Controlling the Activity of a Caged Cobalt-Porphyrin-Catalyst in Cyclopropanation Reactions with Peripheral Cage Substituents

Mouarrawis, V.; Bobylev, E.O.; de Bruin, B.; Reek, J.N.H.

DOI
10.1002/ejic.202100384

Publication date
2021

Document Version
Final published version

Published in
European Journal of Inorganic Chemistry

License
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Controlling the Activity of a Caged Cobalt-Porphyrin-Catalyst in Cyclopropanation Reactions with Peripheral Cage Substituents

Valentinos Mouarrawis,[a] Eduard O. Bobylev,[a] Bas de Bruin,*[a] and Joost N. H. Reek*[a]

In this study, three novel cubic cages were synthesized and utilized to encapsulate a catalytically active cobalt(III) meso-tetra(4-pyridyl)porphyrin guest. The newly developed caged catalysts (Co-G@Fe₈(Zn-L-1)₆, Co-G@Fe₈(Zn-L-2)₆, and Co-G@Fe₈(Zn-L-3)₆) can be easily synthesized and differ in exo-functionalization, which are either none, polar or apolar groups. This leads to a different polarity of the peripheral environment surrounding the cage, which affects the (relative) local concentration of the substrates surrounding the cage and hence indirectly influences the substrate availability of the catalysis embedded in the active site of the caged catalyst systems. The resulting increased local substrate concentrations give rise to higher catalytic activities of the respective caged catalyst in metalloradical catalyzed cyclopropanation reactions. Interestingly, the catalytic activity is the highest when the apolar cage catalyst (Co-G@Fe₈(Zn-L-1)₆) is used, and lowest with the polar analog (Co-G@Fe₈(Zn-L-3)₆). In addition, the catalytic activity of the cage without exo-functionalities (Co-G@Fe₈(Zn-L-2)₆) is nearly two times lower than that of Co-G@Fe₈(Zn-L-1)₆ and three times higher than that of Co-G@Fe₈(Zn-L-3)₆, which further demonstrates the effect of the peripheral functionalities on the cyclopropanation reaction.

Introduction

Catalysis occupies a pivotal role in the modernization of our chemical industry, because it ensures more efficient use of natural resources and also aids in the minimization of waste production.[1] Traditionally, catalytic efficiency is controlled through ligand design, also known as the first coordination sphere.[2] Despite significant progress in the field of catalysis, there are still many reactions for which high catalytic efficiency cannot be achieved, and development of new approaches that lead to catalyst improvement are therefore important. In recent years, great efforts have been devoted to the development of supramolecular strategies as complementary approach to control catalytic performance.[3] Within this field, ‘caged catalysts’ have shown interesting prospects. A catalyst under confinement conditions often imposes reactivity and selectivity not observed in the bulk.[4] Thus far, many self-assembled capsules have been developed as supramolecular catalysts, where catalytic activity and/or selectivity are controlled by the second coordination sphere.[5] Several studies have been reported were coordination cages with well-defined confined spaces impose so-called second coordination sphere effects, which can influence the activity and selectivity of the catalytic reaction.[6] An interesting feature of a reaction taking place in a confined space is the increased proximity of substrate(s) and the catalyst active site, thereby enhancing overall reaction rates by pre-organization.[7] Secondly, selective substrate binding can lead to substrate selectivity and selective conversion of one of the substrates.[8] Thirdly, the pre-organization of a substrate in a higher energy conformation can accelerate the reaction and promote reactivity.[9] Most importantly, the stabilization of a transition state or intermediate can alter reaction mechanisms and lead to reactivity not observed in the bulk.[10]

These supramolecular catalysts are inspired by the working principles of enzymes,[10] and in an effort to design and prepare catalysts with further control over chemical reactivity, enzymes can further serve as sources of inspiration. The active site of many enzymes is often located deep within the substrate binding cavity of the protein, and for any catalytic transformation to take place the substrate must diffuse through the body of the protein via a tunnel.[11] The difference with proteins where the active site is located on the surface is the additional protein-substrate interactions, as the substrate must diffuse through tunnel residues before binding to the active site.[12] For example, the structure of cytochrome P₄₅₀ which consists of a long hydrophobic tunnel, regulates the substrate access and product release.[13] Although these tunnels consist of highly complex molecular structures that contribute to enzyme function, less sophisticated abiological catalytic systems can
mimic their properties and function for the development of catalysts with high efficiencies in terms of selectivity and/or activity.\textsuperscript{[14]}

We previously demonstrated the effect of the second-coordination sphere on catalysis, wherein a caged catalyst functionalized with apolar groups was shown to increase the catalytic activities in the cobalt-catalyzed cyclopropanation of styrene when compared to the free catalyst.\textsuperscript{[15]} In this work, we demonstrate an unprecedented strategy for controlling catalytic performance, in which differences in peripheral functionalization of cubic supramolecular cages hosting a cobalt catalyst influences the catalytic activity for cyclopropanation of styrene. To our best knowledge there are no previous examples reported wherein the periphery of a cage was shown to influence the activity of a (wo)man-made catalyst.

