Bispectral quantum Knizhnik-Zamolodchikov equations
van Meer, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 5

Bispectral quantum KZ equations for arbitrary root systems

5.1 Introduction

In this chapter we extend the theory of the bispectral quantum KZ equations and their solutions, as developed in Chapter 2, to arbitrary root systems. Apart from the case of GL$_N$, there are three cases to consider in the Macdonald-Cherednik theory, namely the twisted and untwisted affine root systems and the nonreduced root system of type $C\vee C$ (see [42, (1.4.1)-(1.4.3)]). In this chapter we consider the twisted case ([42, (1.4.2)]); the untwisted case is expected to allow for a similar treatment. The construction of BqKZ for $C\vee C$ (along the lines of [45]) appeared in a recent preprint by Takeyama [56].

Though the general constructions are more or less the same as for GL$_N$, various technical results require a different approach. This becomes apparent, for example, in Section 5.4 when computing the cocycle values, in Section 5.5 determining the asymptotic behavior of the cocycle matrices and their singularities, and in Section 5.7 finding the leading term of Φ. An important difference with the case of GL$_N$, complicating some of the proofs, is the fact that the affine Weyl group of type GL$_N$ (and the corresponding affine Hecke algebra) allows a rather convenient presentation in terms of the finite Weyl group (respectively finite Hecke algebra) and an affine Dynkin diagram automorphism (see Section 2.2 or [10, Lemma 1.3.4]), which is lacking for affine Weyl groups (respectively affine Hecke algebras) of arbitrary type. In this paper we give all the main constructions and provide those proofs that are substantially different from the proofs for GL$_N$.

The chapter is organized as follows. Section 5.2 serves to introduce the notations and to recall Cherednik’s construction of the double affine Hecke algebra associated...
with an irreducible reduced root system. Just as for GL_N, it is the main ingredient in the construction of the bispectral quantum Knizhnik-Zamolodchikov equations, which will be done in Section 5.3. Next, in Section 5.4, we describe the generic principal series representation, needed, in particular, to express the (asymptotic) values of the cocycle matrices $C_{(\lambda,\mu)}(t,\gamma)$.

In Section 5.5, the latter are used to construct an asymptotically free self-dual meromorphic solution Φ of BqKZ. The set of solutions SOL of BqKZ allows an action of W_0, and the orbit $W_0\Phi$ constitutes a basis of SOL viewed as a vector space over the field of q-dilation invariant meromorphic functions on $T \times T$.

The correspondence (Theorem 3.3.13) between solutions of BqKZ of type GL_N and solutions of the bispectral problem (3.3.13) involving Ruijsenaars’ commuting trigonometric q-difference operators was derived as a bispectral incarnation of Cherednik’s [7, Theorem 4.4] embedding of the solutions of the quantum affine KZ equations (for GL_N) into the solutions of the Ruijsenaars eigenvalue problem. The latter has been generalized to an embedding of the solution space of the quantum affine KZ equations for an arbitrary root system into the solution space of a system of q-difference operators involving the Macdonald q-difference operator. In Section 5.6, we give the analog of the bispectral correspondence Theorem 3.3.13 in the setting of arbitrary root systems.

Finally, in Section 5.7, we apply the correspondence to Φ to obtain a self-dual Harish-Chandra series solution of the bispectral problem (see Subsection 3.4 for GL_N). It is a bispectral analog of (difference) Harish-Chandra series solutions of the spectral problem for Macdonald’s q-difference operators, which were studied in [16] and [31] for root systems of type A and in [36] for arbitrary root systems. We will obtain new results on the convergence and singularities of the Harish-Chandra series from the corresponding results for Φ.

The notations we use in this chapter are built up from scratch. In particular, they are independent of the notations used in the previous chapters.

This chapter is a slightly adapted version of [44].

5.2 The double affine Hecke algebra

5.2.1 Root data

Let (V, \langle , \rangle) be a real Euclidean space of dimension $N > 0$. Let \hat{V} be the space of affine linear real functions on V. Consider the 1-dimensional vector space $\mathbb{R}c$. There is a natural isomorphism of real vector spaces $V \oplus \mathbb{R}c \simeq \hat{V}$ via $v + rc \mapsto \langle v, u \rangle + r$ for $u, v \in V$ and $r \in \mathbb{R}$. We will use this isomorphism to identify \hat{V} and $V \oplus \mathbb{R}c$, thus regarding $c \in \hat{V}$ as the constant function equal to 1.

The map $D: \hat{V} \to V$ defined by $D(v + rc) = v (v \in \mathbb{R}, r \in \mathbb{R})$ is called the gradient map. We extend the inner product \langle , \rangle to a positive semi-definite bilinear form on \hat{V} by

$$\langle f, g \rangle := \langle Df, Dg \rangle,$$
for \(f, g \in \hat{V} \). For \(f \in \hat{V} \) with \(Df \neq 0 \), we set \(f^\vee := 2f/(f, f) \in \hat{V} \).

Let \(R \subset V \) be a reduced irreducible finite root system in \(V \) and assume that the scalar product is normalized such that long roots have squared length \(2 \). The Weyl group \(W_0 \subset O(V) \) associated to \(R \) is the group generated by the orthogonal reflections \(s_\alpha \) in the hyperplanes \(\alpha^\perp \) (\(\alpha \in R \)). Explicitly, we have

\[
s_\alpha(v) = v - \langle v, \alpha \rangle \alpha^\vee,
\]

for \(\alpha \in R, v \in V \). Fix a basis of simple roots \(\{ \alpha_1, \ldots, \alpha_N \} \) of \(R \). Write \(R_+ \) for the set of positive roots, \(R_- := -R_+ \) for the set of negative roots, and \(\phi \) for the highest root with respect to this basis. Note that \(\phi \in R_+ \) is a long root (and so \(\phi^\vee = \phi \)).

We use the standard notations for the (co)root and (co)weight lattices, that is,

\[
Q := \text{Z-span of } R,
\]

\[
Q^\vee := \text{Z-span of } R^\vee,
\]

\[
P := \{ \lambda \in V \mid \langle \lambda, \alpha^\vee \rangle \in \mathbb{Z}, \forall \alpha \in R \},
\]

\[
P^\vee := \{ \mu \in V \mid \langle \mu, \alpha \rangle \in \mathbb{Z}, \forall \alpha \in R \}.
\]

Note that \(Q \subseteq P \) and \(Q^\vee \subseteq P^\vee \). Furthermore, since \(\|\alpha\|^2 = 2 \) for \(\alpha \in R \) a long root and thus \(\|\alpha\|^2 \in \{1, 2/3\} \) for \(\alpha \in R \) short, we have \(\alpha^\vee = \frac{2}{\|\alpha\|} \alpha \in \{ \alpha, 2\alpha, 3\alpha \} \subset Q \) for any \(\alpha \in R \). Hence \(Q^\vee \subseteq Q \) and therefore also \(P^\vee \subseteq P \).

Let \(L \subset V \) be any \(W_0 \)-invariant lattice. The canonical action of \(W_0 \) on \(V \) extends to a faithful action of the semi-direct product group \(W_L := W_0 \ltimes L \) on \(V \) such that elements of \(L \) act as translations. If we want to stress that we view \(\lambda \in L \) as an element of \(W_L \), we write \(t(\lambda) \). In this notation, \(L \subset W_L \) acts on \(V \) by

\[
t(\lambda)v = v + \lambda,
\]

for \(\lambda \in L \) and \(v \in V \). Transposing the action of \(W_L \) on \(V \) gives an action of \(W_L \) on \(\hat{V} \).

It is given by

\[
w(v + rc) = w(v) + c, \quad w \in W_0,
\]

\[
t(\lambda)(v + rc) = v + (r - \langle v, \lambda \rangle)c, \quad \lambda \in L,
\]

for \(v \in V, r \in \mathbb{R} \). Note that \(\langle w(f), w(g) \rangle = \langle f, g \rangle \) for all \(f, g \in \hat{V} \) and \(w \in W_L \). In the case that \(L = Q^\vee \), \(W_L = W_{Q^\vee} = W_0 \ltimes Q^\vee \) is the affine Weyl group. The extended affine Weyl group is \(W_{P^\vee} = W_0 \ltimes P^\vee \) and we will simply denote it by \(W \).

Associated to the reduced irreducible finite root system \(R \) there is a reduced irreducible affine root system \(S = S(R) := \{ \alpha + rc \mid \alpha \in R, r \in \mathbb{Z} \} \) in \(\hat{V} \). For \(a \in S \), let \(s_a : V \to V \) be the reflection in the hyperplane \(a^{-1}(\{0\}) \), given by

\[
s_a(v) = v - a(v)Da^\vee,
\]

for \(v \in V \). Then \(s_a = s_{Da}t(a(0)Da^\vee) \in W_{Q^\vee} \). Note that \(S \subset \hat{V} \) is \(W \)-invariant. We define an ordered basis \((a_0, \ldots, a_N) \) of \(S \) by setting

\[
(a_0, a_1, \ldots, a_N) := (-\phi + c, \alpha_1, \ldots, \alpha_N).
\]
Write S_+ and S_- for the associated sets of positive and negative affine roots respectively. Note that

$$S_+ := \{ \alpha + r \epsilon \mid \alpha \in R, r \geq \chi(\alpha) \},$$

where χ is the characteristic function of R_-, i.e., $\chi(\alpha) = 1$ if $\alpha \in R_-$, and $\chi(\alpha) = 0$ if $\alpha \in R_+$. We put $s_i := s_{a_i} \in W_{Q^\vee} \subseteq W$ for $i = 0, \ldots, N$. The affine Weyl group W_{Q^\vee} is a Coxeter group with Coxeter generators the simple reflections s_i. For $w \in W$ write $S(w) := S_+ \cap w^{-1}S_-$. The length function ℓ on W is defined by

$$\ell(w) := \#S(w), \quad w \in W.$$

The unique element with maximal length in W_0 is denoted by w_0.

The finite abelian subgroup $\Omega := \{ w \in W \mid \ell(w) = 0 \}$ of W is isomorphic to P^\vee/Q^\vee and we have

$$W \simeq W_{Q^\vee} \rtimes \Omega.$$

The action of Ω on W restricts to a faithful action on the set $\{ a_0, \ldots, a_N \}$ of simple roots of S, so we can view Ω as a group of permutations on the set of indices $\{0, \ldots, N\}$. We write $\mathbb{C}[\Omega]$ for the group algebra of Ω.

The Bruhat order \preceq on W_{Q^\vee} extends to a partial order on W, referred to as the Bruhat order on W (cf. [42, §2.3]). It is defined as follows. For $w = \omega u$ and $w' = \omega' u'$ with $\omega, \omega' \in \Omega$ and $u, u' \in W_{Q^\vee}$ we have by definition

$$w \preceq w' \iff \omega = \omega' \text{ and } u \leq u'.$$

5.2.2 Algebra of q-difference reflection operators

Consider the complex torus $T := \text{Hom}_{\mathbb{Z}}(P^\vee, \mathbb{C}^\times)$. By transposition, the natural action of W_0 on P^\vee gives rise to an action of W_0 on T. Fix $0 < q < 1$. For $\lambda \in P^\vee$, let $q^{\lambda} \in T$ be defined by

$$q^{\lambda}(\mu) := (q^{\lambda, \mu}), \quad \mu \in P^\vee.$$

The action of W_0 on T extends to an action of $W = W_0 \rtimes P^\vee$ on T by letting $\lambda \in P^\vee$ act via $t \mapsto q^{\lambda}t$. Let the evaluation of $t \in T$ in a point $\lambda \in P^\vee$ be denoted by $t^{\lambda} \in \mathbb{C}^\times$.

Then, summarizing, we have an action of W on T given by

$$(wt)^{\lambda} = t^{w^{-1}\lambda},$$

$$(t(\lambda))^{\mu} = q^{\lambda, \mu} t^{\mu},$$

for $t \in T$, $w \in W_0$ and $\lambda, \mu \in P^\vee$.

Let $\{ \varpi_i \}_{i=1}^N$ be the set of fundamental coweights in P^\vee with respect to $\{ \alpha_i \}_{i=1}^N$, so $\langle \varpi_i, \alpha_j \rangle = \delta_{ij}$ for $1 \leq i, j \leq N$. We identify $T \simeq (\mathbb{C} \setminus \{0\})^N$ via $t \leftrightarrow (t_1, \ldots, t_N)$ defined by

$$t_i := t^{\varpi_i}.$$
for \(i = 1, \ldots, N \). Under this identification, the action of \(P^\vee \) on \(T \) reads
\[
(t(\lambda))t = q^\lambda t = (q^{\langle \lambda, \omega_i^\vee \rangle} t_1, \ldots, q^{\langle \lambda, \omega_N^\vee \rangle} t_N)
\]
(5.2.2)
for \(\lambda \in P^\vee \) and \(t = (t_1, \ldots, t_N) \in T \).

The algebra of complex-valued regular functions on \(T \) is
\[
\mathbb{C}[x_{1}^{\pm 1}, \ldots, x_{N}^{\pm 1}] = \text{span}_\mathbb{C} \{ x^\lambda \}_{\lambda \in P^\vee},
\]
where \(x_i \) is the coordinate function \(x_i(t) := t_{e_i}^{\vee} (i = 1, \ldots, N) \) and \(x^\lambda(t) := t^\lambda \) for \(\lambda \in P^\vee \). Clearly, it is isomorphic to the group algebra \(\mathbb{C}[P^\vee] \) of \(P^\vee \). We write \(\mathbb{C}[T] = \mathbb{C}[x_{1}^{\pm 1}, \ldots, x_{N}^{\pm 1}] \) and we let \(\mathcal{C}(T) \) denote the field of rational functions on \(T \), \(O(T) \) the ring of analytic functions on \(T \), and \(\mathcal{M}(T) \) the field of meromorphic functions on \(T \).

The \(W \)-action on \(T \) gives rise to a \(W \)-action by algebra automorphisms on each of these function algebras, via
\[
(wf)(t) = f(w^{-1}t),
\]
for \(w \in W \), \(t \in T \) and \(f \) a (regular, rational or meromorphic) function on \(T \). Note that for \(\lambda \in P^\vee \) and \(r \in \mathbb{R} \), we have
\[
w(x^{\lambda + re}) = x^{w(\lambda + re)},
\]
where \(x^{\lambda + re} := q^r x^\lambda \in \mathbb{C}[T] \).

By means of this \(W \)-action by field automorphisms on \(\mathbb{C}(T) \), we can form the smash product algebra \(\mathbb{C}(T) \#_q W \) (see Subsection 2.2.1), which we call the algebra of \(q \)-difference reflection operators with coefficients in \(\mathbb{C}(T) \), since it acts canonically on \(\mathbb{C}(T) \) and \(\mathcal{M}(T) \) as \(q \)-difference reflection operators. For \(f \in \mathbb{C}(T) \) we will write \(f(X) \in \mathbb{C}(T) \#_q W \) for the operator on \(\mathcal{M}(T) \) (or \(\mathbb{C}(T) \)) defined as multiplication by \(f \). We will also write \(X^{\lambda + re} = q^r X^\lambda \) for \(\lambda \in P^\vee \) and \(r \in \mathbb{R} \).

Remark 5.2.1. Note that since \((t(\lambda))f) = f(q^{\langle \omega_i^\vee, \lambda \rangle} t_1, \ldots, q^{\langle \omega_N^\vee, \lambda \rangle} t_N) \) (\(\lambda \in P^\vee \), \(f \in \mathcal{M}(T) \)), \(\mathbb{C}(T) \#_q W \) actually depends on a choice for \(q^{\frac{1}{m}} \), where \(m \in \mathbb{N} \) is determined by \(m(P^\vee, P^\vee) = \mathbb{Z} \). Our global convention concerning real powers of positive real numbers justifies the apparent abuse of notation writing \(q \) instead of \(q^{1/m} \).

