy ... 170
8.5.3 Process of the interplay between science and Qingdao’s climate policy 170
8.5.3.1 The Technical Assistance project funded by the Asian Development Bank. 171
8.5.3.2 The Sustainable and Liveable Cities project funded by the Caterpillar Foundation ... 172
8.5.3.4 The pilot ETS ... 173
8.5.4 Output of the SPI in Qingdao’s climate policy ... 174
8.6 Conditions for accepting the experts’ recommendation for low-carbon development
.. 174

8.6.1 External assistance, local need to promote the city, and local policymakers’
political sensitiveness .. 175

8.6.2 LCD as the only card to play (Guiyang and Guangyuan) or the card that has to be
played well (Qingdao) .. 175

8.7 Inferences .. 176

Chapter 9: Experts and the Science-policy Interfaces in Cross-level Dynamics of China’s
Climate Policy .. 179

9.1 Introduction .. 179

9.2 Multiple forms of scientific input for China’s climate policy: division of labour and
across-level interactions between research institutes .. 179

9.2.1 International-domestic linkages as scientific input for China’s climate policy ... 179

9.2.2 Centre-local interactions of research institutes as scientific input for China’s
climate policy .. 181

9.2.3 Provincial-municipal partnerships of expert institutes and horizontal knowledge
travel as scientific input for China’s climate policy .. 183

9.2.4 Triangular interaction in cross-level dynamics of China’s climate policy 183

9.3 Tensions between the cross-level intersection the processes of science and politics in
China’s climate policy .. 187

9.3.1 Foci of policy planning: ‘low-carbon’ development/economy vs. low-carbon
‘development/economy’ .. 187

9.3.2 Compilation of emissions inventory: meticulous vs. grasping the large and
releasing the small .. 188

9.3.3 Target decomposition of GHG mitigation: set a reversed mechanism to force
localities to peak earlier vs. converge towards the middle of the procession 190

9.4 Science-policy interface in multi-level governance and cross-level dynamics of China’s
climate policy .. 191

9.4.1 Models of the intersection process of SPI of China’s climate policy 191

9.4.1.1 SPI models at each governance levels of China’s climate policy 191
9.4.1.2 Same effort of experts but different SPI models from the cross-level perspectives ... 192
9.4.2 Output of the SPI of China’s climate policy ... 194
 9.4.2.1 Measuring the experts’ impact on China’s climate policy at each governance level ... 194
 9.4.2.2 Measuring the experts’ impact on China’s climate policy from the cross-level perspective ... 197
9.5 Inferences ... 198

Chapter 10: Conclusions ... 201
10.1 Introduction .. 201
10.2 Differentiating SPI elements in China’s multi-level climate governance 201
 10.2.1 Who are the experts? Multiple scientific input for China’s climate policy 203
 10.2.2 Who are the policymakers? From science and environment to energy and economic development ... 203
 10.2.3 Policymakers’ demand and experts’ provision of knowledge 204
 10.2.4 Division of labour (cooperation) and tensions between cross-level dynamics of SPI .. 206
 10.2.5 Political considerations of policymakers before making the decisions 207
10.3 Explaining the experts’ varied roles and policy impact through the typology of policy problems ... 209
10.4 Conditions for mediating SPI in an authoritarian regime 211
 10.4.1 Political settings and officials’ political considerations as main conditions for experts to successfully influence China’s climate policy ... 211
 10.4.2 What does the feature of SPI in an authoritarian context mean for the future of China’s climate policy? .. 212
 10.4.3 Recommendations: driving China’s climate policy through mediating SPI 214
10.5 Theoretical contributions and implications .. 215
 10.5.1 An expanded understanding of knowledge, mindsets of experts, and policy stages .. 215
 10.5.2 A multi-level and cross-level perspective for analysing SPI 216
10.5.3 A contextualised examination of SPI in China’s authoritarian regime with the focus on the politicisation of science ... 217
10.6 Reflections and recommendations for future research ... 218
References .. 221
Appendix .. 267
Appendix I: Research Questions of this Study .. 267
Appendix II: List of Interviews ... 268
Appendix III: Interview Questions ... 273
Appendix IV: Explanation of rating experts’ policy impact across governance levels 275
Annex ... 280
Annex I: Evolution of China’s climate change-related policies, laws, and documents ... 280
Samenvatting (Summary in Dutch) .. 282
Acknowledgement .. 292
About the Author .. 294
List of Tables

