Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

Aab, A.; de Jong, S.J.; Timmermans, C.; Vink, J.; Pierre Auger Collaboration

DOI
10.1103/PhysRevLett.126.152002

Publication date
2021

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

PHYSICAL REVIEW LETTERS 126, 152002 (2021)

0031-9007/21/126(15)/152002(11) 152002-1 Published by the American Physical Society

(Pierre Auger Collaboration)
We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic
interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop.

DOI: 10.1103/PhysRevLett.126.152002

Introduction.—Ultrahigh energy cosmic rays (UHECRs) are particles coming from outer space, with energies exceeding \(10^{18}\) eV. They provide the only experimental opportunity to explore particle physics beyond energies reachable by Earth-based accelerators, which go up to cosmic ray energies of \(9 \times 10^{16}\) eV.

The Pierre Auger Observatory [1] detects extensive air showers that are initiated by the UHECRs colliding with the nuclei in the atmosphere. Information about UHECRs is extracted using simulations based on hadronic interaction models which rely on extrapolations of accelerator measurements to unexplored regions of phase space, most notably the forward and highest-energy region. In addition, accelerator experiments at the highest energies either probe the interactions between protons or of protons with heavy nuclei, while most interactions within air showers are between pions and light nuclei.

A further challenge is that the UHECR mass has to be measured despite not being yet completely decoupled from the hadronic uncertainties. The observable with the least dependence on hadronic interactions is the atmospheric depth at which the longitudinal development of the electromagnetic (EM) component of the shower reaches the maximum number of particles, namely, \(X_{\text{max}}\) [2].

In hadronic cascades, the energy of each interacting particle is distributed among the secondaries, mostly pions. Neutral pions rapidly decay into two photons, feeding a practically decoupled electromagnetic cascade (other resonances decaying into \(\pi^0\)'s, electrons, and/or photons also contribute). Charged pions (and other long-lived mesons like kaons) tend to further interact until their individual energies are below a critical value, below which they are more likely to decay. Muons, which are products of hadronic decays, are thus predominantly produced in the final shower stages. In sufficiently inclined showers, the pure EM component is absorbed in the atmosphere and the particles that reach the ground (muons and muon decay products) directly sample the muon content [3,4], reflecting the hadronic component of the shower.

Air showers are mainly detected at the Pierre Auger Observatory by the surface detector (SD), an array of water-Cherenkov detector stations, and the fluorescence detector (FD), consisting of 24 fluorescence telescopes. By selecting the subsample of events reconstructed with both the SD and FD, and with zenith angles exceeding 62°, both the muon content and the energy of the shower are simultaneously measured.

The results obtained indicate that all the simulations underestimate the number of muons in the showers [5,6]. These analyses come with the caveat that they cannot distinguish a muon rescaling from a shift in the absolute energy scale of the FD measurement. However, muon content and energy scale were disentangled in a complementary technique based on showers with zenith angles below 60°. Using the longitudinal profile of the shower in the atmosphere obtained with the FD and the signals at the ground measured with the SD, it was shown that the muonic component still has to be scaled up to match observed data, while no rescaling of the EM component and the FD energy is required [7]. The measurements with the FD also show that both the position of the shower maximum in the atmosphere \(X_{\text{max}}\) and the entire shape of the EM shower are well described by the simulations [8,9]. At lower energies, down to \(\sim 10^{17.3}\) eV, in a measurement using the subarray of buried scintillators of the Pierre Auger Observatory, a direct count of the muons independent of EM contamination was obtained, which also shows that simulations produce too few muons [10]. There is much evidence that all the simulations underpredict the average number of muons in the showers: a comprehensive study of muon number measurements made with different experiments has shown that the muon deficit in simulations starts around \(\sim 10^{16}\) eV and steadily increases with energy. Depending on model and experiment, the deficit at \(\sim 10^{20}\) eV ranges between tens of percent up to a factor of 2 [11].