For the purpose of studying effects of the cage periphery, we explored three different caged catalyst with different exo-polarities (Figure 1). The previously reported \( \text{Fe}_6(\text{Zn-L · 1})_6 \) cage is functionalized with apolar aliphatic tails (Figure 1, left),\textsuperscript{[15]} the \( \text{Fe}_6(\text{Zn-L · 3})_6 \) cage is decorated with polar groups at the periphery (Figure 1, right) and the reference \( \text{Fe}_6(\text{Zn-L · 2})_6 \) cage (Figure 1, middle). We envisioned that the different peripheries of these caged systems could be used to control the affinity of caged catalyst for the substrate and thus lead to different activities. As such the cage serves as a mimic of the active site pocket of an enzyme whereas the periphery of the cage (light grey surface) provides a synthetic equivalent of the substrate binding site tunnel (Figure 1).

**Results and Discussion**

Next to our previously reported apolar \( \text{Fe}_6(\text{Zn-L · 1})_6 \) cage, we synthesized two new cages (\( \text{Fe}_6(\text{Zn-L · 2})_6 \) and \( \text{Fe}_6(\text{Zn-L · 3})_6 \)) without any peripheral functional groups and with polar peripheral substituents. This was done by following our recently reported synthetic protocol for the synthesis of \( \text{Fe}_6(\text{Zn-L · 1})_6 \) (Figure 2). For the preparation of the polar cage analog, component 3 was readily synthesized in one step in 65\% yield by the nucleophilic aromatic substitution of 5-fluoro-2-formyl-pyridine with bis[2-(2-hydroxyethoxy)ethyl]ether (see Supporting information). The reaction between subcomponent \( \text{Zn-L} \) \( (6 \text{ equiv.),} \) \( 2 \text{ or } 3 \text{ (24 equiv.)} \) and iron(II) triflimide \( (8 \text{ equiv.)} \) in dry DMF at 70°C overnight resulted in the formation of single discrete species via the complexation of iron with the formed pyridyl-imine functionality (Figure 2A and Figure 2B). Typical shifts in the \( ^1\text{H} \) NMR spectra are in line with the formation of \( \text{Fe}_6(\text{Zn-L})_6 \) type cages. Importantly, \( ^1\text{H} \) NMR diffusion-ordered spectroscopy (DOSY) shows a narrow band with a diffusion constant of \( 3.4 \cdot 10^{-6} \text{ cm}^2\text{s}^{-1} \) for \( \text{Fe}_6(\text{Zn-L · 2})_6 \) and \( 2.9 \cdot 10^{-6} \text{ cm}^2\text{s}^{-1} \) for \( \text{Fe}_6(\text{Zn-L · 3})_6 \) confirming the formation of a single species in solution that is much larger than the corresponding subcomponents (Figure 2A and Figure 2B). The value of the diffusion constant is in good agreement with the obtained diameters of the self-assembled cages \( (36 \text{ Å for } \text{Fe}_6(\text{Zn-L · 2})_6 \text{ and } 43 \text{ Å for } \text{Fe}_6(\text{Zn-L · 3})_6 \text{ based on molecular modeling studies (vide infra).} \)

High resolution electrospray ionization mass spectrometry (HR-ESI-MS) reveals various peaks belonging to the two new cubic cages (\( \text{Fe}_6(\text{Zn-L · 2})_6 \) and \( \text{Fe}_6(\text{Zn-L · 3})_6 \) with different charges, in line with the formation of the desired multicationic species (Figure 2A and Figure 2B). For each cage, the experimental spectra and simulated isotope patterns overlap perfectly, unambiguously confirming the formation of \( \text{M}_6\text{L}_6 \) cage structures. Our efforts to grow single crystals suitable for X-ray diffraction were unsuccessful (solvent layering and vapor diffusion at different temperatures only led to solid powders, not suitable for X-ray). Cage \( \text{Fe}_6(\text{Zn-L · 1})_6 \) was synthesized by following the same synthetic protocol and all analytical data are in line with the formation of a species identical to the previously reported cage.\textsuperscript{[15]}