Table 1.1 Top emitters of GHGs (total amount) in the past thirty years 3
Table 1.2 Climate Change Impacts in China ... 8
Table 1.3 Evolution of focus of the IPCC working groups 14
Table 1.4 IPCC Assessment Reports and main conclusions of the scientific basis of climate change ... 16
Table 1.5 Key outputs in the UNFCCC negotiations ... 17

Table 2.1 Research methodologies of the SPI literature (1990-2020) 27
Table 2.2 Literature review on ‘SPI AND climate change’ 29
Table 2.3 Literature review of Chinese publications of SPI AND climate change (1990-2020) .. 31
Table 2.4 Four types of knowledge in science-policy interactions 35
Table 2.5 Ten characteristics of a wicked problem recognised by Rittel and Webber (1973) .. 44
Table 2.6 A five-level cumulative scale for evaluating the experts’ impact on policy decision ... 49

Table 3.1 Explanation of nine embedded case studies ... 55
Table 3.2 Units of analysis and units of observation in this study 57
Table 3.3 China’s official documents on climate change 61
Table 3.5 Key features of Beijing and Guangdong province 64
Table 3.6 Composition of interviewees ... 68

Table 4.1 Characteristics of the five phases in the evolution of China’s climate policy 80
Table 4.2 Three batches of low-carbon province and city pilot programmes since 2010 90

Table 5.1 Characteristics of China’s foreign climate policy since 1990 93
Table 5.2 Number and proportion of Chinese experts in the IPCC WGs 98
Table 5.3 Top 10 research institutes where experts were selected to participate in the IPCC WGI ... 99
Table 5.4 Top 10 research institutes where experts were selected to participate in the IPCC WGII ... 100
Table 5.5 Top 10 research institutes where experts were selected to participate in the IPCC WGIII ... 101
Table 5.6 Division of labour of experts in China’s engagement with the international
Table 6.1 Categories of expert committees and research institutes in China’s national climate policy ... 120
Table 6.2 Research institutes and various estimations of CO₂ emissions reduction target for 2020 .. 122
Table 6.3 Research institutes and their estimated peak year of China’s CO₂ emissions ... 122
Table 6.4 Comparison of the two drafts of China’s Climate Law ... 127
Table 6.5 Comparing three official think tanks’ scientific input for carbon tax ... 132
Table 6.6 Knowledge-oriented actors engaged with promoting the ETS in China ... 133

Table 7.1 Contribution of research institutes to Guangdong’s GHG emissions inventory ... 148
Table 7.2 Influential research institutes and their contribution to different stages of Guangdong’s climate policy cycle ... 154

Table 8.1 Three prefectural cities for analysing SPI in China’s local climate policy ... 161

Table 9.1 Comparison of the core concerns between central and local perspective ... 187
Table 9.2 Models of the intersection process of the SPI of China’s climate policy ... 192
Table 9.3 Experts’ impact on different governance levels of China’s climate policy ... 195

Table 10.1 Synthesis of SPI elements in nine case studies ... 202
Table 10.2 Knowledge policymakers demand and experts provide in China’s multi-level climate governance ... 205
Table 10.3 Experts’ multiple roles at different levels of China’s climate policy ... 206
Table 10.4 Centre-local tensions in the low-carbon province and city pilot and emissions inventorying ... 207
List of Figures

Figure 1.1 Rising global temperature... 4
Figure 1.2 CO₂ emissions and CO₂ emissions per unit of GDP, China (1990-2018)... 6
Figure 1.3 GHG emissions of China by sector in 2005, 2010, and 2014 (without LULUCF) . 7

Figure 2.1 Top 20 popular research themes of the SPI literature (1990-2020) 24
Figure 2.2 Academic disciplines of the SPI literature (1990-2020) 25
Figure 2.3 Top 20 popular case-study regions of the SPI literature (1990-2020) 26
Figure 2.4 Level of analysis of the SPI literature (1990-2020) 26
Figure 2.5 Theoretical approaches of the SPI literature (1990-2020) 28
Figure 2.6 Five stages of the policy cycle.. 36
Figure 2.7 Three classic models of science-policy interactions.............................. 37
Figure 2.8 Four types of policy problem.. 41
Figure 2.9 The role of science in four types of policy problem 42
Figure 2.10 Conceptual framework for analysing science-policy interactions 47

Figure 3.1 Nine cases that present the cross-level dynamics of SPI 56

Figure 4.1 China's parallel hierarchy of party and state... 75

Figure 7.1 The Emission Trading Scheme Management System of Guangdong Province 152

Figure 9.1 Two-level collaboration between research institutes and government units 184
Figure 9.2 Three-level collaboration between expert institutes and government units . 186
Figure 9.3 Same effort of experts but different SPI models from the cross-level perspectives ... 193

