Porphyrinoids for Photodynamic Therapy

Melissari, Z.; Williams, R.M.; Senge, M.O.

DOI
10.1039/9781839164149-00252

Publication date
2021

Document Version
Final published version

Published in
Applications of Porphyrinoids as Functional Materials

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:16 Sep 2023
Applications of Porphyrinoids as Functional Materials

Edited by Heinrich Lang and Tobias Rüffer
Contents

Chapter 1 Fundamentals and Applications in Solution-phase
Electrochemistry and Electrocatalysis 1

Pieter J. Swarts and Jannie C. Swarts

1.1 Introduction 1
1.2 Fundamentals of Solution-phase Voltammetry 2
1.3 Examples of Solution-phase Voltammetry Studies 3
 1.3.1 The Gap Between Benzoporphyrins and
Phthalocyanines 3
 1.3.2 Electronic Communication Between Ring
Substituents Illustrated 4
 1.3.3 Electronic Communication with Axial
Ligands 8
 1.3.4 Observation of 17 Redox Processes for a
Triple-decker Porphyrinoid 9
 1.3.5 Solution-phase Outer-sphere Electron
Transfer and Reference Potentials 11
 1.3.6 Effect of Non-specific and Specific
Adsorption on CVs 11
 1.3.7 Inner-sphere Electron Transfer Occurs for
Adsorbed Species 15
 1.3.8 Dependence of Peak Currents on Scan Rates 15
1.4 Electrocatalysis: Some Fundamental Concepts 17
1.5 Examples of Electrocatalysis Studies 21
 1.5.1 Easing into the Concepts:
Ni(OH)₂-electrocatalyzed Alcohol Oxidation 21
1.5.2 The Importance of Confirming an Electrode Is Not the Active Catalyst 23
1.5.3 The Quest for Strong Electrode-electrocatalyst Interactions 25
1.5.4 Sulfite Sensing by Adsorbed Ladder Cobalt Porphyrin Polymers 26

1.6 Electrocatalysts Important for Fuel Production and Energy Storage 29
1.6.1 CO₂ Reduction Electro catalyzed by Solution-based Fe⁰TPP in Ionic Liquids 29
1.6.2 H₂ Evolution from H⁺ Catalyzed by Pyrrole Ring-modified Ni Porphyrins 30
1.6.3 Oxygen Reduction Catalyzed by Ferrocenyl-substituted Co Porphyrins 32
1.6.4 Oxidation of Water to Oxygen Catalyzed by Porphyrinoids 35
1.6.5 Octa-alkoxylated CoPcs Aggregate Less, Better Catalysis 36
1.6.6 CODs and MOFs Improve Electrocatalysis by Porphyrinoids 37

1.7 Conclusions 37
Acknowledgements 40
References 40

Chapter 2 Electrochemistry-driven Electron-transfer Processes in Porphyrinoids 44
Victor N. Nemykin

2.1 Introduction 44
2.2 Overview of the Electrochemistry of Porphyrins and Their Analogs 45
2.2.1 Metal-free and Central-metal Redox-inert Metalloporphyrins and Their Analogs 45
2.2.2 Metalloporphyrins and Their Analogs with Redox-active Central Metal Ions 51
2.2.3 Electrochemistry of Porphyrinoids with Redox-active Substituents or Axial Ligands 53

2.3 Overview of the Spectroscopy of the Redox-active Forms in Porphyrinoids 57
2.3.1 Ligand-centered Processes 58
2.3.2 Metal-centered Processes 60
2.3.3 Substituent(s) or Axial Ligand(s)-centered Processes 65
Contents

2.4 Redox-driven Applications of the Porphyrinoids 69
2.5 Conclusions 73
References 74

Chapter 3 Porphyrinoids as Active Masses in Electrochemical Energy Storage 79
R. Holze