5.2.3 The extended affine Hecke algebra and Cherednik’s basic representation

Let \(k_i \) (\(i = 0, \ldots, N \)) be nonzero complex numbers such that \(k_i = k_j \) if \(s_i \) and \(s_j \) are conjugate in \(W \). Write \(k \) for the corresponding multiplicity label \(k: S \to \mathbb{C} \setminus \{ 0 \} \), so \(k(a) = k_t \) for all \(a \in W(t) \) (\(i = 0, \ldots, N \)). We set \(k_a := k(a) \) for \(a \in S \). Furthermore, for \(w \in W \) we define
\[
k(w) := \prod_{a \in S(w)} k_a.
\]
A coweight \(\lambda \in P^\vee \) is called dominant if \(\langle \lambda, \alpha_i \rangle \geq 0 \) for \(i = 1, \ldots, N \). Let \(P^\vee_+ \) denote the set of dominant coweights.
Lemma 5.2.2. For $\lambda \in P'_{\vee}$, we have

$$k(t(\lambda)) = \prod_{\alpha \in R_+} k^{(\lambda, \alpha)}_{\alpha} = \delta_k^\lambda,$$

(5.2.3)

where $\delta_k^\lambda \in T$ is defined by $(\delta_k^\lambda)_i = \prod_{\alpha \in R_+} k^{(\pi_i, \alpha)}_{\alpha}$ $(i = 1, \ldots, N)$.

Proof. For $\lambda \in P'_{\vee}$ we have

$$S(t(\lambda)) = \{\alpha + rc \mid \alpha \in R_+, 0 \leq r < \langle \lambda, \alpha \rangle\},$$

cf. [42, §2.4]. Note that $k_{\alpha+rc} = k_\alpha$ for $\alpha \in R$ and $r \in \mathbb{Z}$ since $\alpha + rc$ and α are conjugate under the action of W. Indeed, for $\mu \in P'_{\vee}$ we have $t(\mu)(\alpha+rc) = \alpha + (r - \langle \mu, \alpha \rangle)c$ and for any $\alpha \in R$ there exists some $\nu \in P'_{\vee}$ such that $\langle \nu, \alpha \rangle = 1$, so that we can take $\mu = r\nu$. Therefore

$$k(t(\lambda)) = \prod_{\alpha \in R_+} k_{\alpha+rc} = \prod_{\alpha \in R_+} k^{(\lambda, \alpha)}_{\alpha}.$$

The second equality in (5.2.3) follows from the definitions. \qed

Definition 5.2.3. The affine Hecke algebra $H_{Q'_{\vee}}$ associated with the Coxeter system $(W_{Q'_{\vee}}, \{s_0, \ldots, s_N\})$ and the multiplicity label k, is the unital complex associative algebra generated by elements T_0, \ldots, T_N, such that

(i) T_0, \ldots, T_N satisfy the braid relations, i.e. if for $i \neq j$, we have

$$s_is_j\cdots = s_js_i\cdots,$$

with m_{ij} factors on each side, then

$$T_iT_jT_i\cdots = T_jT_iT_j\cdots,$$

with m_{ij} factors on each side;

(ii) $(T_j - k_j)(T_j + k_j^{-1}) = 0$, for $j = 0, \ldots, N$.

Note that since k is W-invariant, the group Ω acts on $H_{Q'_{\vee}}$ by algebra automorphisms via $T_i \mapsto T_{\omega(i)}$ for $i = 0, \ldots, N$.

Definition 5.2.4. The extended affine Hecke algebra $H = H(k)$ is the smash product $H := H_{Q'_{\vee}} \# \Omega$.

For $w \in W$ and a reduced expression $w = \omega s_{i_1} \cdots s_{i_{\ell(w)}}$ with $\omega \in \Omega$ and $i_k \in \{0, \ldots, N\}$, we define

$$T_w := \omega T_{i_1} \cdots T_{i_{\ell(w)}} \in H,$$
which is independent of the reduced expression chosen. The set \(\{ T_w \mid w \in W \} \) is a linear basis of \(H \). Note that for \(k \equiv 1 \) the extended affine Hecke algebra is just the group algebra \(\mathbb{C}[W] \) of \(W \). The finite Hecke algebra is the subalgebra \(H_0 = H_0(k) \) of \(H \), generated by \(T_1, \ldots, T_N \).

For \(\lambda \in P^\vee \), put

\[
Y^\lambda := T_{i(\lambda)} \in H,
\]

and for arbitrary \(\lambda \in P^\vee \) put

\[
Y^\lambda := Y^{\mu}(Y^\nu)^{-1},
\]

if \(\lambda = \mu - \nu \) with \(\mu, \nu \in P^\vee \). Then the \(Y^\lambda \) (\(\lambda \in P^\vee \)) are well-defined and we have \(Y^0 = 1 \) and \(Y^\lambda Y^\mu = Y^{\lambda + \mu} = Y^\mu Y^\lambda \) for all \(\lambda, \mu \in P^\vee \). Set \(Y_i := Y^{e_i^\vee} \) for \(i = 1, \ldots, N \).

For \(\kappa \in \mathbb{C} \setminus \{0\} \) we define the functions \(b(z; \kappa) \) and \(c(z; \kappa) \) by

\[
b(z; \kappa) := \frac{\kappa - \kappa^{-1}}{1 - z},
\]

\[
c(z; \kappa) := \frac{\kappa^{-1} - \kappa z}{1 - z},
\]

as rational functions in \(z \). Then for \(a \in S \), we define \(b_{a; k, q} = b_a \in \mathbb{C}(T) \) and \(c_{a; k, q} = c_a \in \mathbb{C}(T) \) by

\[
b_a(t) := b(t^{e_a^\vee}; k_a)
\]

\[
c_a(t) := c(t^{e_a^\vee}; k_a).
\]

Remark 5.2.5. The \(q \)-dependence of \(b_{a; k, q} \) and \(c_{a; k, q} \) comes from our convention \(t^{e_a^\vee + r e} = q^r t^{e_a^\vee} \) for \(\alpha \in R \) and \(r \in \mathbb{R} \). Note that

\[
c_{a; k, q}(t^{-1}) = c_{a; k, q^{-1}}(t)
\]

for all \(a \in S \) and \(t \in T \). We leave out the subscripts \(k \) and \(q \) as long as there is no chance of confusion (which is until Section 5.6).

Note that \(b_a(t) = k_a - c_a(t) \) and \((w c_a)(t) = c_{w(a)}(t) \) for all \(w \in W \). It is convenient to introduce the notations \(b_j := b_{a_j} \) and \(c_j := c_{a_j} \) for \(j = 0, \ldots, N \). The following characterization of \(H \) is due to Bernstein and Zelevinsky (see, e.g., [42, §4.2]).

Theorem 5.2.6. The affine Hecke algebra \(H = H(k) \) is the unique complex associative algebra, such that

(i) \(H_0 \otimes \mathbb{C}[T] \simeq H \) as complex vector spaces, via \(h \otimes f \mapsto h f(Y) \) for \(h \in H_0, f \in \mathbb{C}[T] \),

where \(f(Y) = \sum \lambda a_\lambda Y^\lambda \) if \(f = \sum \lambda a_\lambda x^\lambda \in \mathbb{C}[T] \);

(ii) the canonical maps \(H_0, \mathbb{C}[T] \hookrightarrow H \) are algebra embeddings; we will also write \(\mathbb{C}_Y[T] = \text{span}_{\mathbb{C}}\{Y^\lambda\}_{\lambda \in P^\vee} \) for the image of \(\mathbb{C}[T] \) in \(H \);

(iii) Lusztig’s relations are satisfied, that is,

\[
f(Y)T_j = T_j(s_jf)(Y) + b_j(Y^{-1})(f(Y) - (s_jf)(Y)) \quad (5.2.5)
\]

for \(j = 1, \ldots, N \) and \(f \in \mathbb{C}[T] \).
Remark 5.2.7. Note that $b_j(Y^{-1})(f(Y) - (s_j f)(Y)) \in \mathbb{C}_Y[T]$ although $b_j(Y^{-1})$ by itself is not defined as an element of H.

We end this section with the definition of the double affine Hecke algebra and state some of its key results. All of this is due to Cherednik; see [10]. It starts with the realization of the affine Hecke algebra inside the algebra $\mathbb{C}(T)\#_q W$ of q-difference reflection operators.

Theorem 5.2.8. There exists a unique injective algebra homomorphism $\rho = \rho_{k,q}: H \to \mathbb{C}(T)\#_q W$ satisfying
\[
\rho(T_i) = k_i + c_i(X)(s_i - 1), \quad i = 0, \ldots, N,
\]
\[
\rho(\omega) = \omega, \quad \omega \in \Omega.
\]

Remark 5.2.9. The image $\rho(H)$ preserves $\mathbb{C}[T]$, viewed as a subspace of the canonical $\mathbb{C}(T)\#_q W$-module $\mathbb{C}(T)$. The resulting faithful representation of H on $\mathbb{C}[T]$ is called the basic representation of H.

Definition 5.2.10. The double affine Hecke algebra $H = H(k,q)$ is the subalgebra of $\mathbb{C}(T)\#_q W$ generated by $\rho(H)$ (i.e. by $\rho_{k,q}(H)$) and by the multiplication operators $f(X)$ ($f \in \mathbb{C}[T]$).

Remark 5.2.11. Note that $\rho = \rho_{k,q}$ and $\mathbb{H} = \mathbb{H}(k,q)$ actually depend on $q^{1/m}$ (see Remark 5.2.1).

We view \mathbb{H} as a left $\mathbb{C}[T]$-module by $(f, h) \mapsto f(X)h$ ($f \in \mathbb{C}[T], h \in \mathbb{H}$). The rule $f \otimes h \mapsto f(X)h$ ($h \in H, f \in \mathbb{C}[T]$) induces an isomorphism of $\mathbb{C}[T]$-modules
\[
\mathbb{C}[T] \otimes H \simeq \mathbb{H}, \quad (5.2.6)
\]
Similarly to Theorem 5.2.6, the algebra structure of \mathbb{H} can be described in terms of the left-hand side of $(5.2.6)$, allowing for an abstract definition of \mathbb{H}:

Theorem 5.2.12. The double affine Hecke algebra \mathbb{H} can be characterized as the unique associative algebra satisfying

(i) $\mathbb{C}[T] \otimes H \simeq \mathbb{H}$ as complex vector spaces;
(ii) the canonical maps $H, \mathbb{C}[T] \hookrightarrow \mathbb{H}$ are algebra embeddings;
(iii) the following cross relations are satisfied: for $f \in \mathbb{C}[T]$
\[
T_j f(X) = (s_j f)(X)T_j + b_j(X) (f(X) - (s_j f)(X)), \quad j = 0, \ldots, N, \quad (5.2.7)
\]
\[
\omega f(X) = (\omega f)(X)\omega, \quad \omega \in \Omega. \quad (5.2.8)
\]

A crucial ingredient in the construction of the bispectral quantum KZ equations is Cherednik’s duality anti-involution on \mathbb{H} (see [10, Theorem 1.4.8]).
Theorem 5.2.13. There exists a unique anti-algebra involution \(* : \mathbb{H} \to \mathbb{H} \) determined by
\[
T_w^* = T_{w^{-1}}, \quad w \in W_0,
\]
\[
(Y^\lambda)^* = X^{-\lambda}, \quad \lambda \in P^\vee,
\]
\[
(X^\lambda)^* = Y^{-\lambda}, \quad \lambda \in P^\vee.
\]

5.3 Bispectral quantum KZ equations

In this section we extend the construction of the bispectral quantum KZ equations (2.3.7) for \(\text{GL}_N \) to arbitrary root systems. First we recall Cherednik’s construction of the quantum affine Knizhnik-Zamolodchikov equation [6] associated to a finite-dimensional \(\mathcal{H} \)-module. Since this takes place in terms of a certain extension (localization) of the double affine Hecke algebra, we start with a short intermezzo on Ore localization.

5.3.1 Ore localization

Let \(R \) be a unital ring and \(S \) a subset of \(R \). A ring homomorphism \(R \to R' \) is called \(S \)-inverting if it maps \(S \) into the group of units of \(R' \). For any \(R \) and \(S \) as above there exists a (up to isomorphism) unique ring \(S R \) and \(S \)-inverting homomorphism \(\lambda : R \to S R \) satisfying the following universal property: for any \(S \)-inverting homomorphism \(f : R \to R' \) there is a unique homomorphism \(g : S R \to R' \) such that \(f = g \circ \lambda \). The ring \(S R \), which is called the universal \(S \)-inverting ring for the pair \((R,S)\), is constructed from a presentation of \(R \) by adjoining an element \(s' \) for each element \(s \in S \) with defining relation \(ss' = s's = 1 \) and then \(\lambda \) is defined by sending each \(r \in R \) to the corresponding element in \(S R \).

Now suppose that \(S \) is a multiplicative subset of \(R \), that is, \(S \) satisfies \(S \cdot S \subset R \) and \(1 \in S \) and \(0 \notin S \). One could ask under what circumstances the universal \(S \)-inverting ring \(S R \) is a (left) ring of fractions. By definition, this means that, besides being \(S \)-inverting, each of its elements can be written as a fraction \(s^{-1}a \) (\(s \in S, a \in R \)) and that \(\ker \lambda = \{ a \in R \mid sa = 0 \text{ for some } s \in S \} \), so that if in particular \(S \) does not possess any zero divisors, \(\lambda \) is a ring embedding \(\lambda : R \to S R \). The following result, due to Ore, provides the answer.

Theorem 5.3.1. Let \(R \) be a unital ring and \(S \) a multiplicative subset satisfying
\[
\begin{align*}
(i) & \text{ for all } a \in R \text{ and } s \in S \text{ we have } Sa \cap Rs \neq \emptyset; \\
(ii) & \text{ for } a \in R \text{ and } s \in S, \text{ if } as = 0 \text{ then } ta = 0 \text{ for some } t \in S.
\end{align*}
\]
Then the relation \(\sim \) on \(S \times R \), defined by \((s,a) \sim (s',a') \) if and only if there exist \(x, x' \in R \) such that \(xs = x's' \in S \) and \(xa = x'a' \), defines an equivalence relation on \(S \times R \). Writing \(s^{-1}a \) for the equivalence class of \((s,a) \in (S \times R)/\sim \), we define addition on \((S \times R)/\sim \) by
\[
s_1^{-1}a_1 + s_2^{-1}a_2 = (ss_1)^{-1}(sa_1 + ra_2),
\]
where, using (i), \(r \in R \) and \(s \in S \) are chosen such that \(rs_2 = ss_1 \). Multiplication is defined by

\[
s_1^{-1}a_1 \cdot s_2^{-1}a_2 = (ss_1)^{-1}ra_2,
\]

where, again using (i), \(r \in R \) and \(s \in S \) are chosen such that \(sa_1 = rs_2 \).

This defines a ring structure on \((S \times R)/\sim\) and we have

\[
gR \cong (S \times R)/\sim.
\]

In particular, \(gR \) a left ring of fractions.

We call a multiplicative subset \(S \) satisfying conditions (i) and (ii) of the theorem a left Ore set in \(H \). Indeed, consider \(a = g(X)wT_w \in H \) (\(g \in \mathbb{C}[T] \), \(\omega \in \Omega, w \in W_Q \)) and \(s = f(X) \in \mathbb{C}[T] \) \(\setminus \{0\} \). We will use induction on \(\ell(w) \) to verify condition (i) of Theorem 5.3.1. Suppose (i) is true for \(u \in W_Q \) with \(\ell(u) < \ell(w) \). The cross relations (5.2.7) imply that

\[
T_w f(X) = (wf)(X)T_w + \sum_{u < w} f_u(X)T_u \tag{5.3.1}
\]

for certain \(f_u \in \mathbb{C}[T] \). By the induction hypothesis, for a given \(u < w \), we can find \(h_u \in H \) and \(p_u \in \mathbb{C}[T] \) \(\setminus \{0\} \) such that \(p_u(X)f_u(X)T_u = h_u f(X) \). So by multiplying (5.3.1) from the left by \(p_u(X) \), and repeating this for each \(u < w \), we arrange that

\[
p(X)T_w f(X) = p(X)(wf)(X)T_w + h f(X)
\]

for certain \(p \in \mathbb{C}[T] \) \(\setminus \{0\} \) and \(h \in H \). It follows that

\[
g(X)wp(X)(wf)(X)T_w = g(X)w(p(X)T_w f(X) - h f(X)),
\]

and hence \((wp)(X)(wf)(X)a = g(X)w(p(X)T_w - h)s\). Condition (ii) is satisfied as well, for, in view of (5.2.6), the elements of \(\mathbb{C}[T] \) \(\setminus \{0\} \) are clearly no zero divisors.

Let \(\hat{H} \) denote the left Ore localization of \(H \) with respect to \(\mathbb{C}[T] \) \(\setminus \{0\} \). We can view \(\mathbb{C}(T) \) and \(H \) as subalgebras of \(\hat{H} \) and then \(\hat{H} \cong \mathbb{C}(T) \otimes H \) as complex vector spaces, where the isomorphism is given by the multiplication map, and the algebra structure is characterized by the cross relations (5.2.7) and (5.2.8) for \(f \in \mathbb{C}(T) \).