Figure 10.1 Linking SPI in nine case studies to the four types of policy problems 210
List of Maps

Map 3.1 Two field sites: Beijing and Guangzhou (Guangdong Province) 63

Map 8.1 Three case study cities: Guiyang, Guangyuan, and Qingdao 162
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
</tr>
<tr>
<td>AR</td>
<td>Assessment Report</td>
</tr>
<tr>
<td>AWG-ADP</td>
<td>The Ad Hoc Working Group on the Durban Platform for Enhanced Action</td>
</tr>
<tr>
<td>AWG-KP</td>
<td>The Ad Hoc Working Group on Kyoto Protocol</td>
</tr>
<tr>
<td>AWG-LCA</td>
<td>The Ad Hoc Working Group on Long-term Cooperative Action</td>
</tr>
<tr>
<td>BASIC countries</td>
<td>Brazil, South Africa, India, and China</td>
</tr>
<tr>
<td>CA</td>
<td>Contributing Author</td>
</tr>
<tr>
<td>CAAS</td>
<td>Chinese Academy of Agricultural Sciences</td>
</tr>
<tr>
<td>CAEP</td>
<td>Chinese Academy of Environmental Planning</td>
</tr>
<tr>
<td>CAFS</td>
<td>Chinese Academy of Fiscal Science</td>
</tr>
<tr>
<td>CAMS</td>
<td>Chinese Academy of Meteorological Sciences</td>
</tr>
<tr>
<td>CANGO</td>
<td>China Association for NGO Cooperation</td>
</tr>
<tr>
<td>CAS</td>
<td>Chinese Academy of Sciences</td>
</tr>
<tr>
<td>CAS-IAP</td>
<td>Institute of Atmospheric Physics, Chinese Academy of Sciences</td>
</tr>
<tr>
<td>CAS-IPM</td>
<td>Institute of Policy and Management, Chinese Academy of Sciences</td>
</tr>
<tr>
<td>CASS</td>
<td>Chinese Academy of Social Sciences</td>
</tr>
<tr>
<td>CASS-IUE</td>
<td>Institute for Urban and Environmental Studies, Chinese Academy of Social Sciences</td>
</tr>
<tr>
<td>CASS-RCSD</td>
<td>Research Centre for Sustainable Development, Chinese Academy of Social Sciences</td>
</tr>
<tr>
<td>CBA</td>
<td>Carbon Budget Account</td>
</tr>
<tr>
<td>CBAP</td>
<td>Caron Budget Account Proposal</td>
</tr>
<tr>
<td>CBDR</td>
<td>Common but differentiated responsibilities</td>
</tr>
<tr>
<td>CBEEX</td>
<td>China Beijing Environment Exchange</td>
</tr>
<tr>
<td>CBP</td>
<td>Carbon budget proposal</td>
</tr>
<tr>
<td>CCCPC</td>
<td>Central Committee of Communist Party of China</td>
</tr>
<tr>
<td>CCI</td>
<td>Clinton Climate Initiative</td>
</tr>
<tr>
<td>CCICED</td>
<td>China Council for International Cooperation on Environment and Development</td>
</tr>
<tr>
<td>CCP</td>
<td>Chinese Communist Party</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CEEX</td>
<td>China Emissions Exchange at Guangzhou</td>
</tr>
<tr>
<td>CEPC</td>
<td>Cumulated Emissions Per Capita</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CEPREI</td>
<td>The CEPREI Calibration & Testing Centre</td>
</tr>
<tr>
<td>CER</td>
<td>Certified Emissions Reduction</td>
</tr>
<tr>
<td>CIFD</td>
<td>China Academic Journals Full-text Database</td>
</tr>
<tr>
<td>CLA</td>
<td>Coordinating Lead Author</td>
</tr>
<tr>
<td>CLEMF</td>
<td>China Low-carbon Economy Media Federation</td>
</tr>
<tr>
<td>CMA</td>
<td>China Meteorological Administration</td>
</tr>
<tr>
<td>CNCCP</td>
<td>China’s National Climate Change Programme</td>
</tr>
<tr>
<td>CNKI</td>
<td>China National Knowledge Infrastructure</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties</td>
</tr>
<tr>
<td>CQC</td>
<td>China Quality Certification Centre</td>
</tr>
<tr>
<td>CRELE</td>
<td>Credibility, relevance, and legitimacy</td>
</tr>
<tr>
<td>CTC</td>
<td>The Climate Technology Centre</td>
</tr>
<tr>
<td>CTCN</td>
<td>The Climate Technology Centre and Network</td>
</tr>
<tr>
<td>CUPL</td>
<td>China University of Political Science and Law</td>
</tr>
<tr>
<td>DCC</td>
<td>Department of Climate Change (central government) / Division of Climate Change (provincial government)</td>
</tr>
<tr>
<td>DRC</td>
<td>Development and Reform Commission</td>
</tr>
<tr>
<td>DRC</td>
<td>Development Research Centre under the State Council</td>
</tr>
<tr>
<td>EC</td>
<td>Ecological civilisation</td>
</tr>
<tr>
<td>ECA</td>
<td>Epistemic community approach</td>
</tr>
<tr>
<td>EDF</td>
<td>Environmental Defense Fund</td>
</tr>
<tr>
<td>EI</td>
<td>Emissions inventory</td>
</tr>
<tr>
<td>ENGO</td>
<td>Environmental non-governmental organisation</td>
</tr>
<tr>
<td>ERI</td>
<td>Energy Research Institute</td>
</tr>
<tr>
<td>ETS</td>
<td>Emissions Trading Scheme</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FA</td>
<td>Fragmented authoritarianism</td>
</tr>
<tr>
<td>FYP</td>
<td>Five-Year Plan</td>
</tr>
<tr>
<td>G-77</td>
<td>Group of 77</td>
</tr>
<tr>
<td>GCB</td>
<td>Global carbon budget</td>
</tr>
<tr>
<td>GCF</td>
<td>Green Climate Fund</td>
</tr>
<tr>
<td>GD-DRC</td>
<td>Guangdong Provincial Development and Reform Commission</td>
</tr>
<tr>
<td>GD-DST</td>
<td>Guangdong Provincial Department of Science and Technology</td>
</tr>
<tr>
<td>GDAAS</td>
<td>Guangdong Academy of Agricultural Sciences</td>
</tr>
<tr>
<td>GDAES</td>
<td>Guangdong Academy of Environmental Sciences</td>
</tr>
<tr>
<td>GDAF</td>