3.1 Introduction and Background 79
3.2 Use in Secondary Batteries 82
3.3 Use in Supercapacitors 84
3.4 Use in Redox Flow Batteries 86
3.5 Use as Auxiliary Material 86
3.6 Miscellaneous Observations 87
Acknowledgements 87
References 87

Chapter 4 Self-assembly on Crystalline Surfaces: From Phthalocyanines to Porphyrins 91
M. Hietschold

4.1 Introduction 91
4.2 Phthalocyanines 93
4.2.1 Phthalocyanine Monolayers on Highly-oriented Pyrolytic Graphite 93
4.2.2 Phthalocyanine Monolayers on Noble Metal Substrates 100
4.3 Porphyrins 108
4.3.1 Porphyrin Monolayers on Noble Metal Substrates 110
4.4 Summary 115
Acknowledgements 118
References 118

Chapter 5 Chemical Vapor Deposition of Porphyrins 121
N. D. Boscher, G. Bengasi and K. Heinze

5.1 Introduction 121
5.2 Vapor Phase Transport of Porphyrins 122
5.3 Plasma-polymerization of Porphyrins *via* Chemical Vapor Deposition 123
5.3.1 Plasma-enhanced Chemical Vapor Deposition of Porphyrins 123
5.3.2 Porphyrin-based Plasma Polymer Thin Films for Gas Sensing 124

5.4 Free-radical Polymerization of Porphyrins via Chemical Vapor Deposition 125

5.4.1 Initiated Plasma Enhanced Chemical Vapor Deposition of Porphyrins 125

5.4.2 Poly(Porphyrin) Thin Films for Gas Separation 128

5.5 Dehydrogenative Coupling of Porphyrins via Chemical Vapor Deposition 130

5.5.1 Oxidative Chemical Vapor Deposition of Fused Porphyrin Tape Thin Films 130

5.5.2 Fused Porphyrin Tape Thin Films for Electronic Gas Sensing 142

5.5.3 Fused Porphyrin Tape Thin Films for Heterogeneous Catalysis 142

5.6 Summary 145

References 145

Chapter 6 Liquid Crystalline Phthalocyanines 149

K. Ohta

6.1 Overview of Liquid Crystals 149

6.2 Various Molecular Structures of Phthalocyanine-based Liquid Crystals 155

6.3 Unique Molecular Structures and Mesophase Structures 175

6.3.1 Flying-seed-like Liquid Crystals 175

6.3.2 Helical Structures by Vortex 182

6.3.3 Spiranthes-like Supramolecular Structure of Liquid-crystalline PcC$_{60}$ Dyads 184

References 193

Chapter 7 Recent Progress in Porphyrin Derivatives Used in Organic Thin-films Solar Cells 204

Yutaka Matsuo and Keisuke Ogumi

7.1 Introduction 204

7.2 Porphyrin Derivatives with Donor–Acceptor Structures 205

7.3 Porphyrin Dimers for Donor Materials 210

7.4 Combination of Porphyrin Derivatives and Non-fullerene Acceptors 212
Chapter 8 Photophysical Characterization of Porphyrinoids

A. Kahnt

8.1 Introduction
8.2 Photophysical Characterization: Basics
8.3 Photophysical Properties of Porphyrinoids
 8.3.1 Porphyrins
 8.3.2 Chlorin
 8.3.3 Bacteriochlorin
 8.3.4 Corroles
 8.3.5 Tetrabenzoporphyrins
 8.3.6 Porphyrazines
 8.3.7 Phthalocyanines
 8.3.8 Naphthalocyanines
 8.3.9 Azulenocyanines
8.4 Conclusion
References