The injective map \(\rho \) of Theorem 5.2.8 extends to an injective algebra homomorphism

\[
\rho : \hat{H} \to \mathbb{C}(T) \#_q W
\]
by setting $\rho(f(X)) = f(X)$ for $f \in \mathbb{C}(T)$. Note that $\rho(c_j(X)^{-1}(T_j - b_j(X))) = s_j$ for $0 \leq j \leq N$, which shows that ρ is surjective and therefore establishes an isomorphism $\mathbb{H} \simeq \mathbb{C}(T)\#_q W$. Restricting the inverse ρ^{-1} to W gives a realization of W inside \mathbb{H}^\times.

The left multiplication map turns H into a left module over itself. The action of \mathbb{H} on the induced module $\text{Ind}_H^\mathbb{H}(H) = \mathbb{H} \otimes_H H$ can be pushed forward along the linear isomorphism $\mathbb{H} \otimes_H H \simeq \mathbb{C}(T) \otimes H$ to obtain an algebra homomorphism

$$\pi = \pi_\#: \mathbb{H} \to \text{End}(\mathbb{C}(T) \otimes H).$$

We regard $\mathbb{C}(T)\#_q W \otimes H$ as a subalgebra of $\text{End}(\mathbb{C}(T) \otimes H)$ by letting $\mathbb{C}(T)\#_q W$ act on $\mathbb{C}(T)$ as in Subsection 5.2.2, and H on H by left multiplication. Then the pullback $\tau_x = \tau_{x,\#} := \pi \circ \rho^{-1}$ of π along ρ^{-1} is an algebra homomorphism

$$\tau_x : \mathbb{C}(T)\#_q W \to \mathbb{C}(T)\#_q W \otimes H \subset \text{End}(\mathbb{C}(T) \otimes H),$$

which is explicitly given by

$$\begin{align*}
\tau_x(f) &= f(X) \otimes 1, & f &\in \mathbb{C}(T), \\
\tau_x(s_j) &= (c_j(X)^{-1} \otimes 1)(s_j \otimes T_j - b_j(X)s_j \otimes 1), & 0 \leq j \leq N, \\
\tau_x(\omega) &= \omega \otimes \omega, & \omega &\in \Omega,
\end{align*}$$

as can be verified by a direct computation using the formula for ρ^{-1} and the cross relations (5.2.7).

Remark 5.3.2. The reason for the subscript x in τ_x will become apparent in the next subsection when we discuss the bispectral story. Then two copies of T will play a role and x will denote the set of coordinate functions on one of them.

Note that $\tau_x(s_j) = (F_s(X) \otimes 1)(s_j \otimes 1)$ with $F_s(X) = c_j(X)^{-1}(1 \otimes T_j - b_j(X) \otimes 1) \in \mathbb{C}(T) \otimes H$, and trivially also $\tau_x(\omega) = F_w(X)(\omega \otimes 1)$ with $F_w = 1 \otimes \omega \in \mathbb{C}(T) \otimes H$. In fact, more generally, we have

$$\tau_x(w) = F_w(X)(w \otimes 1), \quad w \in W,$$

where F_w are H-valued rational functions on T satisfying

$$F_s(t) = 1, \quad F_{vw}(t) = F_v(t)F_w(v^{-1}t)$$

(5.3.2) for all $v, w \in W$ and $t \in T$. Viewed as elements of $\text{End}(\mathbb{C}(T) \otimes H)$ the $F_w(X) (w \in W)$ are $\mathbb{C}(T)$-linear and invertible (indeed $F_w^{-1}(X) = (w^{-1} \otimes 1)\tau_x(w^{-1})$). In the language of non-abelian group cohomology, (5.3.2) asserts that $w \mapsto F_w(X)$ constitutes a co-cycle $W \to \text{GL}_{\mathbb{C}(T)}(\mathbb{C}(T) \otimes H)$, where $\text{GL}_{\mathbb{C}(T)}(\mathbb{C}(T) \otimes H)$ is a W-group via the usual action of W on the first tensor leg of $\mathbb{C}(T) \otimes \text{End}(H) \simeq \text{GL}_{\mathbb{C}(T)}(\mathbb{C}(T) \otimes H)$.

§5.3. Bispectral quantum KZ equations 89
Now let M be a left module over the affine Hecke algebra H. Then $M^{\text{aff}}(T) = M(T) \otimes M$ is a module over $\mathbb{C}(T) \#_q W \otimes H$, where $\mathbb{C}(T) \#_q W$ acts on $M(T)$ as described in subsection 5.2.2. Consequently, τ_x gives rise to a representation

$$
\tau_x^M : W \to \text{GL}(M^{\text{aff}}(T)),
$$

defining $\tau_x^M(w) (w \in W)$ to be $\tau_x(w) \in \mathbb{C}(T) \#_q W \otimes H$ acting on $M^{\text{aff}}(T)$. Let $F_w^M (w \in W)$ denote the corresponding functions $F_w \in \mathbb{C}(T) \otimes H$ acting on $M^{\text{aff}}(T)$. For simplicity we write $F_\lambda^M = F_{\rho\lambda}^M$ for $\lambda \in P^\vee$.

Definition 5.3.3 (Cherednik [6]). The q-difference equations

$$
F_\lambda^M(t)f(q^{-\lambda}t) = f(t), \quad \lambda \in P^\vee
$$

(5.3.3)

for $f \in M(T) \otimes M$, are called the quantum affine KZ (qKZ) equations for the H-module M.

From the cocycle condition (5.3.2) and the fact that P^\vee is an abelian subgroup of W, it follows immediately that the quantum KZ equation is a holonomic system of q-difference equations, that is,

$$
F_\lambda^M(t)F_\mu^M(q^{-\lambda}t) = F_\mu^M(t)F_\lambda^M(q^{-\mu}t)
$$

for all $\lambda, \mu \in P^\vee$.

In this paper we will restrict our attention to a particular representation of H. Recall that $H \cong H_0 \otimes \mathbb{C}[T]$ (cf. Theorem 5.2.6). Fix $\zeta \in T$ and let $\chi_\zeta : \mathbb{C}[T] \to \mathbb{C}$ be the evaluation character $f(Y) \mapsto f(\zeta)$ for $f \in \mathbb{C}[T]$. We define M_ζ to be the induced H-module $M_\zeta := \text{Ind}_{\mathbb{C}[T]}^{\mathbb{C}[T]}(\chi_\zeta) = H \otimes_{\chi_\zeta} \mathbb{C}$. It is the minimal principal series representation of H with central character ζ. As complex vector spaces we identify $M_\zeta \cong H_0$ via

$$
T_w \otimes_{\chi_\zeta} 1 \mapsto T_w, \quad (w \in W_0, f \in \mathbb{C}[T]).
$$

The qKZ equation corresponding to M_ζ thus can be viewed as a holonomic system of q-difference equations for meromorphic functions $f(t)$ on T with values in H_0.

Now $H \cong \mathbb{C}[T] \otimes H$, so that since $H \cong H_0 \otimes \mathbb{C}[T]$, the double affine Hecke algebra H contains another copy of $\mathbb{C}[T]$. In view of Cherednik’s duality anti-isomorphism one might ask, when ζ is considered as a variable γ on the second torus, whether one can find a set of q-difference equations acting on this central character γ, such that together with the original qKZ equations it makes up a holonomic system of q-difference equations for meromorphic functions $f(t, \gamma)$ on $T \times T$ with values in H_0. As a first step, one could try to localize \tilde{H} once again, this time with respect to the multiplicative subset $\mathbb{C}[T] \setminus \{0\}$, but we will take a different approach, based on the following idea.

The construction of qKZ depended on the realization of W inside the localization of \tilde{H} by sending the w to the so-called normalized intertwiners $\rho^{-1}(w)$. Of course,
we can multiply these intertwiners by appropriate factors from $\mathbb{C}[T]$ to obtain elements \tilde{S}_w which do live in \mathbb{H}. Clearly, the map $W \to \mathbb{H}^\times$, $w \mapsto \tilde{S}_w$ will no longer be a group homomorphism (like ρ^{-1}), but the \tilde{S}_w still serve as intertwining elements from which a cocycle can be constructed. Then Cherednik's duality anti-isomorphism can be invoked to obtain \mathcal{Y}-intertwining elements and extend the cocycle to a 'double cocycle' which will give rise to the bispectral quantum KZ equations. This is explained in the following subsection.

5.3.3 Bispectral quantum KZ equations

The construction of the bispectral quantum KZ equations in the present setting is more or less the same as in the GL$_N$ case, which was done in Section 2.3. Here we repeat the construction, but, since it is a matter of simply adapting the notations from Section 2.3 we omit the proofs.

In view of the last paragraph of the previous subsection we should first renormalize the intertwiners so that they become members of \mathbb{H}. We put

\[
\tilde{S}_i := (k_i - k_i^{-1} X^{-\alpha_i^\vee}) s_i \in \mathbb{C}(T)^\# W, \quad i = 0, \ldots, N
\]

\[
\tilde{S}_\omega := \omega \in \mathbb{C}(T)^\# W, \quad \omega \in \Omega,
\]

giving rise to the renormalized intertwiners \tilde{S}_w ($w \in W$), defined in the following proposition (see also [10, §1.3]).

Proposition 5.3.4. Let $w = s_{i_1} \cdots s_{i_r} \omega$ be a reduced expression for $w \in W$ ($i_1, \ldots, i_r \in \{0, \ldots, N\}$, $\omega \in \Omega$). Then

- (i) $\tilde{S}_w := \tilde{S}_{i_1} \cdots \tilde{S}_{i_r} \tilde{S}_\omega$ is a well-defined element of $\mathbb{C}(T)^\# W$;
- (ii) $\tilde{S}_w \in \mathbb{H}$ in particular $\tilde{S}_i = (1 - X^{-\alpha_i^\vee}) T_i + (k_i - k_i^{-1}) X^{-\alpha_i^\vee}$ ($0 \leq i \leq N$);
- (iii) the \tilde{S}_i ($i = 0, \ldots, N$) satisfy the braid relations (cf. Definition 5.2.3(i));
- (iv) $\tilde{S}_w f(X) = (w f)(X) \tilde{S}_w$ for $w \in W$, $f \in \mathbb{C}[T]$;
- (v) $\tilde{S}_i \tilde{S}_i = (k_i - k_i^{-1} X^{\alpha_i^\vee})(k_i - k_i^{-1} X^{-\alpha_i^\vee})$ for $i = 0, \ldots, N$.

For $0 \leq i \leq N$ define $d_i \in \mathbb{C}[T]$ by $d_i(t) := (k_i - k_i^{-1} t^{-\alpha_i^\vee})$. Then for $w \in W$ as in the proposition we have

\[
\tilde{S}_w = d_{i_1}(X)(s_{i_1} d_{i_2})(X) \cdots (s_{i_1} \cdots s_{i_{r-1}} d_{i_r})(X) w.
\]

The proof of part (i) of the proposition relies on the fact that

\[
d_w := d_{i_1}(s_{i_1} d_{i_2}) \cdots (s_{i_1} \cdots s_{i_{r-1}} d_{i_r})
\]

is independent of the reduced expression for w.

\[\]
Now the ‘double cocycle’ we are going to construct is a cocycle of $W \times W$. In fact, it turns out to be convenient to anticipate the role that the anti-involution of \mathbb{H} will play and extend $W \times W$ as follows. Note that the two-group \mathbb{Z}_2 acts on $W \times W$ by $\iota(w, w') = (w', w)$, where $\iota \in \mathbb{Z}_2$ denotes the nontrivial element. Then we put

$$W := \mathbb{Z}_2 \ltimes (W \times W).$$

Furthermore, the cocycle will act on H_0-valued meromorphic functions on $T \times T$. Let us write $\mathbb{K} := \mathcal{M}(T \times T)$ for the field of meromorphic functions on $T \times T$. Moreover, write $\mathbb{L} := \mathbb{C}[T] \otimes \mathbb{C}[T] \simeq \mathbb{C}[T \times T]$ for the ring of complex-valued regular functions on $T \times T$. It acts on \mathbb{H} via

$$(f \otimes g) \cdot h := f(X)hg(Y) \quad (5.3.5)$$

for $f, g \in \mathbb{C}[T]$ and $h \in \mathbb{H}$. We will usually write (t, γ) for a typical point of $T \times T$. Let $x = (x_1, \ldots, x_N)$ denote the coordinate functions of the first copy of T in $T \times T$ and $y = (y_1, \ldots, y_N)$ the coordinate functions of the second copy. For $x \in \mathbb{C}[T]$ we define $f(x) \in \mathbb{L}$ by the rule $(t, \gamma) \mapsto f(t)$, and $f(y) \in \mathbb{L}$ by $(t, \gamma) \mapsto f(\gamma)$. We use the same conventions for $f(x), f(y) \in \mathbb{K}$ when $f \in \mathcal{M}(T)$.

An intermediate step in the construction of a \mathbb{W}-action on $H^\mathbb{K} = \mathbb{K} \otimes H_0$ are the complex linear endomorphisms $\sigma_{(w, w')} (w, w' \in W)$ of \mathbb{H} defined by

$$\sigma_{(w, w')}(h) = \tilde{S}_w h \tilde{S}_{w'}^*$$

$$\sigma_i(h) = h^*$$

for $h \in \mathbb{H}$. As a corollary of Proposition 5.3.4 we have the following lemma.

Lemma 5.3.5. The complex linear endomorphisms $\sigma_{(w, w')}$ and σ_i of \mathbb{H} satisfy:

(i) the $\sigma_{(s_i, e)} (i = 0, \ldots, N)$ satisfy the braid relations;

(ii) $\sigma_{(s_i, e)}^2 = ds_i(x)(s_i d_{s_i})(x) \cdot \text{id}_{\mathbb{H}}$ for $i = 0, \ldots, N$;

(iii) $\sigma_{(w, e)} \sigma_{(w, e)} \sigma_{(w^{-1}, e)} = \sigma_{(w^{-1}, e)} \sigma_{(w, e)} \sigma_{(w, e)}$ for $i = 0, \ldots, N$ and $\omega \in \Omega$;

(iv) $\sigma_i^2 = \text{id}_{\mathbb{H}}$ and $\sigma_{(e, w)} = \sigma_{(w, e)} \sigma_i$ for $w \in W$;

(v) $\sigma_{(w, e)} \sigma_{(w, w')} = \sigma_{(w, w')} \sigma_{(w, e)}$ for $w, w' \in W$.

Let us investigate the behavior of these maps under the action of \mathbb{L}. First consider the group involution $\circ : W \to W$ given by $w^\circ = w$ for $w \in W_0$ and $\lambda^\circ = -\lambda$ for $\lambda \in P^\vee$. Then \mathbb{W} acts on $T \times T$ by

$$(w, w')(t, \gamma) = (wt, w'^{\circ, \gamma}),$$

$$\iota(t, \gamma) = (\gamma^{-1}, t^{-1})$$

as follows. Note that the two-group \mathbb{Z}_2 acts on $W \times W$ by $\iota(w, w') = (w', w)$, where $\iota \in \mathbb{Z}_2$ denotes the nontrivial element. Then we put
for $w, w' \in W$, where $t^{-1} := (t_1^{-1}, \ldots, t_N^{-1}) \in T$. Transposition yields an action of \mathbb{W} on K by field automorphisms and is given by

$$ (wf)(t, \gamma) = f(w^{-1}(t, \gamma)), \quad w \in \mathbb{W}. \quad (5.3.6) $$

Note that $L = \mathbb{C}[T \times T]$ is a \mathbb{W}-subalgebra of K. The following lemma is a consequence of the intertwining properties of the \tilde{S}_w.

Lemma 5.3.6. For $h \in H$ and $f \in L$ we have

$$ \sigma((w, w')(f \cdot h)) = ((w, w')f) \cdot \sigma((w, w')(h)), \quad \sigma_i(f \cdot h) = (if) \cdot \sigma(h) $$

(5.3.7)

for $w, w' \in W$.

As L-modules we have $H_0^K \simeq \mathbb{K} \otimes_L H$, so the lemma enables us to extend the maps $\sigma_{(w, w')}$ ($w, w' \in W$) and σ_i to complex linear endomorphisms of H_0^K for which (5.3.7) holds for all $f \in \mathbb{K}$ and $h \in H_0^K$. Note that the properties of $\sigma_{(w, w')}$ and σ_i as described in Lemma 5.3.5 also hold true as identities between endomorphisms of H_0^K.