<td>Guangdong Academy of Forestry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GDCC</td>
<td>Guangdong Climate Centre</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GDRCCC</td>
<td>Guangdong Research Centre for Climate Change</td>
</tr>
<tr>
<td>GDTE</td>
<td>Guangdong Techno-economy Research and Development Centre</td>
</tr>
<tr>
<td>GEE</td>
<td>Guizhou Environment and Energy Exchange</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environmental Facility</td>
</tr>
<tr>
<td>GEI</td>
<td>Global Environmental Institute</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GIEC</td>
<td>Guangzhou Institute of Energy Conversion, Chinese Academy of Science</td>
</tr>
<tr>
<td>GIZ</td>
<td>Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH</td>
</tr>
<tr>
<td>GLCDPA</td>
<td>Guangdong Low-Carbon Development Promotion Association</td>
</tr>
<tr>
<td>GONGO</td>
<td>Government-organised non-governmental organisation</td>
</tr>
<tr>
<td>ICCSD</td>
<td>Institute for Climate Change and Sustainable Development</td>
</tr>
<tr>
<td>ICLEI</td>
<td>International Council for Local Environmental Initiatives</td>
</tr>
<tr>
<td>iGDP</td>
<td>Innovative Green Development Programme</td>
</tr>
<tr>
<td>INDC</td>
<td>Intended Nationally Determined Contribution</td>
</tr>
<tr>
<td>INGO</td>
<td>International non-governmental organisation</td>
</tr>
<tr>
<td>IPA</td>
<td>Interpretive policy analysis</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>JI</td>
<td>Joint Implementation</td>
</tr>
<tr>
<td>IR</td>
<td>International Relations</td>
</tr>
<tr>
<td>KP</td>
<td>Kyoto Protocol</td>
</tr>
<tr>
<td>KU</td>
<td>Knowledge utilisation</td>
</tr>
<tr>
<td>LA</td>
<td>Lead Author</td>
</tr>
<tr>
<td>LCB</td>
<td>Low-carbon Bureau</td>
</tr>
<tr>
<td>LCC</td>
<td>Low-carbon city</td>
</tr>
<tr>
<td>LCD</td>
<td>Low-carbon development</td>
</tr>
<tr>
<td>LCE</td>
<td>Low-carbon economy</td>
</tr>
<tr>
<td>LCEC</td>
<td>Low-carbon eco-city</td>
</tr>
<tr>
<td>LDC</td>
<td>Least developed countries</td>
</tr>
<tr>
<td>LDCEF</td>
<td>Least Developed Countries Fund</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied natural gas</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquid petroleum gas</td>
</tr>
<tr>
<td>LCCP</td>
<td>Low-carbon city pilot</td>
</tr>
<tr>
<td>LCPC</td>
<td>Low-carbon province and city pilot</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LCPPP</td>
<td>Low-carbon province pilot programme</td>
</tr>
<tr>
<td>MEE</td>
<td>Ministry of Ecology and Environment</td>
</tr>
<tr>
<td>MEP</td>
<td>Ministry of Environmental Protection</td>
</tr>
<tr>
<td>MICE</td>
<td>Meetings, incentives, conferences, and exhibitions</td>
</tr>
<tr>
<td>MLG</td>
<td>Multi-level governance</td>
</tr>
<tr>
<td>MOA</td>
<td>Ministry of Agriculture</td>
</tr>
<tr>
<td>MOF</td>
<td>Ministry of Finance</td>
</tr>
<tr>
<td>MOHURD</td>
<td>Ministry of Housing and Urban-Rural Development</td>
</tr>
<tr>
<td>MOST</td>
<td>Ministry of Science and Technology</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>NDRC</td>
<td>National Development and Reform Commission</td>
</tr>
<tr>
<td>NCC</td>
<td>National Climate Centre</td>
</tr>
<tr>
<td>NCGCC</td>
<td>National Coordination Group on Climate Change</td>
</tr>
<tr>
<td>NCGCCS</td>
<td>National Coordination Group on Climate Change Strategy</td>
</tr>
<tr>
<td>NCSC</td>
<td>National Centre for Climate Change Strategy and International Cooperation</td>
</tr>
<tr>
<td>NDC</td>
<td>Nationally Determined Contribution</td>
</tr>
<tr>
<td>NECCCC</td>
<td>National Expert Committee on Climate Change</td>
</tr>
<tr>
<td>NEA</td>
<td>National emissions account</td>
</tr>
<tr>
<td>NEA</td>
<td>National Energy Administration</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Protection Agency</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-governmental organisation</td>
</tr>
<tr>
<td>NLGACC</td>
<td>The National Leading Group for Addressing Climate Change</td>
</tr>
<tr>
<td>NLGACCECER</td>
<td>The National Leading Group for Addressing Climate Change and Energy Conservation and Emissions Reduction</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>Nitrogen oxide</td>
</tr>
<tr>
<td>NPC</td>
<td>National People’s Congress</td>
</tr>
<tr>
<td>ODS</td>
<td>Ozone depleting substances</td>
</tr>
<tr>
<td>PAC</td>
<td>Policy package of China</td>
</tr>
<tr>
<td>PNS</td>
<td>Post-normal science</td>
</tr>
<tr>
<td>QDECI</td>
<td>Qingdao Engineering Consulting Institute</td>
</tr>
<tr>
<td>QIBE BT</td>
<td>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences</td>
</tr>
<tr>
<td>QUST</td>
<td>Qingdao University of Science and Technology</td>
</tr>
<tr>
<td>RC</td>
<td>Respective capabilities</td>
</tr>
<tr>
<td>RE</td>
<td>Review Editor</td>
</tr>
<tr>
<td>RIFS</td>
<td>Research Institute for Fiscal Science</td>
</tr>
<tr>
<td>PECE</td>
<td>Programme of Energy & Climate Economics</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