The increased statistics obtained at the Pierre Auger Observatory allow us to now take a further step and explore fluctuations in the number of muons between showers, hereinafter referred to as “physical fluctuations.” The ratio of the physical fluctuations to the average number of muons (relative fluctuations) has been shown to be mostly dominated by the first interaction, rather than the lower energy interactions deeper in the shower development [12,13]. Here, we exploit the sensitivity of fluctuations to the first interaction to explore hadronic interactions well above the energies achievable in accelerator experiments.

Methodology.—Our analysis here is based on the set of inclined air showers \((62° < \theta < 80°)\) that are reconstructed both with the SD and FD between January 1, 2004 and December 31, 2017. For each event, we obtain independent measurements of the muon content (with the SD) and the calorimetric energy (with the FD). To ensure the showers can be reconstructed with small uncertainties, we select only events with at least four triggered stations in the SD array and we further require that all the stations surrounding the impact point of the shower on the ground are operational at the time of the event. Only events with good atmospheric conditions (few clouds and a low aerosol content) are accepted in order
to guarantee a good energy reconstruction with the FD. In addition, it is required that the entire shower profile and, in particular, X_{max} is within the field of view of our telescopes. Since heavy primaries penetrate the atmosphere less than light ones, the acceptance with this selection would be mass dependent. To avoid this bias, we constrain the field of view to the region where all values of X_{max} are accepted. Further details are given in \cite{5,14}. These selection criteria result in a total number of events of 786. In addition, only events with energy larger than 4×10^{19} eV, which ensures full trigger efficiency of the SD \cite{3}, are used to extract the fluctuations (281 events).

The number of muons is reconstructed by fitting a 2D model of the lateral profile of the muon density at the ground to the observed signals in the SD array. The free parameters of the fit are the zenith and azimuth angles of the shower, the impact point of the shower on the ground (shower core position), and a normalization factor with respect to a reference muon density profile in simulated proton showers at 10^{19} eV \cite{3}. There exists a residual pure EM component in showers with low zenith angles and stations very close to the shower core position (at 400m and 64° it is $\sim 6\%$), which has been subtracted using a parametrization \cite{4}. The dimensionless normalization factor we obtain from the fit is then transformed to the dimensionless quantity R_μ, which is given by the integrated number of muons at the ground divided by a reference given by the average number of muons in simulated proton showers at 10^{19} eV and the given zenith angle. At 10^{19} eV and an inclination of 60°, $R_\mu = 1$ corresponds to 2.148×10^7 muons. For more details, see \cite{5}. In the following, we refer to R_μ as the number of muons for short.

The calorimetric energy of the air showers E_{cal} is reconstructed by integrating the longitudinal shower profiles observed with the FD \cite{9,15}. The total energy of the shower is then obtained by adding the average energy carried away by muons and neutrinos, the so-called invisible energy $E = E_{\text{cal}} + E_{\text{inv}}$. At 10^{19} eV, E_{inv} accounts for 14% of the total energy in air showers \cite{16–20}.

In Fig. 1 the muon number R_μ is shown as a function of the measured energy. Markers on the top of the frame define the bins in which the fluctuations are also assumed to follow a Gaussian distribution of width σ_μ. The PDF incorporates the various contributions to the fluctuations, treating each energy bin independently while also accounting for the effect of the migration of events between bins \cite{5,24}. The model assumes that measurements of E and R_μ follow Gaussian distributions centered at the true value, with widths given by the detector resolution s_E and s_μ, which are the uncertainties obtained in each individual event reconstruction \cite{3,25}. Physical fluctuations are also assumed to follow a Gaussian distribution of width σ. Simulations have shown this is an acceptable approximation given the event number in each bin.