We come to the main result of this subsection. It follows from the previous observations in the same way as the corresponding result for GL_N (Theorem 2.3.3).

Theorem 5.3.7. There is a unique group homomorphism

$$ \tau : \mathbb{W} \rightarrow \text{GL}_C(H_0^K) $$

satisfying

$$ \tau(w, w')(f) = d_w(x)^{-1} d_{w'}(y)^{-1} \cdot \sigma_{(w, w')}(f), \\
\tau(i)(f) = \sigma_i(f) $$

(5.3.8)

for $w, w' \in W$ and $f \in H_0^K$. It satisfies $\tau(w)(g \cdot f) = wg \cdot \tau(w)(f)$ for $g \in \mathbb{K}$, $f \in H_0^K$ and $w \in \mathbb{W}$.

Remark 5.3.8. Fix $\zeta \in T$. Let $w \in W$ and recall that we write $\tau^M_\zeta(w)$ for $\tau_\zeta(w) \in C(T) \#_q W$ viewed as endomorphism of $M(T) \otimes M_\zeta$ as explained in subsection 5.3.2. Then for $w \in W$, $f \in M(T)$ and $h \in H_0 \simeq M_\zeta$ (see (5.3.4)), we have

$$ \tau^M_\zeta(w)(f \otimes h) = \tau(w, e)(f(x) \otimes h)(\cdot, \zeta) $$

as H_0-valued meromorphic functions on T.

We are in position to define the \mathbb{W}-cocycle with values in $\text{GL}_K(H_0^K)$, which is a \mathbb{W}-group by the action of \mathbb{W} on the first tensor leg of $\mathbb{K} \otimes \text{GL}(H_0) \simeq \text{GL}_K(H_0^K)$ (cf. Subsection 5.3.2). This \mathbb{W}-action on $\text{GL}_K(H_0^K)$ is denoted without mentioning the representation map (just as we do for the \mathbb{W}-action on \mathbb{K}, cf. (5.3.6)).
Corollary 5.3.9. The map \(\mapsto C_w := \tau(w)w^{-1} \) is a cocycle of \(\mathbb{W} \) with values in the \(\mathbb{W} \)-group \(\text{GL}_K(H_0^K) \). In other words, \(C_w \in \text{GL}_K(H_0^K) \) and
\[
C_{ww'} = C_w w C_{w'} w^{-1}
\]
for all \(w, w' \in \mathbb{W} \).

In the same way as the cocycle \(F_w (w \in W) \) in subsection 5.3.2 gave rise to the quantum KZ equations, the cocycle \(C_w (w \in W) \) gives rise to a holonomic system of \(q \)-difference equations for meromorphic functions on \(T \times T \) with values in \(H_0 \). By construction we have
\[
(\tau(w)f)(t, \gamma) = C_w(t, \gamma)f(w^{-1}(t, \gamma)) \tag{5.3.9}
\]
for \(w \in \mathbb{W} \) and \(f \in H_0^K \). For the sake of simplicity, write \(C_{(\lambda, \mu)} := C(t(\lambda), t(\mu)) \) for \(\lambda, \mu \in \mathbb{P}_\vee \).

Definition 5.3.10. We call the \(q \)-difference equations
\[
C_{(\lambda, \mu)}(t, \gamma)f(q^{-\lambda}t, q^{\mu}\gamma) = f(t, \gamma) \quad \forall \lambda, \mu \in \mathbb{P}_\vee, \tag{5.3.10}
\]
the bispectral quantum KZ (BqKZ) equations. We write \(\text{SOL} \) for the set of solutions \(f \in H_0^K \) of (5.3.10).

Let \(\mathbb{F} \subset \mathbb{K} \) denote the subfield consisting of \(f \in \mathbb{K} \) satisfying \((t(\lambda), t(\mu))f = f \) for all \(\lambda, \mu \in \mathbb{P}_\vee \). Furthermore let \(\mathbb{W}_0 \) denote the subgroup \(\mathbb{Z}_2 \ltimes (W_0 \times W_0) \) of \(\mathbb{W} \).

Corollary 5.3.11. (i) The BqKZ equations (5.3.10) form a holonomic system of \(q \)-difference equations, that is
\[
C_{(\lambda, \mu)}(t, \gamma)C_{(\nu, \xi)}(q^{-\lambda}t, q^{\mu}\gamma) = C_{(\nu, \xi)}(t, \gamma)C_{(\lambda, \mu)}(q^{-\nu}t, q^{\xi}\gamma) \quad \forall \lambda, \mu, \nu, \xi \in \mathbb{P}_\vee, \tag{5.3.11}
\]
for \(\lambda, \mu, \nu, \xi \in \mathbb{P}_\vee \), as \(\text{End}(H_0) \)-valued meromorphic functions in \((t, \gamma) \in T \times T \).

(ii) The solution space \(\text{SOL} \) of BqKZ is a \(\tau(\mathbb{W}_0) \)-invariant \(\mathbb{F} \)-subspace of \(H_0^K \).

Now fix \(\zeta \in T \). By construction, BqKZ (in some sense) contains Cherednik’s qKZ equation associated to the principal series module \(M_\zeta \). Concretely, in view of Remark 5.3.8, Cherednik’s quantum KZ equation (5.3.3) for \(M = M_\zeta \) is just
\[
C_{(\lambda, \zeta)}(t, \zeta)f(q^{-\lambda}t) = f(t), \quad \forall \lambda \in \mathbb{P}_\vee, \tag{5.3.12}
\]
for \(H_0 \)-valued meromorphic functions \(f \) on \(T \). In analogy with BqKZ, we write \(\text{SOL}_\zeta \subset H_0^{M(T)} \) for the set of solutions of (5.3.12). Regarding \(H_0^{M(T)} \) as a vector space over \(\mathcal{E}(T) := \{ f \in M(T) \mid t(\lambda)f = f, \forall \lambda \in \mathbb{P}_\vee \} \), \(\text{SOL}_\zeta \) is a \(\tau_\zeta^M(W_0) \)-invariant subspace of \(H_0^{M(T)} \).
§5.4. Generic principal series representation and the cocycle values

5.4 Generic principal series representation and the cocycle values

In this section we investigate the principal series representation \(M_\zeta \) of \(H \), when the (fixed) central character \(\zeta \in T \) is regarded as a meromorphic variable. This allows us to give explicit expressions for the cocycle values of the simple reflections.

5.4.1 Generic principal series representation

Recall that \(M_\zeta = \text{Ind}^H_{C_Y[T]}(\chi_\zeta) \). Now we view \(C_Y[T] \) as a left \(C_Y[T] \)-module by left multiplication and we put \(M := \text{Ind}^H_{C_Y[T]}(C_Y[T]) \). We regard \(M \) as a left \(H \)-module over \(C[T] \cong C[\{1\} \times T] \subset L \) via

\[
f \cdot (h \otimes_{C_Y[T]} g(Y)) = h \otimes_{C_Y[T]} (fg)(Y) \quad f, g \in C[T], \ h \in H.
\]

Note that \(M \cong C[\{1\} \times T] \otimes H_0 = H_0^{C[\{1\} \times T]} \) as modules over \(C[\{1\} \times T] \), hence the representation map can be regarded as an algebra homomorphism

\[
\eta: H \to \text{End}_{C[\{1\} \times T]}(H_0^{C[\{1\} \times T]}).
\]

Also note that \(\text{End}_{C[\{1\} \times T]}(H_0^{C[\{1\} \times T]}) \cong C[\{1\} \times T] \otimes \text{End}(H_0) \), so we can and sometimes will regard \(\eta(h) \ (h \in H) \) as an \(\text{End}(H_0) \)-valued regular function on \(T \) denoted by \(\gamma \mapsto \eta(h)(\gamma) \). By extending the ground ring \(C[\{1\} \times T] \) to \(\mathbb{K} \) we can extend \(\eta \) to an algebra homomorphism

\[
\eta: H \to \text{End}_{\mathbb{K}}(H_0^{\mathbb{K}}).
\]

Similarly, \(\eta(h) \) can be viewed as an \(\text{End}(H_0) \)-valued function in \((t, \gamma) \in T \times T\). As such it is constant in \(t \), and in case \(h \in H_0 \) it is also constant in \(\gamma \).

Before being more specific about \(\eta \), we need the following concept (cf. [42, §2.6]).

A subset \(X \) of \(P^\vee \) is said to be saturated if for each \(\lambda \in X \) and \(\alpha \in R \) we have \(\lambda - r_\alpha^\vee \in X \) for all \(0 \leq r \leq \langle \lambda, \alpha \rangle \). For \(\lambda \in P^\vee \), let \(\Sigma(\lambda) \) denote the smallest saturated subset of \(P^\vee \) that contains \(\lambda \).

Lemma 5.4.1. For \(w \in W_0 \) and \(1 \leq i \leq N \) we have

\[
\eta(T_i)T_w = \begin{cases} T_{s_i w} & \text{if } \ell(s_i w) = \ell(w) + 1, \\ (k_i - k_i^{-1})T_w + T_{s_i w} & \text{if } \ell(s_i w) = \ell(w) - 1, \end{cases}
\]

and for \(p \in C[T] \) we have

\[
\eta(p(Y))(\gamma)T_\epsilon = p(\gamma)T_\epsilon
\]

as regular \(H_0 \)-valued functions in \(\gamma \). Moreover, for \(\lambda \in P^\vee \) and \(w \in W_0 \), we have

\[
\eta(Y^\lambda)(\gamma)T_w = \sum_{u \leq w} p_{u,w}^\lambda(\gamma)T_u,
\]

where \(p_{u,w}^\lambda(\gamma) \in \text{span}_{C}\{\gamma^\mu\}_{\mu \in \Sigma(\lambda_+) \} \) and \(p_{u,w}^\lambda(\gamma) = \gamma^{u-1}(\lambda) \).
Proof. Only (5.4.3) requires proof. We use induction with respect to the length \(\ell(w) \) of \(w \), the case \(\ell(w) = 0 \) being (5.4.2). Next, consider \(T_{s,w} \) with \(\ell(s,w) = \ell(w) + 1 \). Using (5.2.5), we find

\[
\eta(Y^\lambda)(\gamma)T_{s,w} = \eta(Y^{\lambda T_i})(\gamma)T_w
\]

\[
= \eta(T_iY^{s_i}(\lambda))(\gamma)T_w + (k_i - k_i^{-1})\eta\left(\frac{Y^\lambda - Y^{s_i(\lambda)}}{1 - Y^{-\alpha_i^\gamma}}\right)(\gamma)T_w.
\]

Considering the first term we use the induction hypothesis to find

\[
\eta(T_iY^{s_i}(\lambda))(\gamma)T_w = T_i \sum_{u \leq s_i w} p_{u,i,w}^{s_i(\lambda)}(\gamma)T_u = \sum_{u \leq s_i w} \tilde{p}_{u,i,w}^{s_i(\lambda)}(\gamma)T_iT_u,
\]

with \(p_{u,i,w}^{s_i(\lambda)}(\gamma) \in \text{span}_C \{ Y^\mu \}_{\mu \in \Sigma(s_i(\lambda)_+)} \) and \(p_{u,i,w}^{s_i(\lambda)}(\gamma) = Y^{(s_i(\lambda) - 1)} \). Since \(\Sigma(s_i(\lambda)_+) = \Sigma(\lambda_+) \) and \(w^{-1}(s_i(\lambda)) = (s_i w)^{-1}(\lambda) \), we can rewrite this as

\[
\eta(T_iY^{s_i}(\lambda))(\gamma)T_w = \sum_{u \leq s_i w} p_{u,i,w}^{\lambda}(\gamma)T_u,
\]

with \(p_{u,i,w}^{\lambda}(\gamma) \in \text{span}_C \{ Y^\mu \}_{\mu \in \Sigma(\lambda_+)} \) and \(p_{u,i,w}^{\lambda}(\gamma) = Y^{(s_i(w) - 1)} \).

We deal with the second term, the expansion of which will consist of terms only involving \(T_u \) with \(u < s_i w \). Set \(n := (\lambda, \alpha_i^\gamma) \). Note that

\[
\frac{Y^\lambda - Y^{s_i(\lambda)}}{1 - Y^{-\alpha_i^\gamma}} = \begin{cases}
Y^\lambda + Y^{\lambda-\alpha_i^\gamma} + \ldots + Y^{\lambda-(n-1)\alpha_i^\gamma}, & n > 0, \\
0, & n = 0, \\
-Y^{\lambda-n\alpha_i^\gamma} - Y^{\lambda-(n+1)\alpha_i^\gamma} - \ldots - Y^{\lambda+\alpha_i^\gamma}, & n < 0,
\end{cases}
\]

which is in \(\text{span}_C \{ Y^\mu \}_{\mu \in \Sigma(\lambda_+)} \) in all three cases. We can apply the induction hypothesis to each of the \(Y^\mu \) \((\mu \in \Sigma(\lambda_+))\) to obtain

\[
\eta(Y^\mu)(\gamma)T_w = \sum_{u \leq s_i w} \tilde{p}_{u,i,w}^\mu(\gamma)T_u,
\]

with coefficients \(\tilde{p}_{u,i,w}^\mu(\gamma) \in \text{span}_C \{ Y^\mu \}_{\mu \in \Sigma(\lambda_+)} \). Since for each \(\mu \in \Sigma(\lambda_+) \) we have \(\mu_+ \in \Sigma(\lambda_+) \), and then by (42, (2.6.3)) \(\Sigma(\mu_+) \subset \Sigma(\lambda_+) \), we obtain the desired expansion. \(\square \)

We end this subsection by introducing a \(\mathbb{K} \)-basis of \(H^*_0(\tilde{S}_w) \) consisting of common eigenfunctions of \(\eta(\mathbb{C}_Y[T]) \). Note that \(\tilde{S}_w^* \in H \) for \(w \in W_0 \). Define

\[
\xi_w := \eta(\tilde{S}_w^*) T_e, \quad w \in W_0.
\]

Just as we view \(\eta(h) \) as \(\text{End}(H_0) \)-valued function in different ways, we will regard \(\xi_w \) both as regular \(H_0 \)-valued function in \(\gamma \in T \) and as a meromorphic \(H_0 \)-valued function in \((t, \gamma) \in T \times T \) (constant in \(t \)).
Lemma 5.4.2. \(\{ \xi_w \} \in W_0 \) is a \(K \)-basis of \(H^K_0 \) consisting of common eigenfunctions for the \(\eta \)-action of \(C[Y] \) on \(H^K_0 \). For \(p \in \mathbb{C}[T] \) and \(w \in W_0 \), we have
\[
\eta(p(Y)) (\gamma) \xi_w (\gamma) = (w^{-1} p)(\gamma) \xi_w (\gamma)
\]
as \(H_0 \)-valued regular functions in \(\gamma \in T \).

5.4.2 The cocycle values

Write
\[
R_i(z; \gamma) = c(z; k_i)^{-1}(\eta(T_i)(\gamma) - b(z; k_i)), \quad 0 \leq i \leq N,
\]
viewed as a \(\text{End}(H_0) \)-valued function which depends rationally on \(z \) and rationally on \(\gamma \in T \) for \(i = 0 \) and is otherwise \(\gamma \)-independent.

Lemma 5.4.3. (i) We have
\[
C_{(s, e)}(t, \gamma) = R_i(t^{\omega_i}; \gamma), \quad 0 \leq i \leq N,
\]
\[
C_{(w, e)}(t, \gamma) = \eta(w)(\gamma), \quad \omega \in \Omega,
\]
and \(C_i \) is the \(K \)-linear extension of the anti-algebra involution of \(H_0 \) determined by
\[
C_i(T_w) = T^{w^{-1}}, \quad w \in W_0.
\]

(ii) \(R_i(z; \gamma) R_i(z^{-1}; \gamma) = \text{id} \) for \(0 \leq i \leq N \).

Remark 5.4.4. Note that
\[
C_{(e, w)}(t, \gamma) = C_i C_{(w, e)}(\gamma^{-1}, t^{-1}) C_i, \quad w \in W,
\]
so part (i) of the previous lemma uniquely determines \(C_w \) for all \(w \in W \).

5.5 Solutions of the bispectral quantum KZ equations

The main result of this section is the construction of a particular meromorphic solution \(\Phi \) of BqKZ called the basic asymptotically free solution. The idea is as follows. We first look for \(v \in H_0 \) and \(G \in \mathbb{K} \) such that \(Gv \) will be the leading term of a solution of BqKZ in some asymptotic region. These are obtained by looking for a solution of an asymptotic version of BqKZ, that is, BqKZ in which the cocycle matrices are replaced by their limit values in the asymptotic region.