Chapter 9 Porphyrinoids for Photodynamic Therapy

Z. Melissari, R. M. Williams and M. O. Senge

9.1 Introduction
9.2 Historical Overview of Phototherapy
 9.2.1 Early Development and Advances in Photodynamic Therapy
9.3 Porphyrinoids in Phototherapy
 9.3.1 Mechanism of Photodynamic Therapy and Photosensitizers
 9.3.2 Photophysical Aspects of PDT
 9.3.3 Photopharmacological Aspects of Photodynamic Therapy
9.4 Photodynamic Therapy and Cancer–Clinical Applications
 9.4.1 Clinically Approved Photosensitizers
 9.4.2 Photosensitizers Under Development
9.5 Strategies for Improvement of Photosensitizers
 9.5.1 Modulation of the Photophysical Properties
Chapter 10 Porphyrins and Hydroporphyrins for In Vivo Bioimaging

Marcin Ptaszek

10.1 Introduction 292
10.2 Tailoring Porphyrin Optical Properties for *In Vivo* Fluorescence Imaging 293
10.3 Tetrapyrrolic Macrocycles in Fluorescence *In Vivo* Imaging 299
 10.3.1 Simple Porphyrins for *In Vivo* Fluorescence Imaging 300
 10.3.2 Benzoporphyrins for *In Vivo* Oxygen Sensing 302
 10.3.3 *In Vivo* Imaging by Strongly Conjugated Porphyrin Arrays 303
 10.3.4 *In Vivo* Fluorescence Imaging of Cancer by Semi-synthetic Chlorins and Bacteriochlorins 304
 10.3.5 Synthetic Hydroporphyrins as Activatable and Targetable Probes for Cancer Imaging 310
 10.3.6 Hydroporphyrin Energy-transfer Arrays for *In Vivo* Imaging 312
 10.3.7 Porphyrin and Porpholactone Lanthanides Complexes for *In Vivo* Imaging 314
10.4 Nanomaterials Composed of Hydroporphyrins for *In Vivo* Imaging 318
10.5 Summary 322
Acknowledgements 322
References 322

Chapter 11 Porphyrinoids in Association with Nanomaterials for Water Purification

Gita Singh and Sudeshna Chandra

11.1 Introduction 328
Chapter 12 Porphyrinoids Used for Photodynamic Inactivation against Bacteria

A. Arleta Glowacka-Sobotta, B. Daniel Ziental and C. Lukasz Sobotta

12.1 Introduction 352

12.2 Photosensitizers in Photodynamic Antimicrobial Chemotherapy 355
 12.2.1 Porphyrin Derivatives 355
 12.2.2 Chlorin Derivatives 357
 12.2.3 Phthalocyanine Derivatives 360

12.3 Nanoparticles–porphyrinoid Combinations against Bacteria 360
 12.3.1 Silver Nanoparticles (AgNPs) 362
 12.3.2 Gold Nanoparticles (AuNPs) 365
 12.3.3 Titanium Oxide Nanoparticles (TiO₂ NPs) 371

12.4 Clinical Potential of Porphyrinoids Against Infections 372
 12.4.1 Acne Vulgaris 372
 12.4.2 Dentistry 375
 12.4.3 Blood Products Disinfection 376
 12.4.4 Self-sterilization Materials 379

12.5 Porphyrinoids in Combination with Antibiotics Against Bacteria 384

12.6 Concluding Remarks 390

References 391

Chapter 13 Applicability of Highly Functional Phthalogens

Tobias Rüffer and Heinrich Lang

13.1 Introduction 405
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>Synthesis and Characterization of Phthalogens</td>
<td>408</td>
</tr>
<tr>
<td>13.2.1</td>
<td>“Box”-type Phthalogens</td>
<td>408</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Hexa-dentate “Helmet”-type Phthalogens</td>
<td>411</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Penta-dentate “Helmet”-type Phthalogens</td>
<td>413</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Alkoxy-substituted “Antenna”-type Phthalogens</td>
<td>415</td>
</tr>
<tr>
<td>13.2.5</td>
<td>Phthalogens – Formation Mechanism</td>
<td>418</td>
</tr>
<tr>
<td>13.3</td>
<td>Application of Phthalogens</td>
<td>419</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Optical Spectra and Thermal Stability Phenomena</td>
<td>419</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Fiber Coloring – Redox Properties</td>
<td>423</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Chirality and Homogeneous Catalysis</td>
<td>426</td>
</tr>
<tr>
<td>13.4</td>
<td>Conclusions</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>435</td>
</tr>
</tbody>
</table>