The total PDF is obtained through the convolution of the detector response and the physical fluctuations with the probability distribution of the hybrid events measured at the Pierre Auger Observatory. The log-likelihood function is then given by

$$
\ln \mathcal{L}(a, b, \hat{\sigma}_1, \ldots, \hat{\sigma}_6) = \sum_i \ln \left[\int_{E_i}^{E_{i+1}} dE h(E) C(E) \right]
$$

$$
\times \exp \left(-\frac{1}{2} \left(\frac{(E_i - E)^2}{s_E^2} + \frac{(R_\mu \cdot \hat{\sigma}_k - \langle R_\mu \rangle)^2}{s_\mu^2 + \langle \hat{\sigma}_k \cdot (R_\mu) \rangle^2} \right) \right).
$$

The black line is the fitted $\langle R_\mu \rangle = a[E/(10^{19} \text{ eV})]^b$. Markers on the top of the frame define the bins in which the fluctuations are evaluated. The numbers give the events in each bin. The effect of the uncertainty of the absolute energy scale is indicated by σ_{sys}. The best-fit values for parameters a, b and the deviance per degree of freedom (n.d.f.) in the fit are shown on the lower right.
The probability of hybrid events \(h(E) \) (product of the energy spectrum of cosmic rays and the efficiency of detection) can be obtained from the data, as explained in and \([10,24,26]\). The rhs of Eq. (2) depends on the parameters \(a \) and \(b \) via Eq. (1). To obtain the energy dependence of the fluctuations, we parametrize \(\sigma \) by six independent values such that \(\sigma(E) = \hat{\sigma}_k \cdot (R_\mu(E)/E) \), where the constants \(\hat{\sigma}_k \) are the relative fluctuations in the \(k \)th energy bin with limits \([E_{k-1}, E_k] \), where \(k \) runs from one to six. In Eq. (2), \(k = 0 \) corresponds to the contributions from the interval \([0, E_{\text{thr}}]\), where the SD is not fully efficient. The fluctuations here are assumed to take the value of the first fitted bin \(\hat{\sigma}_0 \equiv \hat{\sigma}_1 \).

The sum over the index \(i \) in Eq. (2) (the usual sum over the log-likelihoods of events) includes only events above the energy threshold of \(4 \times 10^{18} \) eV. The function \(C(E) \) is the normalization factor from the double Gaussian. The result of the fit for the parameters \(a \) and \(b \) are shown in Fig. 1. The fluctuations are shown in Fig. 2. The distribution of the number of muons and the PDF in the individual energy bins can be found in the Supplemental Material [17].

The dominant systematic uncertainties of \(\sigma \) come from the uncertainties in the resolutions \(s_E \) and \(s_\mu \). For \(s_\mu \) we estimate the uncertainty using simulations and data. In simulations, the uncertainty was estimated by the spread in a sample of simulated showers, where each shower is reconstructed multiple times, each time changing only the impact point at the ground. For data, we reconstruct the same event multiple times, leaving out the signals from one of the detector stations. The average relative resolution \(\langle s_\mu/R_\mu \rangle \) and its systematic uncertainty is thus \((10 \pm 3)\% \) at \(10^{19} \) eV.

We verified the values of \(s_\mu \) by studying the difference in the energy reconstruction of events measured independently by two or more FD stations. The width of the distribution of these energy differences is found to be compatible with \(s_E \). We therefore take the statistical 1-\(\sigma \) uncertainties of this cross check as a conservative upper limit of the systematic uncertainty of \(s_E \) \([27]\). The average relative energy resolution \(\langle s_E/E \rangle \) is about \((8.4 \pm 2.9)\% \) at \(10^{19} \) eV. We have further confirmed that there are no significant contributions to the fluctuations from differences between the individual FD stations, neither related to the longtime performance evolution of the SD and FD detectors.

Any residual electromagnetic component in the signal would affect the lower zenith angles more. We therefore split the event sample at the median zenith angle (66°) and compare the resulting fluctuations. We find no significant difference between the more and the less inclined sample.

In another test, we do find a small modulation of \(\langle R_\mu \rangle \) with the azimuth angle (<1%), which we correct for. This modulation is related to the approximations used in the reconstruction, which deal with the azimuthal asymmetry of the muon densities at the ground due to the Earth’s magnetic field \([3]\). Finally, we have run an end-to-end validation of the whole analysis method described in this Letter on samples of simulated proton, helium, oxygen, and iron showers.

Because of the almost linear relation between \(R_\mu \) and \(E \), the systematic uncertainty on \(\sigma \) due to the uncertainty of the absolute energy scale of 14% \([25]\) practically cancels out in the relative fluctuations. The systematic uncertainty in the absolute scale of \(R_\mu \) of 11% \([5]\) drops out for the same reason. The systematic effects for the bin around \(10^{19} \) eV are summarized in Table I. Over all energies, the systematic uncertainties are below 8%.

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
Source of uncertainty & Uncertainty (%) \\
\hline
\(E \) absolute scale & \langle E \rangle <0.1 \\
\(E \) resolution & \(s_E \) 4.6 \\
\(R_\mu \) absolute scale & \langle R_\mu \rangle 0.5 \\
\(R_\mu \) resolution & \(s_\mu \) 5.2 \\
\(R_\mu \) azimuthal modulation & \langle R_\mu \rangle(\phi) 0.5 \\
Total systematics & 7.0 \\
\hline
\end{tabular}
\caption{Contributions to the systematic uncertainty in the relative fluctuations around \(10^{19} \) eV \((10^{18.97} - 10^{19.15})\) eV. The central value is \(\sigma/\langle R_\mu \rangle = 0.102 \pm 0.029\text{(stat)} \pm 0.007\text{(syst)} \).}
\end{table}
The measured relative fluctuations as a function of the energy are shown in Fig. 2. We note that the measurement falls within the range that is expected from current hadronic interaction models for pure proton and pure iron primaries [28–36]. To estimate the effect of a mixed composition, we take the fractions of the four mass components (proton, helium, nitrogen, and iron) derived from the X_{max} measurements [8,37,38] and, using the simulations of the pure primaries, calculate the corresponding fluctuations in the number of muons. The gray band in Fig. 2 encompasses the predicted $\sigma/\langle R_\mu \rangle$ of the three interaction models QGSJET II-04, EPOS-LHC, and Sibyll 2.3d given the inferred composition mix for each [17].

In Fig. 3, the effects of different composition scenarios on both the fluctuations and the average number of muons can be shown by drawing, at a fixed primary energy of 10^{19} eV, the relative fluctuations $\sigma/\langle R_\mu \rangle$ against the average number of muons $\langle R_\mu \rangle$. Given any one of the interaction models, any particular mixture of the four components p, He, N, and Fe falls somewhere within one of the areas enclosed by the corresponding colored lines. The points of pure composition in this contour are labeled accordingly. For each model, the expected values for $\sigma/\langle R_\mu \rangle$ and $\langle R_\mu \rangle$ given the composition mixture obtained from the X_{max} measurements [8] is indicated within each contour by the correspondingly colored star marker. The shaded areas surrounding the star markers indicate the statistical and systematic uncertainties inherited from the X_{max} measurements [39]. Finally, our measurement with statistical and systematic uncertainty is shown by the black marker.

Within the uncertainty, none of the predictions from the interaction models and the X_{max} composition (star markers) are consistent with our measurement. The predictions from the interaction models QGSJET II-04, EPOS-LHC, and Sibyll 2.3d can be reconciled with our measurement by an increase in the average number of muons of 43%, 35%, and 26%, respectively. For the fluctuations, no rescaling is necessary for any model.

Taken together, the average value and fluctuations of the muon flux constrain the way hadronic interaction models should be changed to agree with air shower data. To see this, we briefly discuss the origin of the fluctuations.

The average number of muons in a proton shower of energy E has been shown in simulations to scale as $\langle N_\mu \rangle = CE^\beta$, where $\beta = 0.9$ [12,13,22,23]. If we assume all the secondaries from the first interaction produce muons following the same relation as given for protons above, we obtain the number of muons in the shower as

$$N_\mu = \sum_{j=1}^{m} CE_j^\beta = \langle N_\mu^s \rangle \sum_{j=1}^{m} x_j^\beta = \langle N_\mu^s \rangle \alpha_1,$$

(3)

where index j runs over m secondary particles which reinteract hadronically and $x_j = E_j/E$ is the fraction of energy fed to the hadronic shower by each [41]. In this expression, the fluctuations in N_μ are induced by α_1 in the first generation, which fluctuates because the multiplicity m and the energies x_j of the secondaries fluctuate [13].

