Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

Jansen, Michael; Chatterjee, K.; Markoff, S.B.; Musoke, G.; Porth, O.; Yoon, D.; The Event Horizon Telescope Collaboration

DOI
10.1038/s41550-021-01417-w

Publication date
2021

Document Version
Final published version

Published in
Nature Astronomy

License
CC BY

Citation for published version (APA):
Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10−50 gravitational radii (r_g ≡ GM/c^2) scales in nearby sources. Centaurus A is the closest radio-loud source to Earth. It bridges the gap in radii (r_g) observed between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We establish a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 r_g scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses.

Here we present the first image of Centaurus A (Cen A) obtained by the Event Horizon Telescope (EHT) with a nominal resolution of 25 microarcseconds (μas) at a wavelength (λ) of 1.3 mm. For a black hole mass of (5.5 ± 3) × 10^9 M_☉ (ref. 7), we are probing jet structures down to scales of ~200 gravitational radii r_g ≈ 0.6 light days. It has recently become possible to model these scales with sophisticated general relativistic magnetohydrodynamics (GRMHD) simulations, where jet ejection and their symbiotic relationship with accretion flows are simulated from first principles. We have observed Cen A in a six-hour-long track on 10 April 2017. The EHT, as a novel and heterogeneous high-frequency very-long-baseline interferometry (VLBI) array, poses unique calibration challenges. To obtain robust results, independent of assumptions made during the data calibration, we base our scientific analysis on two datasets, which we obtained from two independent calibration pipelines: rPI-CARD and EHT-HOPS (Data reduction pipelines in Methods).

Figure 1 presents our reconstruction of the jet image structure derived from the EHT data using a regularized maximum likelihood method, next to the large-scale source morphology and the

1Max-Planck-Institut für Radioastronomie, Bonn, Germany. 2Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, Nijmegen, The Netherlands. 3Lehrstuhl für Astronomie, Universität Würzburg, Würzburg, Germany. 4Black Hole Initiative at Harvard University, Cambridge, MA, USA. 5Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA. 6Massachusetts Institute of Technology Haystack Observatory, Westford, MA, USA. 7National Astronomical Observatory of Japan, Mitaka, Japan. 8Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA. 9California Institute of Technology, Pasadena, CA, USA. 10Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands. 11Department of Astronomy and Columbia Astrophysics Laboratory, Columbia University, New York, NY, USA. 12Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, New South Wales, Australia. 13Institut für Theoretische Physik, Goethe-Universität Frankfurt, Frankfurt, Germany. 14Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain. 15Leiden Observatory—Allegro, Leiden University, Leiden, The Netherlands. 16Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC. 17Italian ALMA Regional Centre, INAF-Istituto di Radioastronomia, Bologna, Italy. 18Gravitation Astroparticle Physics Amsterdam (GRAPPA) Institute, University of Amsterdam, Amsterdam, The Netherlands. 19Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Warszawa, Poland. 20Tsong-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China. 21Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada. 22Waterloo Centre for Astrophysics, University of Waterloo, Waterloo, Ontario, Canada. 23Astronomy Department, Universidad de Concepción, Concepción, Chile. 24Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland. 25Single-dish, Polarized Radio Imaging of Circinus (SPI-CIRC), University of Amsterdam, Amsterdam, The Netherlands. 26Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada. 27Waterloo Centre for Astrophysics, University of Waterloo, Waterloo, Ontario, Canada. 28Astronomy Department, Universidad de Concepción, Concepción, Chile. 29Joint Institute for VLBI ERIC (JIVE), Dwingeloo, The Netherlands. *A list of authors and their affiliations appears at the end of the paper.
similarly edge-brightened morphology of the Messier 87 (M87) jet on comparable gravitational scales. These images are convolved with Gaussian beams set by their respective nominal instrumental resolutions, as per standard practice in radio-interferometric imaging, to suppress possibly spurious fine-scale structures in the image model. The brightness temperatures T (K) shown are related to flux densities S in jansky (Jy) through the observing wavelength λ, Boltzmann constant k_B and angular resolution element Ω as $T = \frac{S}{\lambda k_B \Omega}$. The λ 1.3 mm Cen A jet has a narrow, collimated profile and exhibits one-sidedness, pronounced edge-brightening and a northwest–southeast brightness asymmetry. The approaching jet extends towards the northeast and the faint counterjet is directed southwestwards. The total compact flux density in our image is \approx 2 Jy. The identification of the jet apex and black hole position (‘The position of the jet apex’ in Methods) is shown in the unconvolved image model of Fig. 2. We can use interferometer data with a high signal-to-noise ratio to super-resolve image features beyond the nominal resolution of the instrument. We therefore base our analysis on the robust features of the unconvolved image model. We have verified the robustness of the counterjet feature with synthetic data studies (Supplementary Fig. 1). The estimated jet position angle on the sky of 48° ± 5° agrees with centimetre-wave VLBI observations. The centimetre-band data also constrain the inclination angle of the jet axis with respect to our line of sight to $\theta \approx 12°$–45°, assuming that the jet does not bend along the line of sight.

The Cen A λ 1.3 mm jet exhibits three types of brightness asymmetry (R_Ω): between the jet and counterjet, the sheath and spine, and the northwest versus southeast ridgelines (‘Brightness asymmetries’ in Methods). We take the two bright radiating streams of the approaching jet and counterjet as jet ‘arms’ and denote the maximum intensity region along each arm as ‘ridgeline’. The jet-to-counterjet intensity ratio R_{ij} can naturally be explained for a relativistic outflow with an inclination angle $\theta \neq 90°$, where jet emission will be Doppler boosted and counterjet emission de-boosted. We find $R_{ij} \gtrsim 5$, which is in agreement with centimetre-wave VLBI observations and suggests that the initial acceleration of the jet occurs within the inner collimation region imaged in this study.

