Permanent magnetic atom chips

Barb, I.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction

2 Opportunities and limitations of permanent magnetic atom chips
 2.1 Permanent magnet field sources
 2.2 Integrated magnetic atom optics
 2.2.1 Waveguides and derived structures
 2.2.2 Traps, lattices and shift registers
 2.3 ‘Cold’ atoms near ‘hot’ surfaces
 2.4 Conclusions

3 Experimental setup
 3.1 The laser system
 3.1.1 Atomic species - rubidium
 3.1.2 The laser setup
 3.1.3 Frequency locked diode lasers
 3.1.4 Laser stabilization and spectroscopy
 3.1.5 Experimental implementation
 3.2 Ultra-high vacuum system
 3.2.1 Construction, pump-down and bake-out
 3.2.2 Rubidium dispenser
 3.3 Magnetic field coils
 3.4 Imaging
 3.4.1 The optics
 3.4.2 Imaging techniques
 3.4.3 Imaging sequence and analysis
 3.5 Real-time experimental control
 3.5.1 Digital signal processor and LabVIEW user interface
 3.6 The radio frequency source

vii