We can continue this reasoning for the subsequent generations to obtain

$$\frac{N_\mu}{\langle N_\mu^s \rangle} = \alpha_1 \alpha_2 \cdots \alpha_i \cdots \alpha_n,$$

(4)

here the subindex i runs over n generations, until the cascade stops. We note that, for the calculation of α_2, in the second generation, there are m particles contributing. Assuming the distributions of the α’s for each one are similar, when adding up the muons produced by each, the fluctuations produced by one are statistically likely to be compensated by another. In other words, the α_2 distribution is narrower by a factor $\sim 1/\sqrt{m}$. The deeper the generation, the sharper the corresponding α_i is expected to be. As a result, the dominant part of the fluctuations comes from the first interaction. This has also been observed with simulations. The model can be generalized for primary nuclei with mass A using the superposition model and fixing the number of participants to A protons, which reduces the different contributions to the fluctuations by a factor $\sim 1/\sqrt{A}$.
There are two options to increase the average number of muons in air showers. One is to increase α in a specific generation, notably the first where the energy is the highest and exotic phenomena could conceivably play a role, i.e., $\alpha_1 \rightarrow \alpha_1 + \delta \alpha$. Note that, if only the first generation is modified (implying some sort of threshold effect for new physics), the increase in N_μ is linear with the modification. There are several examples in the literature where this approach has been used assuming different mechanisms [43–47]. For the fluctuations, the change depends on the model. Alternatively, the number of muons can be increased by introducing small deviations in the hadronic energy fraction $\delta \alpha$ in all generations. Accumulated along a number n of generations, these small deviations build up as $N_\mu \propto (\alpha + \delta \alpha)^n$. For instance, a 5% deviation per generation converts into $\sim 30\%$ deviation after six generations [48]. On the other hand, a change of 5% in the fluctuations of α is not amplified in the muon fluctuations because of the suppression in later generations. This approach characterizes the increase in the number of muons in the current hadronic interaction models with regard to previous models [32,50–54]. It is also compatible with the increase of the discrepancy in the average number of muons across a wide range of energies reported in [11].

The present analysis finding that fluctuations are consistent with model predictions means that the increase in muon number may be a small effect accumulating over many generations or a very particular modification of the first interaction that changes N_μ without changing the fluctuations [17].

Summary.—We have presented for the first time a measurement of the fluctuations in the number of muons in inclined air showers, as a function of the UHECR primary energy. Within the current uncertainties, the relative fluctuations show no discrepancy with respect to the expectation from current high-energy hadronic interaction models and the composition taken from X_{max} measurements. This agreement between models and data for the fluctuations, combined with the significant deficit in the predicted total number of muons, points to the origin of the models’ muon deficit being a small deficit at every stage of the shower that accumulates along the shower development, rather than a discrepancy in the first interaction. Adjustments to models to address the current muon deficit must therefore not alter the predicted relative fluctuations.

The Pierre Auger Observatory is currently undergoing an upgrade that includes the deployment of scintillators on top of the SD stations [55] to help disentangle the muonic and electromagnetic content of the showers, as well as an array of radio antennas [56]. It has been shown that radio arrays can provide an estimate of the calorimetric energy [57], and therefore, it will soon be possible to perform an analysis similar to the one presented here with much larger statistics using hybrid events measured by the high-duty-cycle radio and surface detector arrays [56].