Figure 1. Modeled structures of \( \text{Fe}_6(\text{Zn-L · 1})_6 \) (left), \( \text{Fe}_6(\text{Zn-L · 2})_6 \) (middle), and \( \text{Fe}_6(\text{Zn-L · 3})_6 \) (right), showing their inner cavity (red) and the different peripheral substituents (grey).
To confirm that the central cavity size of \( \text{Fe}_8(\text{Zn-L} \cdot 2)_6 \) and \( \text{Fe}_8(\text{Zn-L} \cdot 3)_6 \) is similar to \( \text{Fe}_8(\text{Zn-L} \cdot 1)_6 \) and able to bind metalloporphyrins such as the catalytically active paramagnetic Co-tetrapyridyl porphyrin (Co-G) or the non-catalytic diamagnetic model compound Zn-tetrapyridyl porphyrin (Zn-G), we performed molecular modeling studies. The molecular model of \( \text{Fe}_8(\text{Zn-L} \cdot 1)_6 \) was used to generate the new coordinates with different peripheral functionalization, and the geometry was optimized using a semi-empirical extended tight-binding method (GFN2-xTB).\(^{[16]}\) This provided an estimated volume of 3300 Å\(^3\) and 3250 Å\(^3\) for \( \text{Fe}_8(\text{Zn-L} \cdot 2)_6 \) and \( \text{Fe}_8(\text{Zn-L} \cdot 3)_6 \) respectively. As anticipated the obtained models reveal similar cavity volumes for \( \text{Fe}_8(\text{Zn-L} \cdot 2)_6 \) and \( \text{Fe}_8(\text{Zn-L} \cdot 3)_6 \) as the \( \text{Fe}_8(\text{Zn-L} \cdot 1)_6 \) cage and therefore have an optimal internal volume to bind Co-G or Zn-G. We first explored encapsulation of the diamagnetic Zn-G guest in the new cages, as the resulting assemblies

---

Figure 2. Synthetic procedures of (A) \( \text{Fe}_8(\text{Zn-L} \cdot 2)_6 \) and (B) \( \text{Fe}_8(\text{Zn-L} \cdot 3)_6 \) and their geometry optimized structure using GFN2-xTB.\(^{[16]}\) Calculated inner cavity volume of \( \text{Fe}_8(\text{Zn-L} \cdot 2)_6 \) and \( \text{Fe}_8(\text{Zn-L} \cdot 3)_6 \) displayed in red, using Voss Volume Voxelator. Obtained (red) and calculated (black) HR-ESI-MS for the 7\(^-\) (left) and 14\(^+\) (right) species of \( \text{Fe}_8(\text{Zn-L} \cdot 2)_6 \) and 9\(^-\) (left) and 12\(^+\) (right) species of \( \text{Fe}_8(\text{Zn-L} \cdot 3)_6 \).\(^{[1]}\)H-DOSY NMR of \( \text{Fe}_8(\text{Zn-L} \cdot 2)_6 \) and \( \text{Fe}_8(\text{Zn-L} \cdot 3)_6 \) showing diffusion constants of 3.4 · 10\(^{-6}\) and 2.9 · 10\(^{-6}\) cm\(^2\)s\(^{-1}\) respectively.
can be readily studied by NMR techniques (in contrast to encapsulation studies of paramagnetic Co-G). The overnight reaction of pre-formed Fe₈(Zn-L·2)₆ in DMF with 1 equivalent of Zn-G, results in a 4:2 splitting of the ¹H-NMR signals of the cage, consistent with desymmetrization of the host induced by binding of the guest. Additionally, the ¹H NMR peaks of the free Zn-G disappeared and three new strongly upfield shifted guest peaks appeared a 6.59, 5.6, and 2.49 ppm indicating internal binding of Zn-G (Figure 3B). When Fe₈(Zn-L·3)₆ was stirred in the presence of Zn-G, the empty cage and free Zn-G were still in solution and no new signals belonging to the encapsulated guest were observed by HR-ESI-MS and NMR spectroscopy. In contrast, a in situ approach in which, Zn-G and Zn-L·3, and the iron(II) triflimide were mixed in the correct stoichiometric ratios yielded the encapsulated catalyst, as no ¹H-NMR signals of the free guest (Zn-G) could be identified. In addition, similar upfield shifted peaks as in Fe₈(Zn-L·2)₆ were observed (6.58, 5.62 and 2.5 ppm, Figure 3C). The observed δ values of Zn-G upon encapsulation in the two novel cages are consistent with previous encapsulation studies of Zn-G in Fe₈(Zn-L·1)₆ and with similar cubic self-assembled cages. HR-ESI-MS of Zn-G@Fe₈(Zn-L·2)₆ and Zn-G@Fe₈(Zn-L·3)₆ yields spectra with signals in line with the desired species and associated only to structures in which one molecule of Zn-G is encapsulated inside the molecular cube (Zn-G@Fe₈(Zn-L·2)₆ and Zn-G@Fe₈(Zn-L·3)₆, Figure 3B and Figure 3C). Importantly, DOSY of the two cages (Zn-G@Fe₈(Zn-L·2)₆ and Zn-G@Fe₈(Zn-L·3)₆) features a uniquely observed product with the same diffusion constant.
(3.35·10^{-6} \text{ cm}^2\text{s}^{-1} \text{ and } 2.86·10^{-6} \text{ cm}^2\text{s}^{-1}) as the empty cages (Fe_8(Zn-L-2)_6 and Fe_8(Zn-L-3)_6), but now including the upfield NMR signals that are from protons of the Zn-G guest (Figure 3B and Figure 3C). Interestingly, the preparation of Zn-G@Fe_8(Zn-L-2)_6 can be done via either the encapsulation of Zn-G in Fe_8(Zn-L-2)_6 or via the one-pot reaction of all the subcomponents, whereas the synthesis of Zn-G@Fe_8(Zn-L-1)_6 and Zn-G@Fe_8(Zn-L-3)_6 is only feasible by the one-pot synthetic protocol. We ascribe this to the more electron-rich O-functionalyzed building blocks used for the synthesis of Zn-G@Fe_8(Zn-L-1)_6 and Zn-G@Fe_8(Zn-L-3)_6 leading to stronger pyridine binding to iron and therefore decreasing the dynamicity of the pyridyl-imine iron(II) moieties.

With the optimized synthetic protocols for encapsulation of Zn-G in hand, and having established the characterization of the diamagnetic assemblies Zn-G@Fe_8(Zn-L-1)_6, Zn-G@Fe_8(Zn-L-2)_6, and Zn-G@Fe_8(Zn-L-3)_6 based on the non-catalytic metalloporphyrin Zn-G, we next explored the encapsulation of catalytically active and paramagnetic cobalt(I)-tetra(4-pyridyl) porphyrin Co-G via the same approach (Figure 3A). Confirmation of encapsulation of the catalysts came from the HR-ESI-MS of the assemblies, and the spectra reveal signals corresponding to the expected elemental composition [(Co-G@Fe_8(Zn-L-2)_6)(NTf_2)_x]^{+} and [(Co-G@Fe_8(Zn-L-3)_6)(NTf_2)_x]^{+} of both caged-systems (Co-G@Fe_8(Zn-L-2)_6 and Co-G@Fe_8(Zn-L-3)_6, Figure 3B and Figure 3C). Additional support for the formation of the host-guest systems was provided by EPR, which reveals typical signals for encapsulated cobalt hyperfine. In contrast, the EPR signal of free Co-G itself is very broad and does not show any hyperfine couplings due to self-aggregation causing substantial signal broadening as a result of spin-spin exchange coupling interactions.

Encapsulation of Co-G within the cage assemblies leads to much sharper signals because the protective environment of the cage prevents self-aggregation. Interestingly, the formation of three different caged-systems with different exo-polarities shows that our strategy can be used to encapsulate metalloporphyrins with different metals (Zn and Co) inside cages with polar, apolar, and no peripheral functionalization.

Having established the preparation of three novel caged catalyst systems, we investigated the solubility in order to find a compatible solvent to perform our catalysis studies. Cages Co-G@Fe_8(Zn-L-2)_6 and Co-G@Fe_8(Zn-L-3)_6 proved to be soluble in DMF, acetone and acetonitrile, whereas Co-G@Fe_8(Zn-L-1)_6 is soluble in a wide range of solvents (dimethylformamide, acetone, tetrahydrofuran, dichloromethane, tolune, and dichloromethane/hexane mixtures). As such, we focussed our catalysis investigation on utilizing DMF, as all the cages are soluble in this solvent and we have previously shown that DMF is a suitable solvent for these type of cobalt catalyzed cyclopropanation reactions.

Next, we conducted a series of control experiments, and optimized the reaction conditions. The results are summarized in Table 1. In a typical reaction, S1 (2 equiv.) and the catalyst were dissolved in DMF and stirred for 30 minutes before the addition of the diazo compound S2 (1 equiv.), as it generally led

| Table 1. Control experiments and optimization of the reaction conditions or the cyclopropanation of styrene in cages.^[a,b] |
|---|---|---|---|---|---|
| Entry | Catalyst | T [°C] | Conversion [%] | P1 [%] | P2 [%] |
| 1 | Fe8(Zn-L-1)_6 | 40 | - | - | - |
| 2 | Fe8(Zn-L-1)_6 | 65 | - | - | - |
| 3 | Fe8(Zn-L-2)_6 | 40 | - | - | - |
| 4 | Fe8(Zn-L-2)_6 | 65 | - | - | - |
| 5 | Fe8(Zn-L-3)_6 | 40 | - | - | - |
| 6 | Fe8(Zn-L-3)_6 | 65 | - | - | - |
| 7 | Zn-G@Fe8(Zn-L-1)_6 | 40 | - | - | - |
| 8 | Zn-G@Fe8(Zn-L-1)_6 | 65 | - | - | - |
| 9 | Zn-G@Fe8(Zn-L-2)_6 | 40 | - | - | - |
| 10 | Zn-G@Fe8(Zn-L-2)_6 | 65 | - | - | - |
| 11 | Zn-G@Fe8(Zn-L-3)_6 | 40 | - | - | - |
| 12 | Zn-G@Fe8(Zn-L-3)_6 | 65 | - | - | - |
| 13[c] | Co-G@Fe8(Zn-L-1)_6 | 40 | 90 | 76 | 14 |
| 14 | Co-G@Fe8(Zn-L-1)_6 | 65 | 95 | 78 | 17 |
| 15 | Co-G@Fe8(Zn-L-1)_6 | 40 | 96 | 84 | 12 |
| 16[c] | Co-G@Fe8(Zn-L-2)_6 | 40 | 65.5 | 57 | 8.5 |
| 17 | Co-G@Fe8(Zn-L-2)_6 | 65 | 70 | 58 | 12 |
| 18 | Co-G@Fe8(Zn-L-2)_6 | 40 | 73 | 67.5 | 5.5 |
| 19[c] | Co-G@Fe8(Zn-L-3)_6 | 40 | 51 | 45 | 6 |
| 20 | Co-G@Fe8(Zn-L-3)_6 | 65 | 57 | 48.5 | 8.5 |
| 21 | Co-G@Fe8(Zn-L-3)_6 | 40 | 63.5 | 60 | 3.5 |

[a] Reaction conditions: Catalyst (0.25 mol%) with respect to S2. Styrene (S1, 0.16 mmol), ethyl diazoacetate (S2, 0.08 mmol) in DMF-d, (1 mL), 30 h under N₂ atmosphere. [b] Conversion of S2 and yields with respect to S2 were determined by ¹H NMR spectroscopy, using 1,3,5-trimethoxybenzene as internal standard. [c] S2 was added without prior stirring of styrene and the catalyst.

DOI: 10.1002/ejic.202100384
to lower dimer P2 formation (Table 1, entries 13, 16, 19 vs 15, 18, 21). Importantly, Fe$_6$(Zn-L-1)$_6$, Fe$_6$(Zn-L-2)$_6$, Fe$_6$(Zn-L-3)$_6$ and Zn-G@Fe$_6$(Zn-L-1)$_6$, Zn-G@Fe$_6$(Zn-L-2)$_6$, Zn-G@Fe$_6$(Zn-L-3)$_6$ are not catalytically active, as performing the reaction at 40 or 65 °C did not yield any product (Table 1, entries 1–12). Following investigations on the effect of the temperature, a better catalytic performance was found when the reaction was done at 40 °C vs 65 °C (Table 1, entries 14, 17, and 20 vs 15, 18, and 21). Similar observations were obtained for all the caged catalysts (Co-G@Fe$_6$(Zn-L-1)$_6$, Co-G@Fe$_6$(Zn-L-2)$_6$, and Co-G@Fe$_6$(Zn-L-3)$_6$), displaying an optimal reaction temperature of 40 °C, and revealing the importance of stirring the styrene with the supramolecular catalysts prior to addition of the diazo compound S2 for our catalysis investigations.

With optimized reaction conditions for the three caged catalysts Co-G@Fe$_6$(Zn-L-1)$_6$, Co-G@Fe$_6$(Zn-L-2)$_6$, and Co-G@Fe$_6$(Zn-L-3)$_6$, we studied the catalytic performance in terms of stability, activity, and selectivity. Table 2 shows the catalytic results for the cyclopropanation of S1 by using caged catalysts (0.25 mol%) with a hydrophobic (Co-G@Fe$_6$(Zn-L-1)$_6$), neutral (Co-G@Fe$_6$(Zn-L-2)$_6$), and hydrophilic (Co-G@Fe$_6$(Zn-L-3)$_6$) peripheral environment. As we previously showed that Co-G@Fe$_6$(Zn-L-1)$_6$ outperforms both [Co(TPP)] and the free catalyst (Co-G), as encapsulation of Co-G leads to sterically protection of cobalt-porphyrin catalyst (Co-G) from pyridine-co-cub coordination and therefore hinders self-deactivation via the blockage of the catalytic cobalt center. We ascribe the increased conversion when using Co-G@Fe$_6$(Zn-L-1)$_6$ compared to [Co(TPP)] to the increased local concentration of ethyl diazoacetate S2 and styrene S1 in the hydrophobic periphery environment of the cage, and hence also inside the cage, when compared to the bulk. In agreement with this hypothesis, interestingly, the enhanced performance of Co-G@Fe$_6$(Zn-L-1)$_6$ is accompanied with more dimer P2 formation when compared to [Co(TPP)] and the guest catalyst (Co-G).

Having concluded that the caged catalyst with apolar exo-functionalities (Co-G@Fe$_6$(Zn-L-1)$_6$) enhances catalytic activities compared to the non-encapsulated catalysts (free Co-G and [Co(TPP)]), we were interested to investigate the effect of the peripheral groups on the catalytic performance. The use of the exo-decorated cage analog Co-G@Fe$_6$(Zn-L-3)$_6$, with 24 PEG-4 groups, in the cyclopropanation reaction, lowered the conversion to 63.5% (TON = 254, Table 2, entry 2). Interestingly, P2 formation was decreased, as Co-G@Fe$_6$(Zn-L-3)$_6$, suppressed dimerization by 2-fold compared to Co-G@Fe$_6$(Zn-L-1)$_6$ (Table 2, entries 1 and 3). Compared to [Co(TPP)], the polar cage catalyst (Co-G@Fe$_6$(Zn-L-3)$_6$) results in lower conversions and cyclopropane yields (Table 2, entries 3 and 5), and a higher amount of dimer product P2 (1% vs 3.5%).

Further evidence that this is an effect of the cage periphery was obtained by the use of a cage without exo-functionalities (Co-G@Fe$_6$(Zn-L-2)$_6$). Importantly, this catalyst system converted S2 to cyclopropane P1 in a yield of 67.5% (TON = 292, Table 2, entry 2), which is lower than Co-G@Fe$_6$(Zn-L-1)$_6$ and higher than Co-G@Fe$_6$(Zn-L-3)$_6$ (Table 2, entries 1 and 2). The apolar cage catalyst Co-G@Fe$_6$(Zn-L-1)$_6$ leads to a P1/P2 ratio of 7, whereas this ratio is 12.3 and 17 for the non-functionalized Co-G@Fe$_6$(Zn-L-2)$_6$ and polar Co-G@Fe$_6$(Zn-L-3)$_6$ analogs, respectively (Table 2, entries 1, 2 and 3). Remarkably, the selectivity towards the desired product P1 decreases upon increasing the polarity of the cage periphery. These results indicate that the peripheral modification of the cage from polar to apolar increases the catalytic performance of the system in the cyclopropanation reaction. We ascribe this to a different local concentration of ethyl diazoacetate and styrene in the two cages, thus leading to different catalytic activities for the formation of both P1 and P2.

To gain more insight on the effect of the cage periphery, the reaction was monitored over time by 1H NMR spectroscopy, from which the kinetic profiles in DMF for Co-G@Fe$_6$(Zn-L-1)$_6$, Co-G@Fe$_6$(Zn-L-2)$_6$, Co-G@Fe$_6$(Zn-L-3)$_6$ and [Co(TPP)] were obtained (Figure 4). As the peripheral environment of the three novel cages differs in polarity, different kinetics are expected for each catalyst system. As shown in Figure 4, Co-G@Fe$_6$(Zn-L-1)$_6$ is substantially more active than Co-G@Fe$_6$(Zn-L-2)$_6$ and Co-G@Fe$_6$(Zn-L-3)$_6$, as evidenced by the initial TOF at 15% conversion (Figure 4). This indicates a higher degree of substrate accumulation in Co-G@Fe$_6$(Zn-L-1)$_6$ compared to both Co-G@Fe$_6$(Zn-L-2)$_6$ and Co-G@Fe$_6$(Zn-L-3)$_6$, thus leading to higher catalytic activity due to higher local concentrations of both S1 and S2. As is clear from Figure 4, reaction rates for both cyclopropanation and carbene dimerization are enhanced. The presence of 24 icosyl groups in the periphery of the cage (Co-G@Fe$_6$(Zn-L-1)$_6$) leads to higher substrate affinity for the periphery, and thereby the interior of the cage, and demonstrates the influence of the peripheral polarity of the cage on the catalytic rates. This trend shows that the exo-hydrophobicity of the cage framework has an indirect, but nonetheless significant impact on the affinity of the substrate towards the inner environment of the cage. If correct, inverse polarity is expected to lead to slower catalytic rates in the cyclopropanation reaction. Indeed, lower activity is observed with the increased peripheral polarity of Co-G@Fe$_6$(Zn-L-3)$_6$ due to lower local substrate concentration in the cavity of the cage. Importantly, the catalytic activity of the cage with no exo-functionalities (Co-G@Fe$_6$(Zn-L-2)$_6$) is nearly two times lower than Co-G@Fe$_6$(Zn-L-1)$_6$ and three times higher than that of Co-G@Fe$_6$(Zn-L-3)$_6$ (Figure 4E). Additionally, the catalytic activity of the confined catalyst Co-G@Fe$_6$(Zn-L-2)$_6$ compared to the

| Table 2. Cyclopropanation of styrene with different cages and guests.1H NMR |
|---|---|---|---|---|
| Entry | Catalyst | Conversion [%] | P1 [%] | P2 [%] | P1/ P2 | TON [%] |
| 1 | Co-G@Fe$_6$(Zn-L-1)$_6$ | 96 | 84 | 12 | 7 | 384 |
| 2 | Co-G@Fe$_6$(Zn-L-2)$_6$ | 73 | 67.5 | 5.5 | 12 | 292 |
| 3 | Co-G@Fe$_6$(Zn-L-3)$_6$ | 63.5 | 60 | 3.5 | 17 | 254 |
| 4 | Co-G | 5 | 3 | 2 | 1.5 | 10 |
| 5 | [Co(TPP)] | 71 | 70 | 1 | 70 | 284 |

