Radiotherapy for lung cancer
Borst, G.R.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Appendix of Chapter 6

The LQ model has a linear-quadratic shaped log-survival curve $ad + \beta d^2$ below a threshold dose d_T and a linear shaped log-survival curve $\lambda d + \delta$ above d_T. The LQ model and its derivative are continuous at the threshold dose:

$$\lambda d_T + \delta = ad_T + \beta d_T^2$$ \hspace{1cm} (1)

$$\lambda = a + 2\beta d_T$$ \hspace{1cm} (2)

Substituting equation 2 into equation 1 yields:

$$\delta = ad_T + \beta d_T^2 - ad_T - 2\beta d_T^2 = -\beta d_T^2$$ \hspace{1cm} (3)

The effect E_{LQ} of the total dose D given in n fractions of dose per fraction d exceeding d_T is thus given by:

$$E_{\text{LQ}} = n(\lambda d + \delta) = n[(a + 2\beta d_T)d - \beta d_T^2] = D\alpha + 2\beta d_T - \frac{\beta d_T^2}{d}$$ \hspace{1cm} (4)

With the NTD [15] defined as the total dose given in 2-Gy fractions having an equivalent effect (as determined by the LQ model) as predicted by the LQ model, i.e., $E_{\text{LQ}} = E_{\text{NTD}} = \text{NTD}(\alpha + 2\beta)$, the NTD can be calculated as:

$$\text{NTD} = \frac{E_{\text{LQ}}}{\alpha + 2\beta} = D\frac{\alpha + 2\beta - \frac{d_T^2}{d}}{2 + \alpha + \beta}$$ \hspace{1cm} (5)