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina—Comisión Nacional de Energía Atómica, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia—the Australian Research Council; Brazil—Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São Paulo Research Foundation (FAPESP) Grants No. 2019/10151-2, No. 2010/07359-6, and No. 1999/05404-3, Ministerio da Ciência, Tecnologia, Inovações e Comunicações (MCTIC); Ministry of Education, Youth and Sports of the Czech Republic—Grants No. MSMT CR LTT18040, No. LM2015038, No. LM2018102, No. CZ.02.1.01/0.0/0.0/16_013/0001402, No. CZ.02.1.01/0.0/0.0/18_017/0016010, and No. CZ.02.1.01/0.0/0.0/17_049/0008422; France—Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany—Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg; Italy—Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), CENETMPS Center of Excellence, Ministero degli Affari Esteri (MAE); México—Consejo Nacional de Ciencia y Tecnología (CONACYT) Grant No. 167733, Universidad Nacional Autónoma de México (UNAM), PAPIIT DGAPA-UNAM; The Netherlands—Ministry of Education, Culture and Science, Netherlands Organisation for Scientific Research (NWO), Dutch national e-infrastructure with the support of SURF Cooperative; Poland—Ministry of Science and Higher Education, Grant No. DIR/WK/2018/11, National Science Centre, Grants No. 2013/08/M/ST9/00322,
No. 2016/23/B/ST9/01635, and No. HARMONIA 5–2013/10/M/ST9/00062, UMO-2016/22/M/ST9/00198; Portugal—Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE); Romania—Romanian Ministry of Education and Research, the Program Nucleu within MCI (PN19150201/16N/2019 and PN19060102), and project PN-III-P1-1.2-PCCDI-2017-0839/19PCCDI/2018 within PNCDI III; Slovenia—Slovenian Research Agency, Grants No. P1-0031, No. P1-0385, No. I0-0033, No. N1-0111; Spain—Ministerio de Economía, Industria y Competitividad (FPA2017-85114-P and FPA2017-85197-P), Xunta de Galicia (ED431C 2017/07), Junta de Andalucía (SOMM17/6104/UGR), Feder Funds, RENATA Red Nacional Temática de Astropartículas (FPA2015-68783-REDT), and Maria de Maeztu Unit of Excellence (MDM-2016-0692); U.S.—Department of Energy, Awards No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107, and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, and UNESCO.

1auger_spokespersons@fnal.gov; http://www.auger.org
2Also at Radboud Universiteit Nijmegen, Nijmegen, The Netherlands.
3Present address: Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kyoto, Japan.
4Also at Universidade Federal de Alfenas, Poços de Caldas, Brazil.
5Also at Karlsruhe Institute of Technology, Karlsruhe, Germany.
6Also at University of Bucharest, Physics Department, Bucharest, Romania.

[10] A. Aab et al. (Pierre Auger Collaboration), Direct measurement of the muonic content of extensive air showers between 2 \times 10^{17} and 2 \times 10^{18} eV at the Pierre Auger Observatory, Eur. Phys. J. C 80, 751 (2020).

[17] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.126.152002 for additional information on the energy measurement, the comparison of the full model distribution for R_μ in the individual energy bins, updated versions of select figures from [5], the predictions by the individual models, and additional information on the average number of muons and the fluctuations.

https://ui.adsabs.harvard.edu/link_gateway/2005ICRC....7.103P/ADS_PDF.

[27] The resolution systematics estimated in [25] are smaller by about a factor 3, but were derived for different quality cuts than the ones applied here.

[38] The mass fractions that are used for Sibyll here were derived for Sibyll 2.3. Given the small difference of $5 \, \text{g/cm}^2$ in $\langle X_{\text{max}} \rangle$ and $\sigma(X_{\text{max}})$ between Sibyll 2.3 and Sibyll 2.3d, the mass fractions for Sibyll 2.3d are expected to be very similar.

[39] While the 68% contours of EPOS and Sibyll cover a range of different mixtures, the QGSJET contour is elongated along the p-He line. The latter is an artifact originating from the poor description of the measured X_{max} distribution with the QGSJET model [40].

[41] The energy fed to the electromagnetic shower in the first interaction is $E = \sum_{j=1}^{n} E_j$, and it rapidly decreases for next generations [42].

[48] The number of generations is difficult to define, as it depends on the details of the measurement and the showers, like the zenith angle, the muon energy threshold, and distance from shower axis. Six is a reasonable minimum of generations before the muons reach the Auger detectors [22,49].