Next, we gauge BqKZ by \(G \) and look for a power series solution \(\Psi \) of the gauged BqKZ equation converging deep inside the asymptotic region and which has constant term \(v \). By meromorphic continuation \(\Psi \) can be extended to a meromorphic solution of the gauged BqKZ equation yielding the desired solution \(\Phi = G\Psi \in H^K_0 \) of BqKZ. Apart from the construction itself we will derive various properties of \(\Phi \) and give an explicit \(F \)-basis of SOL, but we start with the computation of the leading term.
5.5.1 The leading term

In order to find these v and G, we first need to compute the asymptotic leading terms of the cocycle matrices $C_{(\lambda,\gamma)}(t,\gamma)$ ($\lambda \in \mathcal{P}^\vee$) as $|t^{-\alpha_i^\vee}| \to 0$ ($1 \leq i \leq N$).

We define the subring $\mathcal{A} := \mathbb{C}[x^{-\alpha_1^\vee}, \ldots, x^{-\alpha_N^\vee}]$ of $\mathbb{C}[T \times \{1\}] = \mathbb{C}[x_1^{\pm 1}, \ldots, x_N^{\pm 1}] \subset \mathbb{C}[T \times T]$. Let $Q(\mathcal{A})$ denote its quotient field and write $Q_0(\mathcal{A})$ for the subring of $Q(\mathcal{A})$ consisting of rational functions which are regular at the point $x^{-\alpha_i^\vee} = 0$ ($1 \leq i \leq N$). We consider $Q_0(\mathcal{A}) \otimes \mathbb{C}[T]$ as subring of $\mathbb{C}(T \times T)$ in the natural way.

Lemma 5.5.1. Let $\lambda \in \mathcal{P}^\vee$. We have

$$C_{(\lambda,\gamma)} \in (Q_0(\mathcal{A}) \otimes \mathbb{C}[T]) \otimes \text{End}(H_0). \quad (5.5.1)$$

If we write $C_{(\lambda,\gamma)}^{(0)} = C_{(\lambda,\gamma)}|_{x^{-\alpha_i^\vee} = 0, \ldots, x^{-\alpha_N^\vee} = 0} \in \mathbb{C}[T] \otimes \text{End}(H_0)$, we have

$$C_{(\lambda,\gamma)}^{(0)} = \delta_{\alpha_i^\vee}(T_{w_0} Y^{\omega(\lambda)} T_{w_0}^{-1}). \quad (5.5.2)$$

Proof. First we consider $\lambda \in \mathcal{P}^\vee_+$. Suppose we have a reduced expression $t(\lambda) = s_{i_1} \cdots s_{i_t}, \omega$ ($0 \leq i_1, \ldots, i_t \leq N$, $\omega \in \Omega$). Then

$$C_{(\lambda,\gamma)}(t,\gamma) = R_{i_1}(t^\alpha_{i_1}; \gamma) R_{i_2}(t^\alpha_{i_1_1}a_{i_1_2}; \gamma) \cdots R_{i_t}(t^\alpha_{i_1_\cdots i_{t-1}}a_{i_t}; \gamma) \eta(\omega)(\gamma). \quad (5.5.3)$$

It follows that $C_{(\lambda,\gamma)} \in (Q(\mathcal{A}) \otimes \mathbb{C}[T]) \otimes \text{End}(H_0)$. Expanding $C_{(\lambda,\gamma)}$ along the reduced expression $t(-\lambda) = \omega^{-1}s_{i_t} \cdots s_{i_1}$, gives an expression similar to (5.5.3), from which we conclude that also $C_{(\lambda,\gamma)} \in (Q(\mathcal{A}) \otimes \mathbb{C}[T]) \otimes \text{End}(H_0)$. Since the $R_i(z;\gamma)$ are analytic at $z = 0$ and $z = \infty$, we have $C_{(\lambda,\gamma)} \in (Q_0(\mathcal{A}) \otimes \mathbb{C}[T]) \otimes \text{End}(H_0)$.

Writing an arbitrary weight as the difference of two dominant weights and using the cocycle property we conclude (5.5.1) for any $\lambda \in \mathcal{P}^\vee$.

To prove (5.5.2) we will first compute the limit of $C_{(\lambda,\gamma)}$ as $|t^\alpha_i| \to 0$ for $1 \leq i \leq N$ and then use this together with the cocycle property to find $C_{(\lambda,\gamma)}^{(0)}(\gamma)$, which is the limit as $|t^{-\alpha_i^\vee}| \to 0$ ($1 \leq i \leq N$). Similarly as in the proof of (5.5.1), it suffices to consider only dominant weights. Assume we have $\lambda \in \mathcal{P}^\vee_+$ a reduced expression for $t(\lambda)$ as above and put $u = s_{i_1} \cdots s_{i_t}$. By formulas (2.2.9) and (2.2.5) from [42] we have $\{a_{i_1}, s_{i_1}(a_{i_2}), \ldots, s_{i_1} \cdots s_{i_{t-1}}(a_{i_t})\} = T(u^{-1}) = T(\omega^{-1}u^{-1}) = T(t(-\lambda))$. Because $\lambda \in \mathcal{P}^\vee_+$ we have

$$S(t(-\lambda)) = \{\alpha + mc \mid \alpha \in R_-, 1 \leq m \leq -\langle \lambda, \alpha \rangle\}$$

(cf. [42, §2.4]), and thus, since $w(a^\vee) = (wa)^\vee$ ($a \in S$, $w \in W$), we have $|t^b| \to \infty$ ($b \in S(t(-\lambda))$) as $|t^\alpha_i| \to 0$ ($1 \leq i \leq N$). Observe that $\lim_{z \to \infty} R_i(z; \gamma) = k_{i_1}^{-1} \eta(T_i)(\gamma)$ for $0 \leq i \leq N$. It follows that

$$C_{(\lambda,\gamma)}(t,\gamma) \to k_{i_1}^{-1} \cdots k_{i_t}^{-1} \eta(Y^\lambda)(\gamma) = k(t(\lambda))^{-1} \eta(Y^\lambda)(\gamma)$$

as $|t^\alpha_i| \to 0$ for all $1 \leq i \leq N$. More generally, we conclude that

$$C_{(\lambda,\gamma)}(t,\gamma) \to \delta_{\alpha_i^\vee} \eta(Y^\lambda)(\gamma), \quad \lambda \in \mathcal{P}^\vee. \quad (5.5.4)$$
as $|t^{\alpha_i}| \to 0$ for all $1 \leq i \leq N$. In order to find $C_{(\lambda, e)}^{(0)}$ we use the cocycle property to write

$$C_{(\lambda, e)}(t, \gamma) = C_{(w_0, e)}(t, \gamma)C_{(w_0(\lambda), e)}(w_0 t, \gamma)C_{(w_0, e)}(q^{-w_0(\lambda)} w_0 t, \gamma)$$

and consider the limit as $|t^{-\alpha_i^\vee}| \to 0$ for $1 \leq i \leq N$. Note that $C_{(w_0, e)}(t, \gamma) \to k(u_0)^{-1} \eta(T_{w_0})$ as $|t^{-\alpha_i^\vee}| \to 0$ for $1 \leq i \leq N$. Hence, using (5.5.4),

$$C_{(\lambda, e)}^{(0)} = \delta^\perp_{\alpha_i(w_0)} \eta(T_{w_0} Y^{w_0(\lambda)} T^{-1}_{w_0}) = \delta^\perp_{\lambda}(T_{w_0} Y^{w_0(\lambda)} T^{-1}_{w_0}),$$

where the last equality follows from (5.2.3).

The previous lemma implies that the asymptotic form of the quantum KZ equations

$$C_{(\lambda, e)}(t, \gamma) f(q^{-\lambda} t, \gamma) = f(t, \gamma), \quad \lambda \in P^\vee$$

in the asymptotic region $|t^{\alpha_i^\vee}| \gg 0$ ($1 \leq i \leq N$) is

$$\delta^\perp_{\lambda}(T_{w_0} Y^{w_0(\lambda)} T^{-1}_{w_0})(\gamma) f(q^{-\lambda} t, \gamma) = f(t, \gamma), \quad \lambda \in P^\vee. \quad (5.5.5)$$

Let $\theta_q \in O(T)$ denote the theta function associated to the root system R (see [37]), defined by

$$\theta_q(t) := \sum_{\lambda \in P^\vee} q^{\frac{1}{2}(\lambda, \lambda)} t^\lambda, \quad (5.5.6)$$

for $t \in T$. Note that θ_q is invariant under the action of W_0 on $O(T)$. Furthermore, it satisfies $\theta_q(t^{-1}) = \theta_q(t)$ and

$$\theta_q(q^\mu t) = q^{\frac{1}{2}(\mu, \mu)} t^{-\mu} \theta_q(t), \quad (5.5.7)$$

for all $\mu \in P^\vee$.

Let $G \in \Bbbk$ be given by

$$G(t, \gamma) := \frac{\theta_q(t w_0(\gamma)^{-1})}{\theta_q(\delta^\perp_{\lambda}(t) \theta_q(\delta^\perp_{\lambda} w_0(\gamma)^{-1})).} \quad (5.5.8)$$

Proposition 5.5.2. We have:

(i) $\iota(G) = G$.

(ii) $G(t, \gamma)$ satisfies the q-difference equations

$$G(q^{-\lambda} t, q^\mu) = \delta^\perp_{\lambda-\mu} q^{-w_0(\lambda, \mu)} t^{w_0(\mu)} \gamma^{-w_0(\lambda)} G(t, \gamma) \quad (5.5.9)$$

for $\lambda, \mu \in P^\vee$.

(iii) $f^{(0)}(t, \gamma) := G(t, \gamma) T_{w_0}$ is a solution of (5.5.5) and $\tau(t) f^{(0)} = f^{(0)}$.

Proof. By construction we have (i). From (5.5.7) it follows that G satisfies $G(q^{-\lambda} t, \gamma) = \delta^\perp_{\lambda-\mu} \gamma^{-w_0(\lambda)} G(t, \gamma)$ for all $\lambda \in P^\vee$. In view of (i) this suffices to prove (ii). (iii) easily follows from (i) and (ii).
5.5.2 The basic asymptotically free solution Φ

As indicated in the introduction of this section we are now going to gauge $B_{q}KZ$ by G. We obtain the gauged cocycle matrices

\[
D_{(\lambda,\mu)}(t,\gamma) = G(t,\gamma)^{-1}C_{(\lambda,\mu)}(t,\gamma)G(q^{-\lambda}t, q^\mu \gamma)
\]

\[
= \delta_2^{-\lambda-\mu} q^{-\langle \mu, w_0(\lambda) \rangle} q^{-\langle \nu, w_0(\mu) \rangle} C_{(\lambda,\mu)}(t,\gamma),
\]

for $\lambda, \mu \in P^\vee$. It is clear that for $f \in H_0^\times$ we have $f \in \text{SOL}$ if and only if $g := G^{-1}f \in H_0^\times$ satisfies the holonomic system of q-difference equations

\[
D_{(\lambda,\mu)}(t,\gamma)g(q^{-\lambda}t, q^\mu \gamma) = g(t,\gamma), \quad \lambda, \mu \in P^\vee
\]

as H_0-valued meromorphic functions in $(t,\gamma) \in T \times T$.

We write B for the analog of A corresponding to the second copy of T in $T \times T$. That is, B is the subring $B := \mathbb{C}[y_1^{\pm 1}, \ldots, y_N^{\pm 1}]$ of $\mathbb{C}[\{1\} \times T] = \mathbb{C}[y_1^{\pm 1}, \ldots, y_N^{\pm 1}]$. Similarly, we write $Q(B)$ for its quotient field and $Q_0(B)$ for the subring of $Q(B)$ consisting of rational functions which are regular at the point $y^\alpha = 0$ ($1 \leq j \leq N$).

We consider $Q_0(A) \otimes B$ and $A \otimes Q_0(B)$ as subrings of $\mathbb{C}(T \times T)$ in the natural way.

In the proof of the lemma below, we will need a partial order \succeq on P^\vee. First recall the dominance partial order \succeq on P^\vee_+, which is defined by

\[
\lambda \succeq \mu \iff \lambda - \mu \in Q^+_1,
\]

for $\lambda, \mu \in P^\vee_+$. We can extend this to a partial order on P^\vee as follows. For $\lambda \in P^\vee$ write λ_+ for the unique dominant coweight in the orbit $W_0\lambda$ and let τ_λ be the shortest $w \in W_0$ such that $w(\lambda_+) = \lambda$. For $\lambda, \mu \in P^\vee$ we say that $\lambda \succeq \mu$ if either

(i) $\lambda_+ > \mu_+$, or

(ii) $\lambda = \mu_+$ and $\tau_\lambda \succeq \tau_\mu$ (in the Bruhat order).

Note that with respect to this order, the anti-dominant coweight $w_0(\lambda_+)$ is the largest element in the orbit $W_0\lambda$. More details can be found in [42, §2.7].

The following lemma describes the asymptotic behavior of the gauged cocycle matrices. It allows us to put them in the context of the general theory of solutions of q-difference equations as described in the appendix and is therefore a key ingredient in the construction of Φ.

Lemma 5.5.3. Set $A_i = D(e^\gamma e)$ and $B_i = D(e^\gamma e)$ for $1 \leq i \leq N$.

(i) $A_i \in (Q_0(A) \otimes B) \otimes \text{End}(H_0)$ and $B_i \in (A \otimes Q_0(B)) \otimes \text{End}(H_0)$.

(ii) Write $A_i(0,0) \in \text{End}(H_0)$ and $B_i(0,0) \in \text{End}(H_0)$ for the value of A_i and B_i at $x^{-\alpha^\vee} = 0 = y_\gamma^\alpha$ ($1 \leq i \leq N$). For $w \in W_0$ we have

\[
A_i(0,0)(T_{w_0}T_w) = \begin{cases} 0 & \text{if } w^{-1}w_0(\varpi_i^\vee) \neq w_0(\varpi_i^\vee), \\ T_{w_0}T_w & \text{if } w^{-1}w_0(\varpi_i^\vee) = w_0(\varpi_i^\vee) \end{cases}
\]

and

\[
B_i(0,0)(T_{w_0}T_w) = \begin{cases} 0 & \text{if } w(\varpi_i^\vee) \neq \varpi_i^\vee, \\ T_{w_0}T_w & \text{if } w(\varpi_i^\vee) = \varpi_i^\vee. \end{cases}
\]
Then, in view of the cocycle condition, Lemma 5.4.3 and formula (5.4.5), because of (5.5.1) we only need to worry about the γ-dependence of $A_i(t, \gamma)$.