PHCER Tan Pu Hui certified emissions reduction
PRC People’s Republic of China
RUC Renmin University of China
SAR Scientific Assessment Report
SBSTA Subsidiary Body for Scientific and Technological Advice
SCCF Special Climate Change Fund
SCLGECER The State Council Leading Group on Energy Conservation and Emissions Reduction
SDPC The State Development Planning Commission
SEI Stockholm Environment Institute
SO₂ Sulphur dioxide
SOE State-owned enterprise
SPF Strategic Programme Fund
SPI Science-policy interface
SSTC State Science and Technology Commission
STS Science and technology studies or the study of science, technology and society
SYSU Sun Yat-sen University
TA Technical assistance
TD&T Technology development and transfer
TEC Technology Executive Committee
TM Technology Mechanism
TRM The Technology Roadmap
TRS Target responsibility system
TWN Third World Network
UNDP United Nations Development Programme
UNEP United Nations Environment Programme
US United States of America
UK United Kingdom
UNFCCC United Nations Framework Convention on Climate Change
WBGU German Advisory Council on Global Change
WCP World Climate Programme
WG Working Group
WOS Web of Science
WMO World Meteorological Organisation
WRI World Resources Institute
WWF World Wild Fund for Nature
Chapter 7 is written on the basis of the author’s published peer-reviewed article: