Mutational profiling of glioblastoma
Bleeker, F.E.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 19 Dec 2018
PLXNB1 mutations in human cancer

F.E. Bleeker1,2 • S. Lamba1 • J. Penachioni2
A. Marchetti3 • A. Bardelli1,6

1Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy;
2Neurosurgical Center Amsterdam, Location Academic Medical Center, Amsterdam, The Netherlands;
3Department of Molecular Oncology, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy;
6Clinical Research Center, Center of Excellence on Aging, University-Foundation, Chieti, Italy;
6FIRC Institute of Molecular Oncology, Milan, Italy

Letter adapted from
‘Molecular profiling of the plexinome in melanoma and pancreatic cancer’
Human Mutation, in press
Wong et al. recently reported somatic PLXNB1 mutations in 46% (41/89) of primary prostate cancer and 89% (8/9) of prostate cancer bone metastases.\(^1\) To extend and confirm their observations, we sequenced exons 23 and 27 of PLXNB1 (where most mutations had been detected) in 15 primary prostate, 83 lung and 120 breast carcinoma and 120 glioblastoma samples, without detecting any nucleotide change. The observed discrepancy between our results and those reported by Wong is highly significant in primary prostate tumors (Fisher’s exact test, \(P\) value < 0.001).

We noted that 99% (79/80) of the changes reported by Wong et al. were C:G\(\rightarrow\)TA or A:T\(\rightarrow\)G:C.\(^1\) Previous work has demonstrated that deamination of adenine or cytosine occurs frequently in small quantities of DNA.\(^2\)\(^-\)\(^5\) This can lead to PCR errors, especially with DNA extracted from paraffin embedded tissue such as those predominantly used by Wong and colleagues.\(^1\) To test this hypothesis, we repeated the PCR-sequencing approach using lower amounts of DNA extracted from prostate tumors as compared to our initial analysis. Under these conditions we detected A:T\(\rightarrow\)G:C nucleotide changes causing a number of nonsynonymous amino acid changes (L1547F, T1750A, V1767A, V1769A, L1772P, T1802A), one of which is identical to one described in.\(^1\) These changes, however, could not be confirmed when the same samples were assessed multiple times.

Based on these findings, we suggest that the mutation frequency of PLXNB1 in prostate cancer should be reconsidered.
References