Let $t(\varpi_i^\vee) = \omega s_{i_1} \cdots s_{i_r} \ (\omega \in \Omega, 0 \leq i_1, \ldots, i_r \leq N)$ be a reduced expression. Then, in view of the cocycle condition, Lemma 5.4.3 and formula (5.4.5),

$$C(\varpi_i^\vee, c)(t, \gamma) = \eta(\omega)(\gamma) C(s_{i_1} \cdots s_{i_r}, c)(\omega^{-1} t, \gamma) = \sum_{w \leq t(\varpi_i^\vee)} a_w(t) \eta(T_w)(\gamma)$$

for certain $a_w \in Q_0(A)$. Now consider such $w \in W$ with $w \leq t(\varpi_i^\vee)$. We have a unique decomposition $w = t(\lambda) \tilde{w}$, with $\lambda = w(0) \in P^\vee$ and $\tilde{w} \in W_0$. Then

$$t(\lambda) = t(\varpi(\lambda_+)) = \varpi(\lambda_+) \varpi^{-1},$$

hence $w = \varpi(\lambda_+) \varpi^{-1} \tilde{w}$. Multiple use of [42, (3.1.7)] yields $T_w = h T(t(\lambda_+) h' = h Y_{\lambda} h'$ for some $h, h' \in H_0$, hence

$$\eta(T_w)(\gamma) = \eta(h) \eta(Y_{\lambda})(\gamma) \eta(h').$$

It remains to show that $\gamma^{-w_0(\varpi_i^\vee)} \eta(Y_{\lambda})(\gamma) \in B \otimes \text{End}(H_0)$. We can use (5.4.3) to write

$$\eta(Y_{\lambda})(\gamma) T_w = \sum_{u \leq w} p^\lambda_{u, w}(\gamma) T_u$$

with $p^\lambda_{u, w}(\gamma) \in \text{span}_C \{ \gamma^\mu \}_{\mu \in \Sigma(\lambda_+)}$ and $p^\lambda_{w, w}(\gamma) = \gamma^{w^{-1}(\lambda_+)}$. Thus we need to show that

$$\gamma^{-w_0(\varpi_i^\vee) + \mu} \in B \quad \forall \mu \in \Sigma(\lambda_+),$$

i.e., that $-w_0(\varpi_i^\vee) + \mu \in Q_+^\vee$ for all $\mu \in \Sigma(\lambda_+)$. Since $\Sigma(\lambda_+)$ is W_0-invariant and $w_0(Q_+^\vee) = -Q_+^\vee$, this is equivalent to showing that $-\varpi_i^\vee + \mu \in -Q_+^\vee$ for all $\mu \in \Sigma(\lambda_+)$, or

$$\varpi_i^\vee - \mu \in Q_+^\vee \quad \forall \mu \in \Sigma(\lambda_+).$$

Now the fact that $w \leq t(\varpi_i^\vee)$ in the Bruhat order on W, implies that $\lambda \preceq \varpi_i^\vee$ (cf. [42, (2.7.11)]), and hence either $\lambda_+ = \varpi_i^\vee$ or $\lambda_+ < \varpi_i^\vee$. Fix $\mu \in \Sigma(\lambda_+)$. In the first case, if $\lambda_+ = \varpi_i^\vee$, we have $\mu \in \varpi_i^\vee - Q_+^\vee$, since

$$\Sigma(\varpi_i^\vee) = \bigcap_{v \in W_0} v(\varpi_i^\vee - Q_+^\vee)$$

by [42, (2.6.2)]. Hence $\varpi_i^\vee - \mu \in Q_+^\vee$. In the second case, if $\lambda_+ < \varpi_i^\vee$, then $\Sigma(\lambda_+) \subset \Sigma(\varpi_i^\vee)$ by [42, (2.6.3)], and again $\mu \in \varpi_i^\vee - Q_+^\vee$. This concludes the proof for A_i. For $B_{i, t}$ use that $C(\varpi_i^\vee, c)(t, \gamma) = \tilde{C}(\varpi_i^\vee, c)(\gamma^{-1}, t^{-1}) C_i$.

\[\square\]
Part (ii) of the previous lemma asserts that the endomorphisms $A_i^{(0,0)}$ and $B_i^{(0,0)}$ are semisimple. Similarly as for GL_N, the main theorem follows from the lemma together with the general theory of solutions of q-difference equations as described in the appendix (in particular Theorem A.6).

For $\epsilon > 0$, put $B_\epsilon := \{ t \in T \mid |t^{\alpha_i^\epsilon}| < \epsilon \text{ for } 1 \leq i \leq N \}$ and $B_\epsilon^{-1} := \{ t \in T \mid t^{-1} \in B_\epsilon \}$.

Theorem 5.5.4. There exists a unique solution $\Psi \in H_0^\mathbb{C}$ of the gauged equations (5.5.11) such that, for some $\epsilon > 0$,

(i) $\Psi(t, \gamma)$ admits an H_0-valued power series expansion

$$\Psi(t, \gamma) = \sum_{\alpha, \beta \in \mathbb{Q}_+^\mathbb{C}} K_{\alpha, \beta} t^{-\alpha} \gamma^\beta, \quad (K_{\alpha, \beta} \in H_0) \quad (5.5.14)$$

for $(t, \gamma) \in B_\epsilon^{-1} \times B_\epsilon$, which is normally convergent on compacta of $B_\epsilon^{-1} \times B_\epsilon$. In particular, $\Psi(t, \gamma)$ is analytic at $(t, \gamma) \in B_\epsilon^{-1} \times B_\epsilon$;

(ii) $K_{0,0} = T_{w_0}$.

Proof. We only remark that in order to match the present situation with the one considered in the appendix, one should take in the appendix: $M = 2N$, $A_i = A_i^{(0,0)}$, $A_{N+i} = B_i^{(0,0)}$ and $q_i = q^{2/\|\alpha_i\|^2}$ for $1 \leq i \leq N$ and variables $z_i = x^{-\alpha_i}$ and $z_{N+i} = y^{\alpha_i}$ for $1 \leq i, j \leq N$.

Definition 5.5.5. We call $\Phi := G\Psi \in \text{SOL}$ the basic asymptotically free solution of $Bq\text{KZ}$.

The $\tau(t)$-invariance of SOL, the ν-invariance of G, and the uniqueness part of Theorem 5.5.4 imply that Φ enjoys the following duality property.

Theorem 5.5.6 (Duality). The basic asymptotically free solution Φ of $Bq\text{KZ}$ is self-dual, in the sense that

$$\tau(t) \Phi = \Phi.$$

5.5.3 Singularities

In this subsection we have a closer look at the analytic properties of Ψ. Write $q_\alpha := q^{2/\|\alpha\|^2}$ for $\alpha \in R$ and set

$$S_+ := \{ t \in T \mid t^{\alpha} \in k_\alpha^{-2} q_\alpha^{-N} \text{ for some } \alpha \in R_+ \}.$$

Proposition 5.5.7. The H_0-valued meromorphic function Ψ is analytic on $T \setminus S_+^{-1} \times T \setminus S_+$.

Proof. Let $\lambda, \mu \in P_+^\mathbb{C}$. By (5.5.10) and the cocycle property, $D_{(\lambda, \mu)}(t, \gamma)$ is regular at $(t, \gamma) = (s, \zeta)$ if $C_{(\lambda, \gamma)}(q^{-\nu} t, q^\gamma)$ is regular at $(t, \gamma) = (s, \zeta)$ for all $1 \leq i, j \leq N$ and $\xi, \nu \in P_+^\mathbb{C}$. This in turn holds, again by virtue of the cocycle property together with (5.5.1), if $C_{(\lambda, \gamma)}(q^{-\nu} t, \gamma)$ is regular at $(t, \gamma) = (s, \zeta)$ for all $\nu \in P_+^\mathbb{C}$ and $1 \leq j \leq N$.

Suppose we have a reduced expression \(t(\varpi^\vee_j) = s_{i_1} \cdots s_{i_r} \omega \) (1 \(\leq \) j \(\leq \) N). Similarly as in the proof of Lemma 5.5.1, we have

\[
C(\varpi^\vee_j, e)(t, \gamma) = R_{i_1}(t^{a_{i_1}}; \gamma) \cdots R_{i_r}(t^{s_{i_1} \cdots s_{i_{r-1}}(a_{i_r})}; \gamma) \eta(\omega)(\gamma),
\]

and

\[
\{a_{i_1}, s_{i_1}(a_{i_2}), \ldots, s_{i_1} \cdots s_{i_{r-1}}(a_{i_r})\} = S(t(-\varpi^\vee_j))
\]

\[
= \{\alpha + mc | \alpha \in R_-, 1 \leq m \leq -\langle \varpi^\vee_j, \alpha \rangle\}
\]

Now \(R_i(z; \gamma) \) has only a simple pole at \(z = k - 2i \), so \(C(\varpi^\vee_j, e)(t, \gamma) \) has possibly poles at \(t^{a_{i_1}} = k - 2i, a \in S(t(-\varpi^\vee_j)) \).

Note that

\[
t^{\alpha_{i_1}} = k_{\alpha}^{-2}, \quad a \in S(t(-\varpi^\vee_j)).
\]

Thus, there are possibly poles at

\[
q_{\alpha}^{m} t^{\alpha_{i_1}} = k_{\alpha}^{-2}, \quad \alpha \in R_-, 1 \leq m \leq -\langle \varpi^\vee_j, \alpha \rangle,
\]

or, equivalently, at

\[
t^{-\alpha_{i_1}} = a_{\alpha}^{-m} k_{\alpha}^{-2}, \quad \alpha \in R_+, 1 \leq m \leq -\langle \varpi^\vee_j, \alpha \rangle.
\]

Consequently, \(C(\varpi^\vee_j, e)(q^{-\nu} t, \gamma) \) is regular at \(t \in T \setminus S_+^{-1} \) for all \(\nu \in P_+^\vee \). By the considerations in the previous paragraph we conclude that \(D(\lambda, \mu)(t, \gamma) \) is regular at \((t, \gamma) \in T \setminus S_+^{-1} \times T \setminus S_+ \) for all \(\lambda, \mu \in P_+^\vee \).

Let \(U \times V \) be a relatively compact open subset of \(T \setminus S_+^{-1} \times T \setminus S_+ \). Choose \(\lambda, \mu \in P_+^\vee \) such that the closure of \(q^{-\lambda} U \times q^{\mu} V \) is contained in \(B_{\epsilon}^{-1} \times B_{\epsilon} \). Then as meromorphic \(H_0 \)-valued function in \((t, \gamma) \in U \times V \), we have

\[
\Psi(t, \gamma) = D(\lambda, \mu)(t, \gamma) \Psi(q^{-\lambda}, q^{\mu}),
\]

and by Theorem 5.5.4(i) the proof is now complete. \(\square \)

Remark 5.5.8. The previous proposition gives, in particular, information about the singularities of the basic asymptotic solution \(\Phi = G\Psi \). Unfortunately, it is not possible to precisely pinpoint the singularities of \(G \). To overcome this issue we could choose a different theta function in the definition of \(G \), namely one for which we have a product formula available. The price we pay is that we have to enlarge the torus \(T \). Let \(\vartheta_q \in M(T) \) denote the renormalized Jacobi theta function

\[
\vartheta_q(z) := \prod_{m \geq 0} (1 - q^m z)(1 - q^{m+1}/z)
\]
for $z \in \mathbb{C}^\times$. It satisfies

$$\partial_q(q^m z) = (-z)^{-m} q^{-\frac{1}{2}m(m-1)} \partial_q(z), \quad m \in \mathbb{Z}. \quad (5.5.17)$$

Let $e \in \mathbb{N}$ be the unique positive integer such that $e(P^\vee, P^\vee) = \mathbb{Z}$. For all $a \in S$, fix $k_{a/6}^{1/6e}$ such that $k_a^{1/6e} = k_{wa(a)}^{1/6e}$ for all $w \in W$. Now put $T' := \text{Hom}_Z(\frac{1}{6e}P^\vee, \hat{G}^\vee)$. The canonical map $T' \to T$ gives rise to an embedding $\mathcal{M}(T \times T) \hookrightarrow \mathcal{M}(T' \times T')$. Now define $\hat{G} \in \mathcal{M}(T' \times T')$ by

$$\hat{G}(t, \gamma) := \prod_{i,j=1}^N \left(\partial^{q^{-1/e}(\kappa_j^{-1/e}T^{\alpha_j}/e)} \partial^{q^{1/e}(\kappa_i^{-1/e}w_0(\alpha_i)/e)} \right) e^{(\pi_1^+, \pi_2^+)} , \quad (5.5.18)$$

where $\kappa_j^{1/e} := \prod_{\alpha \in R_i} k_{\alpha_j}^{(\alpha, \alpha)/e}$. Then \hat{G} satisfies the properties of Proposition 5.5.2.

Corollary 5.5.9. (i) Write $\Psi(t, \gamma) = \sum_{\alpha \in Q^+_\mathbb{Z}} \Gamma_\alpha(\gamma) t^{-\alpha}$ for $(t, \gamma) \in B_{e-1} \times B_e$, with Γ_α ($\alpha \in Q^+_\mathbb{Z}$) the analytic H_{e-1}-valued function $\Gamma_\alpha(\gamma) := \sum_{\beta \in Q^+_\mathbb{Z}} K_{\alpha, \beta} \gamma^\beta$ on B_e. Then each Γ_α can uniquely be extended to a meromorphic H_0-valued function on T, analytic on $T \setminus S_+$, such that for $(t, \gamma) \in B_{e-1} \times T \setminus S_+$,

$$\Psi(t, \gamma) = \sum_{\alpha \in Q^+_\mathbb{Z}} \Gamma_\alpha(\gamma) t^{-\alpha},$$

converging normally on compacta of $B_{e-1} \times T \setminus S_+$.

(ii) The leading term Γ_0 satisfies

$$\Gamma_0(\gamma) = K(\gamma) T_{w_0}, \quad (5.5.19)$$

for some $K \in \mathcal{M}(T)$.

Proof. (i) See Lemma 2.5.7.

(ii) This is also similar as in Chapter 2, but for the convenience of the reader we provide the details. Ψ satisfies $A_j(t, \gamma) \Psi(q^{-\pi_i^+} \gamma, t, \gamma) = \Psi(t, \gamma)$ for $1 \leq i \leq N$. Considering the limit $|t^{-\alpha_j}| \to 0$, we obtain

$$\gamma^{-w_0(\pi_2^+)} \eta(T_{w_0} Y^{w_0(\pi_1^+)} T_{w_0}^{-1})(\gamma) \Gamma_0(\gamma) = \Gamma_0(\gamma)$$

for $1 \leq i \leq N$, and in view of Lemma 5.4.2 this forces

$$\Gamma_0(\gamma) = K(\gamma) \eta(T_{w_0}) \zeta_0(\gamma) = K(\gamma) T_{w_0}$$

for some $K \in \mathcal{M}(T)$.

Remark 5.5.10. In the following section we will give an explicit formula for $K(\gamma)$. It will follow immediately from an explicit formula for the leading term of the so-called Harish-Chandra series solution of a bispectral problem corresponding to BqKZ. In Chapter 2, for $GL_\mathbb{C}$, it was exactly the other way around. There, the latter was found as a consequence of an explicit formula for $K(\gamma)$, which in turn is due to rather explicit expressions for the cocycle matrices of BqKZ.
From Proposition 5.5.7 and its corollary we obtain the following result for specialized spectral parameter.

Corollary 5.5.11. Fix $\zeta \in T \setminus S_+$.
(i) The H_0-valued meromorphic function $\Psi(t, \gamma)$ in $(t, \gamma) \in T \times T$ can be specialized at $\gamma = \zeta$, giving rise to a meromorphic H_0-valued function $\Psi(t, \zeta)$ in $t \in T$, which is regular at $t \in T \setminus S_+^{-1}$.
(ii) For $t \in B_{r}^{-1}$ we have the power series expansion
\[\Psi(t, \zeta) = \sum_{\alpha \in \mathbb{Q}^\vee} \Gamma_\alpha(\zeta) t^{-\alpha}, \]
converging normally on compacta of B_{r}^{-1}.
(iii) $\Psi(t, \zeta)$ satisfies the system of q-difference equations
\[D_{(\lambda, \mu)}(t, \zeta) \Psi(q^{-\lambda}t, \zeta) = \Psi(t, \zeta), \quad \forall \lambda \in P^\vee. \] (5.5.20)

5.5.4 Consistency

BqKZ is a holonomic system of first-order q-difference equations with cocycle matrices depending rationally on $(t, \gamma) \in T \times T$ and therefore it is consistent (see [14, Proposition 5.2]). This means that $\dim_{\mathbb{F}}(\text{SOL}) = \dim_{\mathbb{C}}(H_0)$, or, equivalently, that BqKZ allows a so-called fundamental matrix solution U. In [14], such a fundamental matrix solution was found by algebraic geometric arguments. A different approach, using the asymptotic solution Φ, was taken in [45]. Here we shortly repeat this latter approach for arbitrary root systems. The advantage of this approach is that it produces a basis of SOL in terms of asymptotically free solutions. For details we refer to Chapter 3.

We say that $F \in \text{End}(H_0)^K = K \otimes \text{End}(H_0)$ is an $\text{End}(H_0)$-valued solution of BqKZ, if
\[C_{(\lambda, \mu)}(t, \gamma) F(q^{-\lambda}t, q^\mu \gamma) = F(t, \gamma), \quad \lambda, \mu \in P^\vee, \]
as $\text{End}(H_0)$-valued meromorphic functions in $(t, \gamma) \in T \times T$.

Define $U \in \text{End}(H_0)^K$ by
\[U \left(k(w)^{-1} T_{w_0} T_{w^{-1}} \right) := \tau(e, w) \Phi \] (5.5.21)
for $w \in W_0$.

Proposition 5.5.12. We have
(i) $U \in \text{End}(H_0)^K$ is an invertible solution of BqKZ with values in $\text{End}(H_0)$. In particular, identifying $\text{End}(H_0)^K \simeq \text{End}_{K}(H_0^K)$ as K-algebras, we have $U \in \text{GL}_{K}(H_0^K)$.
(ii) $U' \in \text{End}(H_0)^K$ is an $\text{End}(H_0)$-valued meromorphic solution of BqKZ if and only if $U' = UF$ for some $F \in K \otimes \text{End}(H_0)^F$.
(iii) U, viewed as K-linear endomorphism of H_0^K, restricts to an \mathbb{F}-linear isomorphism $U : H_0^F \to \text{SOL}$.
(iv) $\{ \tau(e, w) \Phi \}_{w \in W_0}$ is an \mathbb{F}-basis of SOL.
Remark 5.5.13. The quantum KZ equations (5.3.12) form a consistent system of q-difference equations as well. For generic $\zeta \in T$ (that is, for $\zeta \in T$ where $\Phi(t, \gamma)$ can be specialized in $\gamma = \zeta$ and moreover $U(\cdot, \zeta)$ is invertible), this follows along the same line as above, but of course one can use [14, Proposition 5.2] again, which applies for all $\zeta \in T$.

5.6 Correspondence with bispectral problems

For the principal series representation M_{ζ} (generic) of H, Cherednik [7, Theorem 3.4] constructed a map which embeds the associated solution space of the quantum affine KZ equation (5.3.3) into the solution space of a system of q-difference equations, involving the Macdonald q-difference operator. This is a special case of a correspondence between the solutions of the quantum affine KZ equations associated with an arbitrary finite-dimensional H-module M and a more general system of q-difference equations (see [8]).

We will consider the map when M is the generic principal series module $M := \text{Ind}_{C[Y]}^{H}(C[Y][T])$ (see Subsection 5.4.1). In this case Cherednik’s correspondence yields an embedding χ_{+} of SOL into the solution space of a bispectral problem for the Macdonald q-difference operators.

5.6.1 The bispectral problem for the Macdonald q-difference operators

Using the action of \mathbb{W} on $\mathbb{C}(T \times T)$ given by (5.3.6), we can form the smash product algebra $\mathbb{C}(T \times T)\#\mathbb{W}$. It contains $\mathbb{C}(T)\#_{q}W \simeq \mathbb{C}(T \times \{1\})\#(W \times \{e\})$ and $\mathbb{C}(T)\#_{q^{-1}}W \simeq \mathbb{C}(\{1\} \times T)\#(\{e\} \times W)$ as subalgebras. In this interpretation, Cherednik’s algebra homomorphism $\rho_{k^{-1},q} : H(k^{-1}) \to \mathbb{C}(T)\#_{q}W$ (see Theorem 5.2.8) gives rise to an algebra homomorphism

$$\rho_{k^{-1},q}^{x} : H(k^{-1}) \to \mathbb{C}(T \times T)\#\mathbb{W},$$

considered as q-difference reflection operators in the first torus variable, and similarly $\rho_{k^{-1},q^{-1}} : H(k) \to \mathbb{C}(T)\#_{q^{-1}}W$ to an algebra homomorphism

$$\rho_{k^{-1},q^{-1}}^{y} : H(k) \to \mathbb{C}(T \times T)\#\mathbb{W},$$

considered as q-difference reflection operators in the second torus variable. Note that the images of $\rho_{k^{-1},q}^{x}$ and $\rho_{k^{-1},q^{-1}}^{y}$ in $\mathbb{C}(T \times T)\#\mathbb{W}$ commute, so we can form the algebra homomorphism

$$\rho_{k^{-1},q}^{x} \otimes \rho_{k^{-1},q^{-1}}^{y} : H(k^{-1}) \otimes H(k) \to \mathbb{C}(T \times T)\#\mathbb{W}.$$

The maps $\rho_{k^{-1},q}^{x}$ and $\rho_{k^{-1},q^{-1}}^{y}$ are related as follows.
Lemma 5.6.1. Let $\phi : H(\mathbb{k}^{-1}) \to H(\mathbb{k})$ be defined as the unique algebra isomorphism satisfying
\[T_i^\phi = T_i^{-1}, \quad \omega^\phi = \omega, \]
for $0 \leq i \leq N$ and $\omega \in \Omega$. Then we have
\[\rho_{k,q}^\phi(h^\phi) = t \rho_{k,q}^\phi(h)t \]
for all $h \in H(\mathbb{k}^{-1})$.

Proof. Since $\rho_{k,q}^\phi$, $\rho_{k,q}^\phi$, and ϕ are algebra homomorphisms, the lemma follows by verifying (5.6.1) for Φ_i $(0 \leq i \leq N)$ and $\omega \in \Omega$. Let $0 \leq i \leq N$ and $f \in \mathbb{K}$. In $H(\mathbb{k})$, we have $T_i^{-1} = T_i + k_i^{-1} - k_i$, hence, on the one hand,
\[(\rho_{k,q}^\phi(T_i^{-1}f))(t, \gamma) = k_i^{-1} f(t, \gamma) + c_{a_i; k,q}^{-1}(\gamma)(f(t, s_i^2 \gamma) - f(t, \gamma)). \]

On the other hand,
\[((t \rho_{k,q}^\phi(T_i)t)f)(t, \gamma) = (t \rho_{k,q}^\phi(T_i)f)(\gamma^{-1}, t^{-1}) \]
\[= k_i^{-1} (f)(\gamma^{-1}, t^{-1}) + c_{a_i; k,q}^{-1}(\gamma^{-1})((f) (s_i^{-1} \gamma^{-1}, t^{-1}) - (f)(\gamma^{-1}, t^{-1})) \]
\[= k_i^{-1} f(t, \gamma) + c_{a_i; k,q}^{-1}(\gamma)(f(t, s_i^2 \gamma) - f(t, \gamma)), \]
where we used (5.2.4) for the last equality. The verification for $\omega \in \Omega$ is easier and left to reader.

By means of the canonical action of $\mathbb{C}(T \times T) \# \mathbb{W}$ on $\mathbb{C}(T \times T)$, the subalgebra $D := \mathbb{C}(T \times T) \# (P^+ \times P^-) \subset \mathbb{C}(T \times T) \# \mathbb{W}$ can be identified with the algebra of q-difference operators on $T \times T$ with rational coefficients. Any element $D \in \mathbb{C}(T \times T) \# \mathbb{W}$ has an expansion
\[D = \sum_{w \in \mathbb{W}_0} D_w w, \quad (5.6.2) \]
with $D_w \in D$. Since this expansion is unique, we have a well-defined $\mathbb{C}(T \times T)$-linear map $\text{Res} : \mathbb{C}(T \times T) \# \mathbb{W} \to D$, determined by
\[\text{Res}(D) := \sum_{w \in \mathbb{W}_0} D_w, \]
with $D \in \mathbb{C}(T \times T) \# \mathbb{W}$ given as in (5.6.2). Let $\mathbb{C}(T \times T)_{\mathbb{W}_0}$ denote the field of \mathbb{W}_0-invariant rational functions on $T \times T$. Restricted to $\mathbb{C}(T \times T)_{\mathbb{W}_0}$, we have $D|_{\mathbb{C}(T \times T)_{\mathbb{W}_0}} = \text{Res}(D)|_{\mathbb{C}(T \times T)_{\mathbb{W}_0}}$ for all $D \in \mathbb{C}(T \times T) \# \mathbb{W}$.

It is well-known (see, e.g., [42, (4.2.10)]) that the center $Z(H)$ of the affine Hecke algebra H is $\mathbb{C}_Y[T]^{W_0}$. For $p \in \mathbb{C}[T]_{W_0}$, set
\[L_p^\phi := \text{Res}(\rho_{k,q}^\phi(p(Y))) \in D, \]
where \(p(Y) \) is considered as element of \(Z(H(\mathbb{K}^{-1})) \), and set
\[
L_p^\mu := \text{Res}(\rho_{\mathbb{K}^{-1},p}(p(Y))) \in \mathbb{D},
\]
where \(p(Y) \) is considered as element of \(Z(H(\mathbb{K})) \). It is well-known that the operators \(L_p^\mu \) (and hence \(L_p^\mu \)) are pairwise commuting and \((\mathbb{W} \times \mathbb{W}_0)\)-invariant, and by construction \([L_p^\mu, L_p^{\nu}] = 0 \) in \(\mathbb{D} \) for all \(p, p' \in \mathbb{C}[T]^\mathbb{W}_0 \). The operators \(L_p^\mu \) and \(L_p^{\nu} \) are related as follows.

Lemma 5.6.2. If \(p \in \mathbb{C}[T]^\mathbb{W}_0 \), we have
\[
L_p^\mu = sL_p^{\nu}, \tag{5.6.3}
\]

Proof. Similarly as for \(\text{GL}_N \) (see Section 3.3), the lemma follows from (5.6.1) together with the fact that
\[
p(Y)^{\nu} = p(Y), \quad p \in \mathbb{C}[T]^\mathbb{W}_0 \tag{5.6.4}
\]
with \(^\circ : H(\mathbb{K}^{-1}) \to H(\mathbb{K}) \) as defined in Lemma 5.6.1. We elaborate on the proof of (5.6.4), which is different than for \(\text{GL}_N \). Note that since \(p \in \mathbb{C}[T]^\mathbb{W}_0 \), the result follows if we can prove that \((Y^{\nu})^\circ = T_{w_0}Y^{w_0(\lambda)}T_{w_0}^{-1} \) for \(\lambda \in P^\vee \). Moreover, it suffices to show this only for specific elements of \(P^\vee \), as we demonstrate first. For any \(\lambda \in P^\vee \), let \(v_\lambda \) be the shortest element of \(\mathbb{W}_0 \) such that \(v_\lambda \lambda = w_0(\lambda) \), and put \(u_\lambda := t(\lambda)v_\lambda^{-1} \).

Then by [42, (2.5.4)] \(\Omega = \{e\} \cup \{u_\eta\} \}_{\eta \in J} \) with \(J := \{i \in 1, \ldots, N \mid \langle \eta_i, \phi \rangle = 1 \} \). If \(\lambda \in P^\vee \setminus Q^\vee \), we can write \(t(\lambda) = u_{\eta_j}w \) for some \(j \in J \) and \(w \in W_Q^\vee \) (using \(W = \Omega \times W_Q^\vee \)), and then \(t(\lambda) = t(\eta_{\eta_j})v_{\eta_j}^{-1}w = t(\eta_{\eta_j})t(\alpha)w' \) for some \(\alpha \in Q^\vee \) and \(w' \in W_0 \) (using \(W_Q^\vee = Q^\vee \times W_0 \)). But then \(w' = e \) and \(\lambda = \eta_{\eta_j} + \alpha \). In particular, \(\{0\} \cup \{\eta_{\eta_j}\} \) is a complete set of representatives of \(P^\vee/Q^\vee \). Since \(Q^\vee = \text{span}_Z \{w(\phi) \mid w \in W_0\} \), it thus suffices to show \((Y^{\nu})^\circ = T_{w_0}Y^{w_0(\lambda)}T_{w_0}^{-1} \) only for \(\lambda = \eta_{\eta_j} \) with \(j \in J \) and for \(\lambda = w(\phi) \) (\(w \in W_0 \)).

Let \(j \in J \) and write \(u_j := u_{\eta_{\eta_j}} \) and \(v_j := v_{\eta_{\eta_j}} \). By [42, (3.3.3)], we have \(u_j = T_{w_0}Y^{w_0(\eta_{\eta_j})}T_{w_0}^{-1} \) for all \(w \in W_0 \). Let \(\cdot : H(\mathbb{K}) \to H(\mathbb{K}^{-1}) \) denote the inverse of \(^\circ \). It follows that
\[
(Y^{w_0(\eta_{\eta_j})})^\circ = (T_{w_0}^{-1}u_jT_{w_0})^\circ = T_{w_0}u_jT_{w_0}^{-1},
\]
since \(u_jT_{w_0} = T_{w_0}u_j = T_{w_0} \). Hence \((Y^{\eta_{\eta_j}})^\circ = T_{w_0}Y^{w_0(\eta_{\eta_j})}T_{w_0}^{-1} \). Similarly, we can use [42, (3.3.6)] to obtain \((Y^{w(\phi)})^\circ = T_{w_0}Y^{w_0w(\phi)}T_{w_0}^{-1} \) for \(w \in W_0 \), and the proof is complete.

In order to give more explicit formulas for \(L_p^\mu \) and \(L_p^{\nu} \), we need to introduce some notation. For \(\lambda \in P^\vee \), write \(W_{0,\lambda} \) for the isotropy subgroup of \(\lambda \) in \(W_0 \), and \(W_0^\lambda \) for a
complete set of representatives of $W_0/W_0\lambda$. We may assume that $e \in W_0^\lambda$. Let $m_\lambda \in \mathbb{C}[T]^{W_0}$ be the associated monomial symmetric function, that is, $m_\lambda(t) := \sum_{\mu \in W_0\lambda} t^\mu$.

Finally, set $\Sigma^0(\lambda) := \Sigma(\lambda) - W_0\lambda$ (recall that $\Sigma(\lambda)$ is the smallest saturated subset of P^\vee that contains λ, cf. Subsection 5.4.1).

Now fix $\lambda \in P^\vee = -P^\vee$. By [42, (4.4.12)], we have for $f \in \mathbb{K}$

$$
(L_{m_\lambda}^x f)(t, \gamma) = \sum_{w \in W_0^\lambda} \prod_{u \in S(\tau(\lambda))} c_{w(a), \mu} q(t^{-1}) f(q^{-w(\lambda)}t, \gamma) + \sum_{\mu \in \Sigma^0(\lambda)} g_\mu(t) f(q^{-\mu}t, \gamma)
$$

(5.6.5)

for some $g_\mu \in \mathcal{M}(T)$ (here we used (5.2.4)). In view of (5.6.3), one immediately obtains a similar formula for $L_{m^\lambda}^y$.

Remark 5.6.3. For $\lambda = w_0(\varpi^\vee_j)$ with ϖ^\vee_j minuscule (that is, $\langle \varpi^\vee_j, \alpha \rangle \in \{0, 1\}$ for all $\alpha \in R_+$), we have $\Sigma^0(\lambda) = \emptyset$, while for $\lambda = -\varphi^\vee$ we have $\Sigma^0(\lambda) = \{0\}$. In both cases one obtains an explicit formula for $L_{m^\lambda}^x$ and the resulting operators are the Macdonald q-difference operators [40].

We now define the following bispectral version of Macdonald’s eigenvalue problem.

Definition 5.6.4. We define BiSP as the set of solutions $f \in \mathbb{K}$ of the following bispectral problem:

$$
(L_{m^\lambda}^x f)(t, \gamma) = p(\gamma^{-1}) f(t, \gamma), \quad \forall p \in \mathbb{C}[T]^{W_0},
$$

$$
(L_{m^\lambda}^y f)(t, \gamma) = p(t) f(t, \gamma), \quad \forall p \in \mathbb{C}[T]^{W_0}.
$$

(5.6.6)

Remark 5.6.5. Note that BiSP is a W_0-invariant \mathbb{F}-linear subspace of \mathbb{K}.

5.6.2 The correspondence

Consider the linear map $\chi_+: H_0 \to \mathbb{C}$ defined by $\chi_+(T_w) = k(w)$. By \mathbb{K}-linear extension we obtain a \mathbb{K}-linear map $\chi_+: H_0^\mathbb{K} \to \mathbb{K}$. It gives rise to the following correspondence between SOL and BiSP.

Theorem 5.6.6. The \mathbb{K}-linear functional $\chi_+: H_0^\mathbb{K} \to \mathbb{K}$ restricts to an injective W_0-equivariant \mathbb{F}-linear map

$$
\chi_+: \text{SOL} \to \text{BiSP}.
$$

The theorem follows by restricting Cherednik’s correspondence mentioned in the introduction of this section (for M the generic principal series module) to SOL. Indeed, if $f \in \text{SOL}$, then for fixed $\gamma \in T$, $f(t, \gamma)$ can be viewed as a solution of qKZ for the H-module M_γ, and then by Cherednik’s correspondence $\chi_+(f)$ satisfies the first
system of equations of (5.6.6). This holds for all $\gamma \in T$. By (5.6.3) and the ι-invariance of SOL, it then follows that

$$(L_0^\gamma f)(t, \gamma) = (L_0^\gamma f)(\gamma^{-1}, t^{-1}) = p(t)(\iota f)(\gamma^{-1}, t^{-1}) = p(t)f(t, \gamma),$$

so also the second equation of (5.6.6) is satisfied.

For GL_N, a detailed proof can be found in Section 3 and the arguments used there can also be applied in the present setting.