[a] Reaction conditions: Catalyst (0.25 mol%) with respect to S2, ethyl diazoacetate (S2, 0.32 mmol) and styrene (S1, 0.64 mmol) in solvent (1 mL), 40 °C, 30 h under N$_2$ atmosphere. [b] Conversion of S2 and yields with respect to S2 were determined by NMR spectroscopy, using 1,3,5-trimethoxybenzene as internal standard, and averaged from three measurements. [c] Turnover number (TON) was determined by dividing the conversion through the catalyst loading (conv/0.25).

non-encapsulated catalyst [Co(TPP)] is similar, whereas the activity of Co-G@Fe$_8$(Zn-L-3)$_6$, Co-G@Fe$_8$(Zn-L-2)$_6$, and Co-G@Fe$_8$(Zn-L-1)$_6$ is two times lower than that of [Co(TPP)]. As cages Co-G@Fe$_8$(Zn-L-1)$_6$, Co-G@Fe$_8$(Zn-L-2)$_6$, and Co-G@Fe$_8$(Zn-L-3)$_6$ similarly confine the catalyst (Co-G), we attribute the differences in activity to different (relative) substrate affinities to the periphery of the cage catalysts, and thereby the interior of the cages, as a result of the peripheral functionalities.

**Conclusion**

In conclusion, we prepared three novel cubic cages that can bind catalytically active cobalt(II) meso-tetra(4-pyridyl) porphyrin. The cages differ in exo-decoration, which can be polar or apolar tails. By encapsulation of cobalt porphyrins as catalysts, this strategy provides three supramolecular caged catalyst systems with only different peripheral environment, which effect was probed in catalysis. For the cyclopropanation of styrene with ethyl diazoacetate, we observed an effect of these peripheral groups on the catalytic activity, with the exo-functionalized cage catalyst with apolar icosyl groups providing...
a higher activity (TOF) compared to the free bulk catalyst and cages with no or polar exo-functionalization (Co-G@Fe₆(Zn-L-2), and Co-G@Fe₆(Zn-L-3)). The catalytic activity of the non exo-functionalized cage catalysts (Co-G@Fe₆(Zn-L-2)) was nearly two times lower than Co-G@Fe₆(Zn-L-1). Remarkably, the peripheral modification of the cage catalysts from polar to apolar increases the catalytic activities in the cyclopropanation reaction and dimerization. We ascribe this effect to different substrate local concentrations and thus to altered catalytic activities. The affinity of the substrates proved to be the highest when the apolar decorated cage (Co-G@Fe₆(Zn-L-1)) is used and the lowest for the polar analog (Co-G@Fe₆(Zn-L-3)).

**Experimental Section**

**General considerations:** All reactions involving air- or moisture-sensitive compounds were carried out under nitrogen using standard Schlenk and vacuum line techniques. Unless noted otherwise, all reagents were of commercial grade and used without further purification. Dry DMF was kept under N₂ atmosphere and dry DMF (11 ml) were added to a Schlenk flask. The mixture was degassed by three cycles of freeze-pump-thaw, and heated at 70 °C for 18 h. The reaction mixture was cooled down to room temperature and stirred for 1 h. The purple-red solution was passed through a short pad of celite and precipitated in diethyl ether. The precipitates were collected by filtration and washed with diethyl ether (10 ml) and DCM (10 ml). The solids were collected by washing the filter with acetonitrile (100 ml) and the solvent was removed under reduced pressure to afford Fe₆(Zn-L-2) as dark purple solid. (0.255 g, 80%). ¹H NMR (300 MHz, Acetonitrile-d₃) δ (ppm) = 9.07 (s, 24H), 8.88 (s, 34H), 8.65 (d, J = 7.6 Hz, 28H), 8.51 (s, 24H), 8.42–8.32 (m, 38H), 8.18 (dd, J = 19.0, 7.5 Hz, 44H), 8.03 (d, J = 8.7 Hz, 48H), 7.87 (s, 36H), 7.53 (d, J = 7.3 Hz, 24H), 5.69 (d, J = 7.7 Hz, 60H). ¹³C-NMR (75 MHz, Acetonitrile-d₃) δ = 174.90, 158.48, 156.04, 149.70, 149.62, 142.7, 139.81, 137.88, 135.12, 131.64, 131.18, 129.88, 127.99, 126.54, 124.6., 122.12, 122.

Fe₆(Zn-L-3)_2: Zn-L (0.100 g, 0.095 mmol) together with 3 (0.114 g, 0.38 mmol), iron(II)triflimide (0.078 g, 0.127 mmol) and dry DMF (12 ml) were added to a Schlenk flask. The mixture was degassed by three cycles of freeze-pump-thaw, and heated at 70 °C for 20 h. The reaction mixture was cooled down to room temperature and stirred for 1 h. The purple-red solution was passed through a short pad of celite and precipitated in diethyl ether. The precipitates were collected by filtration and washed with diethyl ether (100 ml) and DCM (100 ml). The solids were collected by washing the filter with acetonitrile (100 ml) and the solvent was removed under reduced pressure to afford Fe₆(Zn-L-3) as dark purple solid. (0.292 g, 77%). ¹H NMR (500 MHz, Acetonitrile-d₃) δ (ppm) 8.95 (s, 24H), 8.86 (d, J = 7.7 Hz, 38H), 8.58 (d, J = 8.9 Hz, 28H), 8.44–8.27 (m, 42H), 8.27–8.09 (m, 44H), 8.00 (s, 74H), 7.20 (s, 18H), 5.71 (s, 42H), 4.37 (s, 42H), 3.88 (s, 62H), 3.81–3.35 (m, 330H). ¹³C-NMR (75 MHz, Acetonitrile-d₃) δ (ppm) = 173.44, 146.78, 135.77, 135.55, 132.77, 132.25, 128.51, 126.41, 125.21, 123.11, 122.9, 72.56, 71, 69.56, 61.85.

Zn-G@Fe₆(Zn-L-2): To an oven-dried Schleick flask under nitrogen atmosphere were added Fe₆(Zn-L-2) (0.080 g, 0.006 mmol), Zn-G (4.1 mg, 0.006 mmol) and dry DMF (4 ml). The mixture was degassed by three cycles of freeze-pump-thaw, and heated at 70 °C for 18 h. The reaction mixture was cooled down to room temperature and stirred for 1 h. The purple-red solution was passed through a short pad of celite and precipitated in diethyl ether. The precipitates were collected by filtration and washed with diethyl ether (100 ml) and DCM (100 ml). The remaining solids on the filter were collected by washing the filter acetonitrile (100 ml). The solvent was removed under reduced pressure to afford Zn-G@Fe₆(Zn-L-2) as a dark purple solid. (0.059 g, 69%). ¹H NMR (400 MHz, Acetonitrile-d₃) δ (ppm) 9.12–8.86 (m, 48H), 8.63 (s, 34H), 8.48 (s, 28H), 8.41–8.22 (m, 50H), 8.21–7.66 (m, 134H), 7.51 (d, J = 19.9 Hz, 32H), 6.59 (s, 8H), 5.67 (dd, J = 17.9, 8.1 Hz, 34H), 5.6 (s, 8H) 2.49 (s, 8H).

Zn-G@Fe₆(Zn-L-3): To an oven-dried Schleick flask under nitrogen atmosphere were added Zn-G (8.45 mg, 0.012 mmol), Zn-L (0.078 g, 0.075 mmol), 3 (0.090 g, 0.3 mmol), iron(II)triflimide (0.062 g, 0.1 mmol) and dry DMF (7 ml). The mixture was degassed by three cycles of freeze-pump-thaw, and heated at 70 °C for 18 h. The reaction mixture was cooled down to room temperature and stirred for 1 h. The purple-red solution was passed through a short pad of celite and precipitated in diethyl ether. The precipitates were collected by filtration and washed with diethyl ether (100 ml) and DCM (100 ml). The remaining solids on the filter were collected by washing with acetonitrile (100 ml). The solvent was removed under reduced pressure to afford Zn-G@Fe₆(Zn-L-3) as a dark purple solid. (0.169 g, 73%). ¹H NMR (300 MHz, 298 K, Acetonitrile-d₃) δ (ppm) = 8.99 (d, J = 15.6 Hz, 58H), 8.61 (dd, J = 17.2, 9.0 Hz, 48H), 8.35 (dd, J = 21.5, 7.1 Hz, 62H), 8.24–7.76 (m, 114H), 7.22 (d, J = 7.1 Hz, 60H). ¹³C-NMR (300 MHz, Acetonitrile-d₃) δ (ppm) = 174.90, 158.48, 156.04, 149.70, 149.62, 142.7, 139.81, 137.88, 135.12, 131.64, 131.18, 129.88, 127.99, 126.54, 124.6, 122.
Amsterdam (Research Priority Area Sustainable Chemistry) is Eur. J. Inorg. Chem. The authors declare no conflict of interest. Conflict of Interest

Acknowledgements

A Financial support from The Netherlands Organization for Scientific Research (NWO TOP-PUNT) and the University of Amsterdam (Research Priority Area Sustainable Chemistry) is gratefully acknowledged.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Confinement · Cyclopropanation · Homogeneous catalysis · Metal-coordination cages · Cage effects


Manuscript received: May 6, 2021
Revised manuscript received: June 14, 2021
Accepted manuscript online: June 15, 2021