Subject Index 439
CHAPTER 9

Porphyrinoids for Photodynamic Therapy

Z. MELISSARI, a,b R. M. WILLIAMS b AND M. O. SENGE* a

a School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152–160 Pearse Street, Dublin 2, Ireland; b Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
*Email: sengem@tcd.ie

9.1 Introduction

Heliotherapy (Greek etymology: ηλιο + θεραπεία = sun + therapy) is the alleviating and therapeutic effect of natural sunlight that can be used to treat skin or muscle disorders. Phototherapy (PT) (Greek etymology: φωτο + θεραπεία = light + therapy) dates back thousands of years when Egyptians, Indians, Chinese, Romans, and Greeks were instinctively utilizing sunlight to treat several diseases, including vitiligo, tuberculosis, and psoriasis.1 Many advances related to the clinical use and safety of PT have been made in the last 50 years, notably in the area of photodynamic therapy (PDT). PDT is an example of PT where light is used to alleviate and treat malignant diseases such as cancer and infections. In PDT, the so-called photosensitizer (PS) is the medium agent needed to convert molecular oxygen to singlet oxygen or other reactive oxygen species, following light irradiation, leading to a therapeutic response.
9.2 Historical Overview of Phototherapy

Delving into the past from Ancient times to the Modern era, several civilizations used light as a treatment for diseases. Egyptians used the extract of *Ammi majus* seeds in combination with sunlight to treat leukoderma or vitiligo, whereas Indians utilized the extract of *Psoralea corylifolia* seeds for repigmentation.\(^2\) Today this therapy is known as PUVA photochemotherapy (psoralen plus UVA light) and uses psoralens to treat various skin disorders (*i.e.*, psoriasis and vitiligo). Another putative benefit from the healing power of light was reported by the ancient Chinese. They ingested colored sheets that were first exposed to sunlight (for men) or moonlight (for women). Romans and Greeks used sunbaths for physical improvement and skin treatment (first treatment for acne). Both ancient Greeks, the historian and philosopher Herodotus (~450 BC) and the physician Herodotus (~1st century AD), recommended that light could be therapeutic. The former attributed the thicker skulls of Egyptian soldiers to the power of sun exposure since they shaved their heads from childhood compared to the Persians, who wore hats. The latter stated that the human body can remain healthier with exposure to sunlight “exposure to the sun is eminently necessary for people who need to eat and take on flesh... however the head must be covered” (in ‘περί ηλιώσεως’ at ‘περί τῶν ἐξωθεν προσπιτόντων βοηθημάτων’) and with hot sand fomentation (‘Περί ζμιοκωσίας’).\(^3\) Hippocrates, the “father of medicine”, was the first to use the term heliotherapy and introduced the healing properties of sunlight by incorporating it into his treatment methods along with a healthy diet, hydrotherapy, massages, and physical exercise.\(^1,^4\)