5.7 Harish-Chandra series

Application of χ_+ to the basic asymptotic solution Φ leads to a meromorphic solution Φ_+ of the bispectral problem, which can be viewed as a bispectral analogue of the difference Harish-Chandra solutions of the Macdonald difference equations ([36]). For root systems of type A, Harish-Chandra series solutions were studied before in [16] and [31]. In Section 3.5, the Harish-Chandra series solution of type A was reobtained from $\Phi_+(t, \gamma)$, by specializing $\gamma \in T$, yielding new results on the convergence and singularities of these solutions as a consequence of corresponding results for Φ.

In the final subsection we extend this to arbitrary root systems.

5.7.1 Bispectral Harish-Chandra series

As announced, we apply the map χ_+ to the basic asymptotically free solution Φ of BqKZ to obtain a special meromorphic solution of the bispectral problem (see Section 3.4 for GL_N).

Definition 5.7.1. We call $\Phi_+ := \chi_+(\Phi) \in \text{BISP}$ the basic Harish-Chandra series solution of the bispectral problem.

Put $\Psi_+ := \chi_+(\Psi)$. Then $\Phi_+ = G\Psi_+$ and as a consequence of Proposition 5.5.7 and Corollary 5.5.9, Ψ_+ is analytic on $T \setminus S_+^{\iota} \times T \setminus S_+$, and for $(t, \gamma) \in B^{\omega-1} \times T \setminus S_+$ we have

$$\Psi_+(t, \gamma) = \sum_{\alpha \in Q_+^\vee} \Gamma_\alpha^+(\gamma)t^{-\alpha},$$

where $\Gamma_\alpha^+ := \chi_+(\Gamma_\alpha) \in \mathcal{M}(T)$ for all $\alpha \in Q_+^\vee$. Recall that $\Gamma_0(\gamma) = K(\gamma)T_{w_0}$ for some $K \in \mathcal{M}(T)$ (see (5.5.19)).

Theorem 5.7.2. We have

$$\Gamma_0^+(\gamma) = k(w_0)K(\gamma),$$

with $K \in \mathcal{M}(T)$ given by

$$K(\gamma) = \prod_{\alpha \in R_+} \frac{(q_{\alpha}\gamma^{\alpha}; q_{\alpha})_\infty}{(q_{\alpha}k^2_{\alpha}\gamma^{\alpha}; q_{\alpha})_\infty},$$

where $q_{\alpha} = q^{2/\|\alpha\|^2}$ for $\alpha \in R_+$, as before.
§5.7. Harish-Chandra series

Proof. The definition of χ_+ and the preceding remarks imply (5.7.1). Let $L(\gamma)$ denote the right-hand side of (5.7.2). Then $L \in \mathcal{M}(T)$ is uniquely characterized by the following properties.

(i) There exists an $\epsilon > 0$ such that for $\gamma \in B_\epsilon$, L admits a power series expansion

$$L(\gamma) = \sum_{\alpha \in Q_+^\vee} l_\alpha \gamma^\alpha,$$

converging normally on compacta of B_ϵ.

(ii) $l_0 = 1$.

(iii) $L(\gamma)$ satisfies the following system of q-difference equations:

$$\left(\prod_{\alpha \in R_+} \prod_{v=1}^{(\lambda, \alpha)} \frac{1 - q_v^\gamma \gamma^\alpha}{1 - q_v^\gamma k_2^\gamma \gamma^\alpha} \right) L(q^\lambda \gamma) = L(\gamma), \quad \lambda \in P_+^\vee.$$

From Theorem 5.5.4 it follows that K satisfies (i), and since $K_{0,0} = T_{w_0}$, K also satisfies (ii). It thus suffices to show that K solves the q-difference equations in (iii).

Recall that in order to show that $\Gamma_0(\gamma) = K(\gamma)T_{w_0}$ for some $K \in \mathcal{M}(T)$, we exploited the fact that Φ is a solution of the quantum KZ equation in t and investigated what taking the limit $|t^{-\alpha_0'}| \to 0$ had to mean for $\Gamma_0(\gamma)$. We are now going to exploit the fact that Φ^+ satisfies the spectral problem

$$(L_p^\mu \Phi^+)(t, \gamma) = p(t) \Phi^+(t, \gamma), \quad p \in \mathbb{C}[T]^{w_0}, \quad (5.7.3)$$

and consider the limit $|t^{-\alpha_0'}| \to 0$ to obtain the desired q-difference equations for Γ_0^+ and hence for K.

Fix $\lambda \in P_+^\vee$. From formula (5.6.5) we deduce

$$(L_{m_\lambda}^\mu \Phi^+)(t, \gamma) = \sum_{w \in W_\lambda^w} \prod_{a \in S(t(-\lambda)} c_{w(a)}(a)q^{-1}(\gamma) \Phi^+(t, q^w(\gamma) + \sum_{\mu \in \Sigma^0(\lambda)} g_\mu(\gamma^{-1}) \Phi^+(t, q^\mu \gamma).$$

with $g_\mu \in \mathcal{M}(T)$. Plugging in $\Phi^+ = G\Psi^+$, using (5.5.9) and dividing both sides by $G(t, \gamma)$, the equality $(L_{m_\lambda}^\mu \Phi^+)(t, \gamma) = m_\lambda(t)\Phi^+(t, \gamma)$ gives

$$m_\lambda(t)\Psi^+(t, \gamma) = \sum_{w \in W_\lambda^w} \prod_{a \in S(t(-\lambda)} c_{w(a)}(a)q^{-1}(\gamma) \delta_w^{w(\lambda)} t_{w(\lambda)} \Psi^+(t, q^w(\gamma) +$$

$$+ \sum_{\mu \in \Sigma^0(\lambda)} g_\mu(\gamma^{-1}) \delta_{w(\lambda)} t_{w(\mu)}(\mu) \Psi^+(t, q^\mu \gamma).$$

Now we multiply both sides by $t^{-w(\lambda)}$ and consider the limit $|t^{-\alpha_0'}| \to 0$. By (5.7.1) this will result in a q-difference equation for K. Note that:
and the proof is complete.

(2) \(t^{-w_0(\lambda)} t^{w_0(\lambda)} = t^{-w_0(\lambda)} + w_0 w(\lambda) \) which is equal to 1 if \(w(\lambda) = \lambda \) and tends to 0 otherwise. Considering \(w \in W_0 \), we have \(w(\lambda) = \lambda \) only for \(w = e \).

(3) \(t^{-w_0(\lambda)} t^{w_0(\mu)} \to 0 \) for all \(\mu \in \Sigma^0(\lambda) \). Indeed, by [42, (2.6.3)] we have

\[w_0(\lambda) - w_0(\mu) \in Q^+ \]

and hence also \(w_0(\lambda) - w_0(\mu) \in Q^+ \) for \(\mu \in \Sigma^0(\lambda) \subset \Sigma(w_0(\lambda)) \). Moreover, \(w_0(\lambda) \neq w_0(\mu) \) since \(\mu \notin W_0 \cdot \lambda \).

Consequently, \(K \) satisfies the following set of \(q \)-difference equations:

\[
\left(\prod_{a \in S(t(\lambda))} e_{a(\gamma-q^{-1}(\gamma))} \right) \delta^L_{\lambda} K(q^{\lambda}\gamma) = K(\gamma), \quad \lambda \in P^+. \]

Equivalently, also setting \(\mu := -\lambda \in P^+ \),

\[
\left(\prod_{a \in S(t(\mu))} \frac{k_a^{r-1} - k_a q^{\mu a}}{1 - (q^{\mu a})^{\alpha^r}} \right) \delta^L_{\mu} K(q^{\mu}\gamma) = K(q^{\mu}\gamma), \quad \mu \in P^+. \tag{5.7.4} \]

Note that \(L^\gamma_{\mu, \lambda} \in C(T) # q^{-1} W \simeq C(\{1\} \times T) # (\{e\} \times W) \), so \(q^{(a+r)\gamma} = q^{a-r} q^{\alpha^r} \) for \(a \in R \) and \(r \in \mathbb{Z} \). Using

\[
\prod_{a \in S(t(\mu))} \frac{k_a^{r-1} - k_a q^{\mu a}}{1 - (q^{\mu a})^{\alpha^r}} = \prod_{\alpha \in R^+} \prod_{r=0}^{(\mu, \alpha)-1} \frac{k_\alpha^{r-1} - k_\alpha q^{\mu} q^{\alpha}}{1 - q^{(\mu, \alpha)} q^{-1} q^{\alpha}} \]

\[
= \prod_{\alpha \in R^+} \prod_{r=1}^{(\mu, \alpha)} \frac{k_\alpha^{r-1} - k_\alpha q^{r} q^{-\alpha}}{1 - q^{(\mu, \alpha)} q^{-1} q^{\alpha}} \]

and \(\delta^L_{\mu} = \prod_{\alpha \in R^+} \delta^L_{\alpha} \), we obtain from (5.7.4)

\[
\left(\prod_{\alpha \in R^+} \prod_{r=1}^{(\mu, \alpha)} \frac{1 - k_\alpha^{r-1} q^{r} q^{-\alpha}}{1 - q^{2} q^{r} q^{-\alpha}} \right) K(\gamma) = K(q^{\mu}\gamma), \quad \mu \in P^+, \]

and the proof is complete. \(\square \)

In view of Remark 5.6.5, we obtain solutions \(\Phi^+_w \in \text{BiSP} \ (w \in W_0) \), given by

\[
\Phi^+_w(t, \gamma) := \Phi^+(t, w^{-1}\gamma). \]
§5.7. Harish-Chandra series

Setting \(\Psi_w^+(t, \gamma) := \Psi^+(t, w^{-1} \gamma) \), we have \(\Phi_w^+(t, \gamma) = G(t, w^{-1} \gamma) \Psi_w^+(t, \gamma) \) and by Corollary 5.5.11(ii), for \(\epsilon > 0 \) sufficiently small, \(\Psi_w^+ \) has a power series expansion

\[
\Psi_w^+(t, \gamma) = \sum_{\alpha \in Q^\vee_+} \Gamma^+_\alpha (w^{-1} \gamma) t^{-\alpha}
\]

for \((t, \gamma) \in B_\epsilon \times T \setminus w(S_+) \), converging normally on compacta of \(B_\epsilon \times T \setminus w(S_+) \). The next result follows along the same line as Proposition 3.4.4.

Proposition 5.7.3. The set \(\{ \Phi_w^+ \}_{w \in W_0} \subset \text{BiSP} \) is \(F \)-linearly independent.

We expect that the set \(\{ \Phi_w^+ \}_{w \in W_0} \) is in fact a basis of BiSP over \(F \). This would follow, for example, if we could prove that \(\chi_+ \) is an \(F \)-linear isomorphism \(\text{SOL} \rightarrow \text{BiSP} \) (rather than only an embedding). Both are still open problems.

5.7.2 Application to Harish-Chandra series solutions of Macdonald’s difference equations

Let \(\zeta \in T \). The spectral problem of the Macdonald \(q \)-difference operators with spectral parameter \(\zeta \) is

\[
L^p_x f = p(\zeta^{-1}) f, \quad \forall p \in \mathbb{C}[T]^{W_0},
\]

for meromorphic functions \(f \) on \(T \). Let \(\text{SP}_\zeta \subset \mathcal{M}(T) \) denote the set of solutions of (5.7.5). It is a vector space over \(E(T) \), invariant under the usual action of \(W_0 \) on \(\mathcal{M}(T) \).

Recall the solution space \(\text{SOL}_{\zeta} \subset H^0_0(M(T)) \) of the quantum KZ equation (5.3.12) associated to \(M_\zeta \), also \(W_0 \)-invariant, but with respect to the \(\tau^M_{x, W_0} \)-action on \(H^0_0(M(T)) \). We have the following special case of Cherednik’s correspondence from \([7, 8]\) (see Proposition 3.5.1).

Proposition 5.7.4. For each \(\zeta \in T \), \(\chi_+ \) defines an \(W_0 \)-equivariant \(E(T) \)-linear map

\[
\chi_+ : \text{SOL}_{\zeta} \rightarrow \text{SP}_\zeta.
\]

Remark 5.7.5. In an upcoming paper by Stokman it is shown that \(\chi_+ \) is an isomorphism if \(\zeta^\alpha \neq k_\alpha^2, 1 \) for all \(\alpha \in R \) (see \([55]\)).

Recall that \(\Psi^+ = \chi_+ (\Psi) \) with \(\Psi \), as usual, the solution of the gauged bispectral BqKZ equations (5.5.11) obtained in Theorem (5.5.4). It follows from Corollary 5.5.11 that \(\Psi^+(t, \gamma) \) may be specialized at \(\gamma = \zeta \) for \(\zeta \in T \setminus S^+_+, \) yielding a meromorphic function \(\Psi^+(\cdot, \zeta) \in \mathcal{M}(T) \) with poles at \(t \in S^+_+ \). Define \(\tilde{G} \in \mathbb{K} \) by

\[
\tilde{G}(t, \gamma) := \frac{\theta_q(tw_0(\gamma)^{-1})}{\theta_q(\partial^+_\zeta t)}.
\]
Remark 5.7.6. Note that \(\tilde{G}(t, \gamma) = \theta_q(\delta_0^{-1} w_0(\gamma)^{-1}) G(t, \gamma) \) and that \(\tilde{G}(t, \gamma) \) can be specialized in \(\gamma = \zeta \). Lacking the factor \(\theta_q(\delta_0^{-1} w_0(\gamma)^{-1}) \) in the denominator, \(\tilde{G} \) does not satisfy \(\iota(\tilde{G}) = \tilde{G} \). Therefore, \(\tilde{G} \Psi \notin \text{SOL} \), but we do have \(\tilde{G}(\cdot, \zeta) \Psi(\cdot, \zeta) \in \text{SOL}_\zeta \).

It follows that \(\tilde{G}(\cdot, \zeta) \Psi^+(\cdot, \zeta) \in \text{SP}_\zeta \) and hence \(\Psi^+(\cdot, \zeta) \) is a solution of the spectral problem for the gauged Macdonald \(q \)-difference operators with spectral parameter \(\zeta \), that is, a solution of

\[
(\tilde{L}_p^x f)(t) = p(\zeta^{-1}) f(t), \quad \forall p \in \mathbb{C}[T]^{W_0},
\]

with

\[
\tilde{L}_p^x := G(\cdot, \zeta)^{-1} L_p^x G(\cdot, \zeta).
\]

At the end of the previous subsection we introduced \(\Psi^+_{\omega}(t, \gamma) = \Psi^+(t, w^{-1} \gamma) \) for \(w \in W_0 \). Put \(S := \bigcup_{w \in W_0} w(S_+) \). The considerations of this section imply the following.

Theorem 5.7.7. Fix \(\zeta \in T \setminus S \).

(i) For \(\epsilon > 0 \) sufficiently small, \(\Psi^+_{\omega}(t, \zeta) \) has a power series expansion

\[
\Psi^+_{\omega}(t, \zeta) = \sum_{\alpha \in Q_+^\vee} \Gamma_\alpha^+ (w^{-1} \zeta) t^{-\alpha}
\]

for \(t \in B_\epsilon \), converging normally on compacta of \(B_\epsilon \) and with \(\Gamma_\alpha^+ (w^{-1} \zeta) \neq 0 \) explicitly given by (5.7.1).

(ii) \(\Psi^+_{\omega}(t, \zeta) (w \in W_0) \) is analytic in \(t \in T \setminus S_+^{-1} \).

(iii) The function \(\tilde{\Psi}^+_{\omega}(\cdot, \zeta) \in M(T) (w \in W_0) \) defined by

\[
\tilde{\Psi}^+_{\omega}(t, \zeta) := \frac{\tilde{G}(t, w^{-1}(\zeta))}{G(t, \zeta)} \Psi^+_{\omega}(t, \zeta) = \frac{\theta_q(t(w_0 w^{-1}(\zeta))^{-1})}{\theta_q(t w_0(\zeta)^{-1})} \Psi^+_{\omega}(t, \zeta),
\]

is a nonzero solution of the spectral problem (5.7.6) for the gauged Macdonald \(q \)-difference operators for all \(w \in W_0 \).

The functions \(\tilde{\Psi}^+_{\omega}(\cdot, \zeta) (w \in W_0) \) are the Harish-Chandra series solutions of the spectral problem (5.7.6). As already mentioned in the introduction of this section, formal Harish-Chandra series solutions of Macdonald’s spectral problem were already obtained in [36], and earlier for the root system of type \(A \) in [16] and [31]. The upshot here is that we obtain the Harish-Chandra series solutions as meromorphic functions and are able to explicitly determine the leading term and the pole locations of \(\Psi^+_{\omega}(\cdot, \zeta) \).