Molecular alterations in epilepsy-associated malformations of cortical development
Boer, K.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
7. ILAE. Guidelines for epidemiologic studies on epilepsy. Commission on Epidemiology and Prognosis, International League Against Epilepsy. 1993; 34: 592-6.
110. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 2005; 179: 4-29.


van Vliet EA, et al. Long-lasting increased permeability of the blood-brain barrier may contribute to seizure progression in temporal lobe epilepsy. Brain 2007; 130: 521-534.


249. Tan NC, Mulley JC, Berkovic SF. Genetic association studies in epilepsy: “the truth is out there”. Epilepsia 2004; 45: 1429-42.


251. Ricote M, et al. Interleukin-1 (IL-1alpha and IL-1beta) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate carcinoma. Cancer 2004; 100: 1388-96.


313. Fingar DC, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16: 1472-87.


Crino PB, Becker AJ. Gene profiling in temporal lobe epilepsy tissue and dysplastic lesions. Epilepsia 2006; 47: 1608-16.


368. Binder DK, Steinhauser C. Functional changes in astroglial cells in epilepsy. GLIA 2006; 54: 358-68.
417. Weichhart T, Saemann MD. The multiple facets of mTOR in immunity. Trends Immunol 2009;


Ong WY, et al. Differential localisation of the metabotropic glutamate receptor mGluR1a and the ionotropic glutamate receptor GluR2/3 in neurons of the human cerebral cortex. Exp Brain Res 1998; 119: 367-74.


Blümcke I., et al. Immunohistochemical distribution of metabotropic glutamate receptor subtypes mGluR1b, mGluR2/3, mGluR4a and mGluR5 in human hippocampus. Brain Res 1996; 736: 217-26.