9.2.1 Early Development and Advances in Photodynamic Therapy

The term *PDT* as it is known today was introduced by Hermann von Tappeiner, whose student, Oscar Raab (1898), accidentally discovered that the combination of a dye (acridine) and light had a fatal effect on paramecia cells (*Paramecium caudatum*).\(^5\)–\(^7\) Following his research on the therapeutic effect of red light on smallpox, in 1903, Niels Finsen won the Nobel prize in medicine and physiology for his contribution to the treatment of Lupus vulgaris by ultraviolet light.\(^8\) The connection between tetrapyrroles and phototherapy dates back to the first biological experiments conducted by Hausmann and Pfeiffer (1908–1911), who reported photosensitization in white mice and guinea pigs using hematoporphyrin (HP) and the subsequently resulting mortality. A couple of years after that, Meyer-Betz injected himself with 200 mg of HP and sensitized himself with sunlight (1913).\(^9\) Table 9.1 summarizes, in chronological order, important events and developments related to phototherapy throughout the ages.\(^10\) Regardless of these advancements, it was only after 1970 that PDT was developed as a medical treatment by Thomas Dougherty and coworkers\(^11\)–\(^13\) as a follow-up to Baldes and Lipson,\(^14,^15\) who developed a water-soluble mixture of...
Table 9.1 Historical overview of events of phototherapy.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000 BC–1800 AD</td>
<td>Romans and Greeks utilized sunlight (sunbathing or using seeds from plants) to treat vitiligo, acne, rickets (rachitis), and psychosis. Hippocrates used exposure to sunlight as one of his treatments.</td>
</tr>
<tr>
<td></td>
<td>Antylos treats rachitis and muscle atonia with sunlight and states the hygienic action of the sunlight (300 AD).</td>
</tr>
<tr>
<td></td>
<td>Larrey (Napoleon’s physician) observed that soldiers’ traumatic ulcers healed quickly after sun exposure (Egypt 1798–1799).</td>
</tr>
<tr>
<td></td>
<td>Discovery of the sun’s infrared spectrum by F. W. Herschel (1800).</td>
</tr>
<tr>
<td></td>
<td>Discovery of ultraviolet radiation by J. W. Ritter and W. Hyde (1801).</td>
</tr>
<tr>
<td>1834</td>
<td>5-Methoxypsoralen (5-MOP) was isolated from bergamot oil by Kalbrunner.</td>
</tr>
<tr>
<td>1841</td>
<td>Scherer discovered hematoporphyrin (HP) by removing iron from dried blood.</td>
</tr>
<tr>
<td>1855</td>
<td>A. Rikli opened a healthcare station in Slovenia and reintroduced the concept of phototherapy. He developed therapeutic guidelines still applicable today.</td>
</tr>
<tr>
<td>1867</td>
<td>J. L. W. Thudichum discovered hematoporphyrin fluorescence and the fluorescence spectrum.</td>
</tr>
<tr>
<td>1871</td>
<td>F. Hoppe-Seyler named the red–purple substance in iron-free heme as hematoporphyrin.</td>
</tr>
<tr>
<td>1874</td>
<td>J. H. Schultz first described errors in heme biosynthesis and a porphyria patient.</td>
</tr>
<tr>
<td>1877</td>
<td>A. H. Downes and T. P. Blunt first observed ultraviolet light and antimicrobial effect.</td>
</tr>
<tr>
<td>1890</td>
<td>T. A. Palm suggested that the sun could play a therapeutic role in rickets.</td>
</tr>
<tr>
<td>1898</td>
<td>Oscar Raab discovered phototoxicity of acridine dye against paramecia.</td>
</tr>
<tr>
<td>1899</td>
<td>O. Bernhard promoted heliotherapy at a private clinic in Switzerland.</td>
</tr>
<tr>
<td>1903</td>
<td>In Leysin, Switzerland, A. Rollier established the first clinic for the treatment of tuberculosis and rachitis through sunlight.</td>
</tr>
<tr>
<td></td>
<td>N. R. Finsen won the Nobel Prize in Physiology and Medicine for his contribution to the treatment of diseases, especially tuberculosis (lupus vulgaris), with concentrated light radiation.</td>
</tr>
<tr>
<td>1904</td>
<td>Reports revealed that the presence of oxygen was essential for photosensitization. H. von Tappeiner and A. Jodlbauer introduced the term Photodynamic action (Photodynamische Wirkung).</td>
</tr>
<tr>
<td>1905</td>
<td>H. von Tappeiner and A. Jesionek introduced the topical use of eosin as a photosensitizer against facial basal cell carcinoma.</td>
</tr>
<tr>
<td>1908–1911</td>
<td>W. Hausmann and H. Pfeiffer experimented with hematoporphyrin and light on white mice and guinea pigs.</td>
</tr>
<tr>
<td>1913</td>
<td>F. M. Betz self-sensitized himself using hematoporphyrin (HP) injection.</td>
</tr>
<tr>
<td>1923</td>
<td>W. H. Goeckerman used a high-pressure mercury lamp to produce artificial broadband UV-B plus topical coal tar to treat psoriasis.</td>
</tr>
</tbody>
</table>
Table 9.1 (Continued)

