Radiotherapy for lung cancer
Borst, G.R.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Appendix of Chapter 6

The LQI model has a linear-quadratic shaped log-survival curve $ad + \beta d^2$ below a threshold dose d_t and a linear shaped log-survival curve $\lambda d + \delta$ above d_t. The LQI model and its derivative are continuous at the threshold dose:

$$\lambda d + \delta = ad + \beta d^2 \quad (1)$$

$$\lambda = a + 2\beta d_t \quad (2)$$

Substituting equation 2 into equation 1 yields:

$$\delta = ad_t + \beta d^2_t - ad_t - 2\beta d^2_t = -\beta d^2_t \quad (3)$$

The effect E_{LQI} of the total dose D given in n fractions of dose per fraction d exceeding d_t is thus given by:

$$E_{LQI} = n(\lambda d + \delta) = n[(a + 2\beta d_t)d + \beta d^2_t] = D \alpha + 2\beta d_t - \frac{\beta d^2_t}{d} \quad (4)$$

With the NTD [15] defined as the total dose given in 2-Gy fractions having an equivalent effect (as determined by the LQ model) as predicted by the LQI model, i.e., $E_{LQI} = E_{NTD} = NTD(\alpha + 2\beta)$, the NTD can be calculated as:

$$NTD = \frac{E_{LQI}}{\alpha + 2\beta} = D \frac{\alpha + 2\beta d_t - \frac{d^2_t}{d}}{2 + \alpha / \beta} \quad (5)$$