There is no jet spine emission in our image. With synthetic data studies, we found that spine emission exceeding ~20% of the sheath radiation intensity would be detectable, that is, $R_{sh/sp} > 5$ (‘Synthetic data imaging tests’ in Methods). The intensities of the brightest, central southeast and northwest jet components in the unconvolved image are $(32 \pm 8) \times 10^8$ K and $(20 \pm 4) \times 10^8$ K, respectively. The brightness ratio between these components follows as $R_{sp} = 1.6 \pm 0.5$.

The collimation profile of the jet width W follows a narrow expansion profile with distance to the apex z as $W \propto z$ with $k = 0.33 \pm 0.05$ or 0.36 ± 0.06 (Fig. 3). Resolution and potentially optical depth effects prevent us from pinning down the jet opening angle ψ_{j1} at small z, where the jet converges towards the apex. We denote the boundary between the inner convergence region and the outer jet with a clearly defined collimation and easily traceable jet ridgelines as z_{ci}. For the brighter and straighter southeast arm, we have $W(z_{ci} \approx 32 \mu$as $\approx 25 \mu$as, that is, the brightest jet component marks the boundary between the convergence and strongly collimated regions here (Fig. 2). If we assume the two jet ridgelines to meet at the apex, we find $\psi_{j1} \gtrsim 40°$ as a conservative estimate. Factoring in the range of possible θ values yields $\psi_{j1} \gtrsim 30°$–$30°$ for the intrinsic, deprojected opening angle (‘Collimation profile’ in Methods).

The M87 (NGC 4486, 3C 274, Virgo A), Markarian 501 and restarted 3C84 jets also show strong edge-brightening and large initial opening angles on comparable scales seen in similar inclination angles of ~18°. The expansion profile of Cen A lies in between the parabolic profile of M87 ($k = 0.5$) and the almost cylindrical profile of 3C84 ($k = 0$), which implies a strong confinement of the 3C84 jet by a shallow pressure gradient from the ambient medium. For the inner Cen A jet, this suggests strong magnetic collimation or the presence of external pressure and density gradients of $p_{out} \propto z^{-4.6} \approx z^{-1.3}$ and $p_{in} \propto z^{-1.1} \approx z^{-3}$ (‘Confinement by the ambient medium’ in Methods). Radiatively inefficient accretion flows alone, which are expected to operate in the M87, 3C84 and Cen A sub-Eddington low-luminosity active galactic nuclei (LLAGN) sources, have comparatively steeper pressure and density gradients. This may indicate the presence of winds, which are likely to be launched by this type of accretion flow. The noticeable similarity and prominence of edge-brightened jet emission in M87, 3C84 and Cen A suggests the dominance of jet sheath emission to be an emerging feature in LLAGN. In GRMHD simulations, the sheath

Fig. 1 | The jet structure of Cen A compared with M87. a. The large-scale jet of Cen A from an 8 GHz (λ 3.7 cm) TANAMI (λ 0.007 pc for the EHT (b) and 0.6 pc for the VLBA (c). The beams are shown in the bottom right corner of each image.
manifests itself as an interaction region between an accretion-powered outflow\(^1\) and the fast jet spine, which is potentially powered by the black hole spin\(^2\). The mass-loaded sheath has a higher intrinsic emissivity compared with the evacuated spine. The same type of LLAGN-applicable GRMHD simulations also self-consistently develop a collimating helical magnetic field structure in the jet, which is confirmed observationally in many AGN\(^3\). The dominating sheath emissivity and helical magnetic field structure provides a natural intrinsic explanation for the prevailing edge-brightening in LLAGN and can also explain the northwest–southeast brightness asymmetry. This model and alternative geometric explanations for the brightness asymmetries are discussed in ‘Brightness asymmetries’ in Methods.

The basic radiative properties of these jets can be analytically understood with a simple model\(^4\), where particle and magnetic energy density equipartition is assumed, while the particle density decays with \(r^{-2}\). Under these conditions, an optically thick and self-absorbed compact feature is expected (the core), whose position \(z_{\text{core}}\) along the jet is frequency dependent with \(z_{\text{core}} \propto \nu^{-1}\) (refs. \(^5\)\(^6\)\(^7\)). This radio core corresponds to the photosphere, where the optical depth \(\tau_\nu\) to photons at the observing frequency \(\nu\) is unity. The jet is optically thick upstream and optically thin downstream. The photosphere moves closer to the jet apex at higher frequencies, until the point where either the launching point is reached near the horizon, or particle acceleration has not yet begun\(^8\). The scale of a jet ‘nozzle’ emission cannot be smaller than the \(\sqrt{27} r_{\text{g}}\) photon capture radius (‘The location of the black hole’ in Methods).

The combination of all emission regions along the jet gives rise to a flat to inverted radio spectrum, peaking at a maximum frequency \(\nu\), determined by the black hole mass \(M\) and accretion rate \(\dot{M}\) and scaling as \(\nu \propto M^{-1} \dot{M}^{2/3} \propto M^{-1} F_{\nu}^{0.37} D^{16/37}\) (refs. \(^9\)\(^1\)\(^2\)). Here, \(D\) is the distance of the black hole to the observer and \(F_{\nu}\) the observed radio flux density. This scaling relations follow from the assumption that the jet’s internal gas and magnetic pressures are linearly coupled to the accretion rate and maintain a fixed ratio along the jets. The proportionality constant between \(M\) and \(F_{\nu}\) generally depends on the jet’s velocity, electron and magnetic energy densities, particle distribution spectrum and inclination angle. Therefore, we are only able to make a first-order estimate. It should further be noted that X-ray binary observations\(^1\) have revealed a more complex relationship between \(\nu\) and \(M\), where the innermost particle acceleration zone in the jet may not remain stationary and source-specific accretion disk parameters come into play. The same effects are expected to also influence \(\nu\) in AGN, which substantiates the fact that only order-of-magnitude estimates can be provided for \(\nu\). We assume the brightest features in our image to correspond to the radio cores at 230 GHz, which is discussed in ‘Alternative interpretations for the brightest jet features’ in Methods. Our assumption is confirmed by three consistent and independent measurements of \(\nu\), but future
spectral information is needed for a definitive confirmation. We show that \(\vec{\nu} \) lies in the terahertz regime for Cen A based on the core shift that we can determine from our image, scaling relations with the M87 jet, and the spectral energy distribution of Cen A.

We take the distance from the brightest pixel in the image to the estimated position of the jet apex and obtain a core shift of \(z_{\text{core}} = 32 \pm 11 \) mas. On the basis of this distance and the uncertain inclination angle, we estimate that an observing frequency of \(\nu_{\text{CenA}} \approx 10^{10} \text{THz} \) (The location of the black hole in Methods) will reach the base of the jet at the black hole innermost stable circular orbit. A caveat is that we do not take the effect of the uncertain ambient medium into account in this simple picture.

Independently, we can use the above scaling relations to estimate the order of magnitude of \(\nu_{\text{CenA}} \) by comparing the Cen A jet with M87, which has \(\nu_{\text{M87}} \approx 228 \) GHz (refs. [26,27]). For the centimetre jet radio core, a flux density of \(1 \text{Jy} \) is measured for both sources [28], which yields \(M_{\text{CenA}} \approx 0.1 M_{\text{M87}} \) for the accretion onto the black hole and therefore \(\nu_{\text{CenA}} \approx 2 \nu_{\text{M87}} \approx 6 \) THz (The location of the black hole in Methods), in agreement with our observations and the assumed position of the black hole at the jet apex within an order of magnitude. On the basis of comparable jet velocities (~0.3c, black hole’ in Methods), in agreement with our observations and the estimated position of the jet apex and obtain a core shift that we can determine from our image, scaling relations with the M87 jet, and the spectral energy distribution of Cen A. Our finding suggests that the black hole shadow [4] of Cen A would be visible in a bright, optically thin accretion flow at an observing frequency of a few terahertz. At this high frequency, a VLBI experiment above Earth’s troposphere would be able to resolve the 1.4 ± 0.8 μas shadow diameter with a minimal baseline length of ~8,000 km.

Methods

Processing of observational data. This section describes the 2017 EHT observations of Cen A, the model-independent calibration’ with two separate pipelines, the flux density calibration, and known measurement issues and systematics with corresponding mitigation strategies. The final datasets coming out from the two pipelines are both used for the scientific analysis as cross-verification (Supplementary Fig. 2).

Data acquisition. Cen A (PKS1322–428, hosted in the NGC5128 elliptical galaxy, \(\alpha_{J2000} = 13^h 25^m 27.62^s, \delta_{J2000} = -4^\circ 1^\prime 8.81^\prime\prime \)) was observed by the EHT in a six-hour-long track on 10 April 2017, with a total on-source integration time of 105 min (Supplementary Fig. 3). The observations were carried out by the Atacama Large Millimeter/submillimeter Array (ALMA), Atacama Pathfinder Experiment (APEX), James Clerk Maxwell Telescope (JCMT), Large Millimeter Telescope Alfonso Serrano (LMT), South Pole Telescope (SPT), Submillimeter Array (SMA) and Submillimeter Telescope (SMT). For ALMA, 37 of the 12 m dishes were phased-up. From the Instituto de Radioastronomía Millimétrica (IRAM), the IRAM 30 m telescope participating in the EHT observations is not able to see Cen A jointly with the rest of the array due to the low declination of the source. The data were recorded on Mark 6 VLBI recorders [2] with 2-bit sampling in two 2 GHz wide bands, ‘low’ and ‘high’, centred around 227.1 GHz and 229.1 GHz, respectively. Unless stated otherwise, results are derived using both the combined low-band + high-band data. Quarter-wave plates at each site except ALMA were used to observe circularly polarized light. The data were correlated with the Distributed FX (DFX) software [3]. The PolConvert software was used to convert the phased ALMA data from a linear polarization basis to a circular basis after correlation, based on solutions from the calibration of the corrected-element ALMA data [4].

Data reduction pipelines. The autocorrelation normalization, feed angle rotation, fringe fitting, bandpass calibration and a priori correction of atmospheric phase turbulence [5] were performed independently by two pipelines: rPICARD, which is based on the Common Astronomy Software Applications (CASA) package [6], and EHT-HOPS, which is based on the Haystack Observatory Postprocessing System (HEPPSS). The Image Transport System (ITS) was used for image transport, with the Radio Interferometer Measurement and Image Interchange Convention (FITS-IDI) and Mark4 data, rPICARD uses the FITS-IDI product and converts it into the measurement set format. EHT-HOPS uses the Mark4 data. Both software packages convert the calibrated data into the UVFITS format for further processing.

rPICARD performs an upstream correction for the feed rotation angle and uses station-based global fringe fitting based on an unpolarized point source model to correct for phases, delays and rates consistently for the right-circular-polarization and left-circular-polarization signal paths [7]. Atmospheric phase and residual delay variations are corrected within the expected coherence time by fringe fitting segmented data of each VLBI scan. The segmentation length is set by the signal-to-noise ratio (SNR) of each baseline.

For EHT-HOPS, the feed rotation angle is corrected after the fringe fitting together with an additional polarization calibration step, where complex polarization gain offsets are solved for. Delays and rates are found in a baseline-based fringe search and referenced to individual stations with a least-squares optimization. Atmospheric phases are corrected by fitting a polynomial phase model to the data on baselines to the most sensitive station in each scan. A round-robin approach is used to avoid fitting to thermal noise and the degree of the polynomial is set by the SNR of the data.

Gain amplitude calibration. The flux density calibration is done based on determined station sensitivities in a common framework for the rPICARD and EHT-HOPS data [8]. The sensitivity of a station i is given by the observed total flux density (SEFD) in Jy, which takes into account the gain and total noise power along a telescope’s signal chain as a function of time \(t \) and frequency \(\nu \). On a baseline \(i-j \), correlation coefficients \(\xi_{ij} \), in units of thermal noise are calibrated to a physical radiation intensity scale of correlated flux density \(S_{ij}(t, \nu) \) through

\[
S_{ij}(t, \nu) = \sqrt{\text{SEFD}(i, \nu) \text{SEFD}(j, \nu)} \eta_S \xi_{ij}(t, \nu)
\]

where \(\eta_S \) is the quantization efficiency. For data recorded with 2-bit sampling, we have \(\eta_S = 0.88 \).

The gains of co-located stations were solved based on a contemporaneous measurement of the total flux density \(S_0 \) for the source with the ALMA interferometer [9,10]. The correlated flux \(S \) measured between two co-located sites \(p \) and \(q \) should equal to \(S_0 \) for an ideal station and \(S_0 = S_{pq} \). It follows, that we can solve for the station-based amplitude gains \(A \) of \(p \) and \(q \) with a self-calibration approach. Here the model is given by the constant flux density \(S_0 \) seen by baselines between co-located sites. No gain corrections for non-co-located (‘isolated’) stations are solved for.

Ad hoc correction factors are used to correct signal losses at APEX due to an injected instrumental signal and at SMA due to temporary losses of bandwidth [11]. In addition, LMT and SPT suffered from pointing problems, which result in substantial amplitude variations between and within VLBI scans. These losses cannot be estimated a priori and must be corrected with self-calibration gain solutions derived within short ~10s segments from high SNR data. The SMT station was able to track the source down to an elevation of a few degrees. Large self-calibration gain factors are therefore needed towards the end of the experiment. Besides these known data issues, gain corrections factors are well constrained within a determined a priori error budget ranging between 10% and 20% for the individual stations [10].

Imaging. In this section, we describe how we obtained our image model from the observational data. In a first step, we have established a blind consensus between different imaging methods. Then we have fine-tuned the parameters of one method, eht-imaging [12], for the rPICARD and EHT-HOPS data to obtain final images for the analysis of the Cen A jet structure.

The highest-resolution images of this southern source before this work were obtained within the Tracking Active Galactic Nuclei with Austral Milliarcsecond Imaging (TANAMI) experiment at 6 GHz and presented in [13]. Here, we present the resolution of 400 μas, showing an extremely collimated structure with multiple distinct radio knot emission regions [14]. In a previous single-baseline non-imaging study of Cen A, a bright compact core was detected at 215 GHz (ref. [15]).
Blind challenge. Similarly to the method used when the shadow of M87* was resolved by the EHT34, we have carried out a blind imaging challenge before proceeding to the scientific analysis of the data. In this challenge, a number of individuals have reconstructed an image of the source independently of each other. Early (not fully verified) low-band data from the EHT-HOPS pipeline was used, which had slightly larger amplitude gain errors from outdated a priori calibration parameters. Out of twelve total images, six had acceptable reduced \(\chi^2 < 2 \) for the closure phases. These images were obtained with the eht-imaging and SMIL51–53 regularization maximum likelihood methods and the Difmap52 and CASA54 CLEAN methods55,56. The images that did not make the \(\chi^2 \) cut often showed spurious emission features and strong sidelobe structures.

Final imaging method. With the imaging challenge, we have established that different methods converge towards the same robust source structure (Supplementary Fig. 2), independent of shared human bias. Further imaging analysis of the rPICARD and EHT-HOPS science release data was pursued with the final M87* eht-imaging script34, which is based on application of a regularized maximum likelihood method that includes a maximum entropy term. Using a second-moment-based pre-calibration, LMT gains were stabilized with respect to the better constrained SMT amplitudes. As Cen A is sufficiently compact within the EHT beam, the short LMT-SMT baseline measures a Gaussian-like source structure. We have performed an initial self-calibration to a Gaussian with size \(\theta_{\text{maj}} \times \theta_{\text{min}} \) at a position angle \(\theta_{\text{maj}} \) and with a total flux of \(S_c \). Here, \(\theta_{\text{maj}} \) and \(\theta_{\text{min}} \) are the major and minor axis sizes of the Gaussian in radians. Any gains that were erroneously introduced in this process can be removed in a self-calibration step. To solve for the image brightness distribution \(Z \) with a regularized maximum likelihood method (employed by eht-imaging), we are minimizing

\[
\sum_i a_i \chi^2 I(Z) + \sum_k \lambda_k A_k(Z).
\]

Here \(D \) represents the collection of data terms, which are derived from the measured visibilities and have approximately normal noise statistics: amplitudes, closure phases and log closure amplitudes. Corresponding to each data term, we have a goodness-of-fit function \(\chi^2 = \{ \chi^2 \} \), and relative weighting \(\lambda_k = \{ \lambda_k \} \). We have performed four incremental imaging runs with subsequent self-calibration, over which we have increased the weight of each data term: \(\alpha_i \to \alpha_i' \to \alpha_i'' \to \alpha_i''' \to \alpha_i'''' \) with \(\alpha_i'''' < \alpha_i''' < \alpha_i'' < \alpha_i' \) \(\forall D \). Regularizer terms \(\Lambda \) are included with weights \(\lambda \), and impose additional assumptions on the model. We have imposed two regularization parameters: one for a maximum entropy method (MEM)57 term with weight \(\beta_{\text{MEM}} \) and another one for the amount of compact flux \(Z_c \) in the image with weight \(\beta_c \). The MEM term minimizes the entropy of \(Z \) with respect to a prior image \(\Phi \), which results in a similarity between the two images for each pixel \(x \). Here, we used \(\log \left(\chi^2(Z) \right) = \chi^2 I(Z) \). For the MEM prior image \(\Phi \), we have chosen a Gaussian model oriented along the direction of the large-scale jet, which we also used as initialization for our imaging. It is expected that \(Z_c < S_c \), as a substantial portion of the flux measured by ALMA may come from different emission mechanisms and larger scales outside of the EHT field of view. In fact, the \(-150 \text{ m J} \text{CMT-SMA baseline sees a flux density of about } 5 \text{ Jy and at 2 km, ALMA-APEX observes only } 4 \text{ Jy. For M87*, the EHT measured } Z \approx S_c/2 \text{ (ref. } 28) \).

The numerical values of the final imaging parameters are given in Supplementary Table 1. Optimal parameters were chosen based on an empirical minimization of \(\chi^2_{\text{MEM}} \), median station gains \(A \)58 from self-calibration and patches of spurious flux in the image. In addition, we took the similarity of image reconstructions from the rPICARD and EHT-HOPS data for a given set of parameters into account to avoid overfitting to data peculiarities that result from assumptions made during the data calibration. A variety of images that can be reconstructed with various combinations of the free imaging parameters can be shared upon reasonable request. We have chosen for an eht-imaging reconstruction of the rPICARD data for our final image, as this imaging method and dataset have been studied most extensively.

Our images are shown in units of brightness temperature \(T \) (K), which is related to the flux density \(S \) in Jy through the observing wavelength \(\lambda \), Boltzmann constant \(k \) and angular resolution element \(\Delta \). For \(T = 1/(2k \Delta^2) \).

Fundamental data properties and fits of the final image model to the data are shown in Supplementary Fig. 4. In Supplementary Fig. 5, we show the measured amplitudes projected along and perpendicular to the jet position angle. Along the jet axis, amplitudes fall off quickly at long projected baseline lengths, indicating the absence of substructures along the jet. Perpendicular to the jet, ‘bouncing’ amplitudes out to large projected baseline lengths occur, due to the strong intensity gradients across the transverse jet profile.

Synthetic data imaging tests. We have used the SYMBA software60 to perform imaging studies based on simulated observations. Given a input source model \(\mathcal{M} \), SYMBA follows the entire EHT signal path to predict which source structure \(\mathcal{Z} \) would eventually be reconstructed. Thereby, we can assess how close our image reconstruction comes to the ground truth structure \(\mathcal{M} \) of a fabricated observed source. SYMBA simulates the parameters of Earth’s atmosphere with the ATM module61 to add sky noise, signal attenuation and phase turbulence. Next, gain, leakage, pointing and focus errors plus thermal noise are introduced for each telescope in the array based on known telescope properties62. Afterwards, the simulated corrupted data are calibrated by rPICARD in the same manner as the observational data. The \(u, v \) coverage and SED sensitivities are taken from the 2017 Cen A EHT observation track. The simulated calibrated data are then imaged with the same final eht-imaging script used to image the observational data in this work.

To assess the robustness of secondary features in our image reconstruction, we have performed three synthetic data tests (Supplementary Fig. 1). First, a control study to demonstrate that the output reconstruction from SYMBA correctly matches the input model \(\mathcal{M}_{\text{input}} \). Then, we have removed the counterjet and emission features at large distance to the apex \(z \) from \(\mathcal{M}_{\text{final}} \) to verify that these do not spuriously appear in our simulated observation.

Furthermore, we have also removed compact emission sources in the counterjet, but a tentative merge of the two arms can be seen. The upper arm (region I in the figure) exhibits a strong bend, while the lower arm (region IV) remains mostly straight. We note that a similar structure, where one jet arm appears to be straighter than the other one, is also present in the M87* jet1. The second consideration is the symmetry between the approaching jet and the counterjet. We note that there is no clear correspondence between individual features in the jet and counterjet. The counterjet appears straight with two components in the upper region (II) and one component in the lower region (III). As the apex must be upstream of the counterjet, the closest component of the receding jet to the approaching jet constrains how far upstream of the approaching jet the apex position can be. In fact, the position we assume for the apex based on the first consideration, where the streamlines of the approaching jet converge, lies halfway between the radio core in region I and the closest counterjet component in region II. It should be noted that a simple extrapolation of only the edge-brightened approaching jet would place the apex well inside the faint counterjet region.

On the basis of the robustness of our image reconstructions with different datasets, software packages and imaging parameters, we assume a positional uncertainty of 5 mas for the robust features of the image model, which is in agreement with the width of the jet ridges. Taking all constraints on the apex location into account, we estimate an uncertainty of 10 mas on the position.

For the determination of \(\beta \), pixel and jet apex position uncertainties are added in quadrature. On the basis of possible apex position estimates, we fit the \(\omega \) vs. \(z \) profile multiple times and derive a systematic error of \(\pm 0.06 \) on \(\omega \). When we used image model convolved with the nominal resolving beam, we obtain \(k = 0.35 \) with a statistical error of \(\pm 0.2 \).

Brightness asymmetries. The jet–counterjet asymmetry is most likely caused by relativistic boosting. We can calculate the \(\mathcal{R}_{\text{v,sp}} \) brightness ratio by taking the average image flux density within 500 x 100 mas rectangular regions on opposite sides of the apex. This ratio has to be interpreted with care, since the two regions may be at different distances to the jet apex. Moreover, counterjet radiation may be affected by the accretion flow and intrinsic jet–counterjet differences may arise from asymmetries in the jet launching process and the ambient medium11,12,29,30.

If we assume the intrinsic emissivity to be the same in the jet sheath and spine, beaming effects can be invoked to explain observed differences in brightness across the jet. We note that the intrinsic emissivity of the jet sheath is probably larger than that of the spine, as mentioned in the main text. The simplifying assumption of identical intrinsic emissivities can nonetheless be used to derive straightforward estimates for jet velocity components and the inclination angle \(\vartheta \), since Doppler boosting is expected to have a considerable contribution to the observed source structure. If the inclination angle \(\vartheta \) is not too small, a substantial portion of the spine emission may be beamed away from the line of sight. If the sheath and spine emissivities are \(q_{\text{sh}} \) and \(q_{\text{sp}} \), respectively, the ratio of \(I_{\text{sh}} \) sheath and \(I_{\text{sp}} \) spine intensities in a continuous jet follows as

\[
\mathcal{R}_{\text{v,sp}} = \frac{I_{\text{sh}}}{I_{\text{sp}}} = \frac{\sqrt[2-a]{1 - \beta_\vartheta^2 (1 - \beta_\vartheta \cos(\vartheta))^a}}{\sqrt[2-a]{1 - \beta_\vartheta^2 (1 - \beta_\vartheta \cos(\beta'))^a}}.
\]
with $a(\nu|\xi_\nu)$ as the spectral index of the optically thin jet components. Assuming a typical spectral index of $a = -0.7$ and identical intrinsic emissivities, we can constrain the sheath and spine velocities with equation (3) and $R_{\text{sheath}} > 5$ to
\[
1 - \beta^2 \cos^2 (\theta) > 1 - \beta \cos \phi_0 (\theta) > 0.5 \left(1 - \beta^2 \cos (\theta)\right). (4)
\]
For a full three-dimensional picture of a jet, we assume the sheath to be symmetric in the \(\phi\) direction around the spine in a cylindrical coordinate system, different spine and sheath emissivities, due to beaming or intrinsic effects, cannot, on their own, explain edge-brightening. The reason is that the sheath emission will contribute to any sightline towards the jet. A more detailed description, where now also the optical depth is taken into account, is given in the next paragraph. In the remainder of this section, we go through different scenarios that could cause the observed edge-brightening. First, we discuss a common interpretation related to pathlength differences. As this only works in optically thin regions, we put the presence of helical magnetic fields forward as the most likely, intrinsic explanation for edge-brightening in LLAGN. We then discuss more exotic scenarios, of a rotating or asymmetric jet, which might be tested through future observations.

In the optically thin jets, the integrated column density along sightlines through the jet at different distances from its axis (centre versus edges) can be used to explain edge-brightening. These are sightlines that, across the transverse extent of the jet, enter the jet at different locations. The sightlines first pass through the near side of the jet and exit again at the other side of the jet, the far side. If we assume the absence of intrinsic spine emissivity (due to weak mass loading or beaming of radiation into a narrow cone away from the line of sight), the observed radiation will be produced by a sheath of thickness ΔR. For a line sight that goes exactly through the centre of the jet, we pass twice through the sheath, which would amount to a pathlength of $2\Delta R/\sin \theta$, where the pathlength is short enough to locally approximate the jet as a cylinder. For a local jet radius R, the column density along a sightline through the edge of the jet will be larger by a factor of $\beta R \sin \theta$. Here we have neglected changes in emissivity as sightlines pass through material at different distances to the jet apex. This simple model is capable of explaining edge-brightening in optically thin jet regions, where radiation along longer pathlengths accumulates. For Cen A, this would imply a thin radiating sheath with $\Delta R < 0.04 R$.

However, the edge-brightening in Cen A extends to the essentially optically thick radio core, suggesting that different physics are at play in this jet. The likely explanation is a strong injection of relativistic particles, suggested by monitoring observations to take relativistic aberration into account.

In an alternative scenario, this tentative northwest–southeast brightness asymmetry seen in Cen A could be explained with two distinct jet components having different velocities or different inclinations angles with respect to the line of sight.

In this work, we have interpreted the edge-brightening in terms of a naturally emerging spine–sheath jet structure in LLAGN, based on results from GRMHD simulations that are applicable to those type of sources. However, the same phenomenon is also observed in more powerful AGN; for example, Cygnus A and Cygnus A (refs. 70, 71), where an accretion flow operating at ~1% of the Eddington limit is unlikely to be radiatively inefficient.

Collimation profile. Following the northwest and southeast jet ridgelines, we bin distance values to the jet apex into intervals of 10\(\mu\)s in size. Within each bin, we select the brightest pixel to obtain the central location along the ridge. We impose a statistical uncertainty of 5\(\mu\)s on distances z in accordance with the width of the jet ridgelines in our image model. The width W of the jet is taken as the distance between the two jet arms. The profile of our image is shown in Fig. 3 together with the corresponding average opening angle computed from the jet width as a function of distance to the apex.

Resolution limitations prevent us from tracing down the exact value of the initial jet opening angle ψ_0, near the apex, where the analysis of binned distance values becomes uncertain. Nonetheless, we can derive an upper limit on ψ_0, with a simple geometric argument: the jet has a clearly defined collimation region beyond some distance from the apex, at $z > z_{sh}$. To estimate z_{sh}, we have used the southeast jet arm, as it is brighter, straighter, and has a more clearly identifiable compact brightness core. If we now assume that the jetstream converges monotonically towards the apex for $z < z_{sh}$, and that the apex itself does not correspond to an extended region, we have
\[
\psi_0 \gtrsim 2 \text{arctan} \left(\frac{W_{z_{sh}}}{2z_{sh}} \right). (7)
\]

If the inclination angle θ is known, the intrinsic opening angle ψ_int can be computed as
\[
\psi_\text{int} \gtrsim 2 \text{arctan} \left(\frac{\sin (\theta) W_{z_{sh}}}{2z_{sh}} \right) = 2 \text{arctan} \left(\sin (\theta) \tan \left(\frac{W_{z_{sh}}}{2} \right) \right). (8)
\]

The jet remains collimated out to kiloparsec scales and contains multiple particle acceleration sites in a knotted structure (refs. 7, 15). The source is a well-suited laboratory for models of AGN feedback (refs. 7, 15) and the creation of ultrahigh-energy cosmic rays (refs. 7, 15).

Confinement by the ambient medium. Analytic theory for axisymmetric, relativistic, Poynting-dominated outflows can be used to derive exact asymptotic solutions for the influence an ambient medium on the collimation of a jet. One can show that in the presence of external pressure gradient $\nabla P(x) = \rho_\text{e} \mathbf{e}_z$, the jet expansion profile W as a function of distance along the jet axis z follows (ref. 16)
\[
\frac{\partial^2 W}{\partial z^2} - W^{-3} + C_1 \rho_\text{e} = 0,
\]
in a simplified form, with C_1 a numerical constant. At large z and for a shallow external pressure gradient with $\kappa \ll 2$, we obtain (ref. 16)
\[
W(z) = C_1^{-1/4} \sqrt{\frac{2 - \kappa}{\kappa}} C_1 \cos \theta S + C_2 C_1 \cos \theta S + \frac{\kappa}{2 - \kappa} \sin S e^{\kappa z}, \tag{10}
\]
for $S(z) = C_2 e^{-\kappa z} C_1 \cos \theta S$, C_1, C_2, C_3, C_4 and C_5 numerical constants. Equation (10) shows that the ambient pressure will confine the jet into a $W \propto z^{1/4}$ profile with $\kappa = \kappa_0/4$. In addition, oscillations along the jet boundary can occur in a non-equilibrium state for $C_1 \neq (2 - \kappa)/\kappa$, $C_1 = 0$ (ref. 16).

The location of the black hole. Given a measurement of the core shift z_{core} with respect to the black hole, we can gauge the observing frequency ν with the corresponding average opening angle computed from the jet width as a function of distance to the apex.
In this expression, \(M \) is the mass of the black hole and \(D \) the distance from the black hole to the observer.

With the derived scaling relation of \(v \propto D^{-1.3}\) and \(M^{-1.59}\), we can relate the black hole's accretion rate to its observed flat-spectrum radio flux density. In particular, if we assume for two sources to share the same basic intrinsic jet properties and orientation with respect to Earth, we have

\[
\frac{v}{v^*} = \left(\frac{F_1}{F^*} \right)^{1/3} \left(\frac{D_1}{D^*} \right)^{16/17} \left(\frac{M_1}{M^*} \right)^{-1}. \tag{12}
\]

While these expressions are strictly speaking only true for a filled conical jet, they appear to describe the emission from the jet sheath and its basic scaling properties reasonably well\(^{88,89}\) and allows one to make a first-order estimate of the characteristic radio frequency of near-horizon emission.

We have used the above equations to estimate the accretion rate of Cen A to the one of M87 based on the assumption of a similar coupling between SMBH inflows and jet power. External Faraday rotation effects and a generally variable core position are expected to introduce additional uncertainty. The derived accretion rate is then likely to overestimate the true value. Given a scale probed in our images, the high observing frequencies, and the proximity of the source, this core shift is not expected to contribute to large uncertainties. Moreover, the core shift we have estimated in Cen A agrees with the core SED of the source and fundamental frequency and the proximity of the source. In fact, special circumstances have to be invoked to explain the similarity to Cen A and the core shift typically follows the standard relation in extragalactic jets. In this work, we have interpreted the brightest jet features as radio cores, which mark the transition region between upstream synchrotron self-absorbed jet regions and downstream optically thin areas. In our image, we are able to resolve the self-absorbed region between the putative radio core and jet apex, which coincides with the location of the SMBH and its accretion disk. With current telescopes, the radio core and upstream region remains unresolved for most AGN (see Table 2 in ref. 8 for example).

The radio core interpretation of the brightest jet features seems most plausible given that the jet is self-similar and the area of a black hole's accretion disk is proportional to its area.

Alternative interpretations for the brightest jet features. In this work, we have interpreted the brightest jet features as radio cores, which mark the transition region between upstream synchrotron self-absorbed jet regions and downstream optically thin areas. In our image, we are able to resolve the self-absorbed region between the putative radio core and jet apex, which coincides with the location of the SMBH and its accretion disk. With current telescopes, the radio core and upstream region remains unresolved for most AGN (see Table 2 in ref. 8 for example).

The radio core interpretation of the brightest jet features seems most plausible given that the jet is self-similar and the area of a black hole's accretion disk is proportional to its area.

Data availability

The ALMA raw visibility data can be retrieved from the ALMA data portal under the project code 2016.1.01198.V. The calibrated Stokes I VLBI visibility data of Centaurus A can be obtained from a DOIs listed under https://eventhorizontelescope.org/or-astronomers/data with the code 2021-DO3-01. Image FITS files and scripts to reproduce the plots are available from the corresponding author upon reasonable request.

Code availability

Antenna gains that enter the SEFDs were computed with https://bitbucket.org/M_Janssen/symba. The SEFDs were applied with the https://github.com/achael/eht-imaging. SYMBA is at https://bitbucket.org/M_Janssen/symba. The docker image used here is tagged as de5659cc60cad6effba216d7243733c613a and can be found on https://hub.docker.com/r/mjanssen2308/symba.

Received: 22 January 2021; Accepted: 2 June 2021.

Published online: 19 July 2021

References

Acknowledgements

A.C. is an Einstein Fellow of the NASA Hubble Fellowship Program. JP is an EACOA fellow. Z.Y. is a UKRI Stephen Hawking Fellow. We thank the following organizations and programmes: the Academy of Finland (projects 274477, 284495, 312466, 315721); the Agencia Nacional de Investigación y Desarrollo (ANID). Chile via NCN19_058 (TITANs) and Fondecyt 3190878; the Alexander von Humboldt Stiftung; an Alfred P. Sloan Research Fellowship; Algoe, the European ALMA Regional Centre node in the Netherlands, the NL astronomy research network NOVA and the astronomy institutes of the University of Amsterdam, Leiden University and Radboud University; the Black Hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council (China); Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico); projects U0004-246083, U0004-259839, F0003-272050, M0037-279066, F0003-281692, 104497, 275201, 263356, 57265507; the Delaney Family via
The Delaney Family John A. Wheeler Chair at Perimeter Institute; Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM, projects IN112417 and IN112820); the EACOA Fellowship of the East Asia Core Observatory Association; the European Research Council Grant “BlackHoleCam: Imaging the Event Horizon of Black Holes” (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2017/177 and GenF-Program project (project CIDEGENT/2018/021); MICINN Research Project PID2019-108959GB-C2021; and the Gordon and Betty Moore Foundation (grants GBMF-356, GMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, innovative specifiche TECNOLOGIE; the International Max Planck Research School for Astronomy at the University of Bonn and Cologne; Joint Princeton/Flatiron and Joint Columbia/Flatiron Postdoctoral fellowships, research at the Flatiron Institute is supported by the Simons Foundation; the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (S), (Grant-in-Aid for the Scientific Research on Priority Areas (S), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDY-SSW-H107, QYZDJ-SSW-SYS008, ZDBS-LY-SLH111).

We further thank the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the Ministry of Science and Technology of Chile (grant 18K02090, 18K10394, 19K030656, 19K030721, 19K03079, 18H01245, 19K0101943, 25120007); the Malaysian Fundamental Research Grant Scheme (FRGS) FRGS/1/2019/STG02/UM/02/2; the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-111-001, 107-2112-M-001-001-MY3, 107-2112-M-001-001-MY5); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC20K1567, NASA Astrophysics Theory Program grant 80NSSC20K0527, NASA grant NNX17AL82G, and Hubble Fellowship grant HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555, and NASA NExT award 80NSSC20K0645); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF; grants AST-0964540, AST-0532953, AST-0521233, AST-0705062, AST-0950844, AST-0292984, AST-1126435, AST-1140300, DGE-1140845, AST-1207704, AST-1207730, AST-1207752, MRI-1225899, OPP-1248097, AST-1318006, AST-133766, AST-1404254, AST-1455536, AST-1461756, AST1715061, AST-1716327, AST-1716356, OISE-174347, AST-1816642, AST-1903847, AST-1935980, AST-203436); the Natural Science Foundation of China (grants 11573051, 11630306, 116510247, 10265314, 117121303, 11725312, 11730057, 11913052, 11919053, a fellowship of China Postdoctoral Science Foundation (Grant 2020M6726), the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Research Foundation of Korea (the Global PhD Fellowship Grant: grants 2014H1A2A1018695, NRF-2015H1A2A1037352, 2015- R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D1A1066651, Basic Research Support Grant 2018R1A6A3A0302652); the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Innovation (DSI) of South Africa; the South African Research Chairs Initiative of the Department of Science and Innovation and the Research Foundation National Science and Technology (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Spanish Ministerio de Economía y Competitividad (grants PCA2018-09895-B-C22, AYA2016-80889-P, PID2019-108995-C21); the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award for the Instituto de Astrofísica de Andalucía (SEV-2017-0705); the Foundation for the Promotion of Science and Technology of Catalonia; Empresas y Universidad de la Junta de Andalucía (grant P18-FR-1769); the Chinese Academy of Sciences; and the Natural Sciences and Engineering Research Council of Canada (Canadians have for the indigenous Hawaiian people. We acknowledge the significance that Maunakea, where the SMA and JCMT EHT stations are located, has for the indigenous Hawaiian people. The grants listed above collectively fund the Event Horizon Telescope project.

Author contributions

Funding
Open access funding provided by Max Planck Institute for Radio Astronomy (2)

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41550-021-01417-w.

Correspondence and requests for materials should be addressed to M.J.

Peer review information Nature Astronomy thanks Denise Gabazda, Talvikki Hovatta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
The Event Horizon Telescope Collaboration

Leiden, The Netherlands. 119 Jeremiah Horrocks Institute, University of Central Lancashire, Preston, UK. 120 Physics Department, Brandeis University, Waltham, MA, USA. 121 School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China. 122 Mullard Space Science Laboratory, University College London, Surrey, UK. 123 School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China. 124 Astronomy Department, University of Science and Technology of China, Hefei, People’s Republic of China.