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1924</td>
<td>A. Policard used localization and fluorescence of endogenous porphyrins in tumors.</td>
</tr>
<tr>
<td>1928</td>
<td>R. S. Mulliken reported the existence of singlet oxygen existence.</td>
</tr>
<tr>
<td>1930</td>
<td>H. Fischer won the Nobel Prize in Chemistry for his research into the composition of heme and chlorophyll, especially for the synthesis of heme group.</td>
</tr>
</tbody>
</table>
| 1930s | - H. Kautsky reported oxygen quenching effect of fluorescence and phosphorescence of dye molecules and the production of metastable singlet oxygen.
- H. Kautsky and H. de Bruijn suggested the excited electronic state intermediates of oxygen in chemical reactions. |
| 1947 | I. R. Fahmy isolated the active ingredients of *Ammi majus*, 8-methoxypsoralen (8-MOP) and 5-methoxypsoralen (5-MOP). |
| 1948 | - In Egypt, A. M. El-Mofty carried out the first trials with 8-MOP and sun exposure in vitiligo patients.
- H. Auler and G. Banzer carried out the first study of selective hematoporphyrin accumulation and photodynamic action in tumors.
- Laboratory animal research by H. J. Figge *et al.* showed that porphyrins have a preferential affinity not only to malignant cells but also to rapidly dividing cells. |
| 1955 | S. Schwartz discovered and isolated the hematoporphyrin derivatives as crude mixture (HPD). |
| 1957 | In Essex, England, R. Cremer used phototherapy as a treatment for neonatal jaundice (blue light phototherapy). |
| 1959 | D. Harman proposed the free radical theory of ageing and disease. |
| 1960 | L. Lipson and F. J. Baldes studied enhanced tumor localization and detection by the fluorescence of hematoporphyrin derivative (HPD). |
| 1961 | H. G. Magnus described erythropoietic protoporphyria (EPP) as a genetic disorder resulting from decreased activity of ferrochelatase, which is responsible for adding iron to protoporphyrin to form heme. |
| 1962 | J. D. Ridgen and A. D. White developed the first helium–neon continuous operating laser that aided Dougherty *et al.* during the first clinical studies on hematoporphyrin derivative (1978). |
| 1963 | A. Wiskemann constructed a phototherapy system with Osram Ultraviolet lamps and another with fluorescent UVB tubes. |
| 1966 | Lipson *et al.* first reported the use of HPD to treat recurrent breast carcinoma. |
| 1974 | - T. B. Fitzpatrick and J. A. Parrish developed PUVA photochemotherapy to control psoriasis vitiligo and other skin disorders.
- T. J. Dougherty found that fluorescein diacetate could act as photosensitizer against tumor-bearing animals. |
| 1975 | T. J. Dougherty *et al.* used HPD and red-light irradiation to cure mice and rats bearing a variety of tumors. |
| 1976 | - K. R. Weishaupt and T. J. Dougherty identified that singlet oxygen is the cytotoxic product of the photochemical reaction with red light.
- J. F. Kelly *et al.* used HPD in patients with bladder cancer. |
porphyrin molecules named “hematoporphyrin derivative” (HPD). This became one of the first-generation PSs, known as Photofrin (purified form: Photofrin sodium). The missing piece of the PDT puzzle was the discovery by Weishaupt et al. when they identified singlet oxygen ($^{1}\text{O}_2$) as the cytotoxic photochemical product during in vitro inactivation of TA-3 mouse mammary carcinoma cells following the incorporation of HP and red-light exposure.16,17

9.3 Porphyrinoids in Phototherapy

Hematoporphyrin (derived from Greek: “deep red–purple pigment of blood”) first isolated by Scherer in 1841 is a protoporphyrin IX derivative (PpIX) originating from heme (iron-containing porphyrin). As mentioned previously, it was the molecule that established the link between tetrapyroles and photosensitizers (PSs) for PDT. Other naturally occurring tetrapyrolic pigments are chlorophylls, bacteriochlorophylls, and coenzyme B12.18 Porphyrins are key essential elements of metabolic processes and life. Most of the approved drugs for PDT are porphyrin-based PSs with structures similar to natural pigments. Classic examples are protoporphyrin and Photofrin, chlorophyll a and chlorin e$_6$, bacteriochlorophyll a and TOOKAD, and pyropheophorbide a (I) and Photochlor (see Figures 9.1 and 9.2).

First-generation PSs include hematoporphyrin derivatives (HPD) and porfimer sodium (Photofrin), which have been used against various cancers (such as lung, esophagus, and non-small cell lung cancer). Photofrin was
approved in 1993 for bladder treatment in Canada; however, it has many limitations, including long-lasting photosensitivity and a weak light absorption profile signal at 630 nm. Since then, second-generation PSs have been developed.
been developed to overcome these limitations. Porphyrins, chlorins, bacteriochlorins, corroles, texaphyrins, and phthalocyanines are based on this tetrapyrrolic unit and constitute potential PDT candidates with many already having been approved by health organizations and others currently in clinical trials (e.g., Redaporfin LUZ11) (Section 9.4). Second-generation PSs include either a prodrug formulation [e.g., 5-aminolevulinic acid (ALA) as biosynthetic precursor for PpIX (Levulan) and ALA-ester mALA (METVIX)] or a tetrapyrrole macrocycle structure [e.g., temoporfin (Foscan), verteporfin (Visudyne), and padeliporfin (TOOKAD soluble)].

A common characteristic of these aromatic molecules is their high conjugation and uniquely strong absorption profile, which contributes to their application in biomedicine, material sciences, electronics, and catalysis. Today, research groups are targeting third-generation PSs, which are composed of second-generation PSs in conjugation or encapsulation with

Figure 9.2 Further porphyrin-based second-generation photosensitizers.
biocompatible nanomaterials or antibody conjugates, to induce cancer targeting and/or drug delivery.35 For PDT, key points are the efficient generation of cytotoxic singlet oxygen, which should take place only after light radiation and the enhanced localization of the PSs in malignant cells. Yet several drawbacks characterize many current PSs, some of which include poor water solubility, body clearance, photobleaching, long-lasting phototoxicity, and depth of skin penetration. These limitations prevent the treatment of deep localized tumors. Hence, it is important to introduce more potential candidates with appropriate characteristics. While many types of molecules have been reported as potential photosensitizers for biological systems, the focus here will be on porphyrinoid-type molecules.

\subsection*{9.3.1 Mechanism of Photodynamic Therapy and Photosensitizers}

PDT is a sub-category of phototherapy where the PS is usually administered topically or intravenously and is selectively accumulating in the desired malignant tissue. During light irradiation, the PS in the ground state absorbs light and is excited to the excited singlet state. From there, it can either relax to the ground state by fluorescence emission (radiative decay) or by non-radiative decay or undergo intersystem crossing (ISC) to the triplet excited energy state. From this state, several photochemical processes can occur (see Figure 9.3). In PDT, the triplet state of the PS can interact with naturally occurring molecular oxygen and produce either reactive oxygen species (ROS) \textit{via} an electron transfer process (Type I reaction, electron transfer) or singlet oxygen species $\mathrm{^{1}O_2}$ \textit{via} an energy transfer process (Type II reaction) or both. PDT relies on the intracellular formation of these cytotoxic species in specific organelles such as mitochondria or lysosomes or indirect effects such as vascular PDT.

Porphyrin-type molecules have a high affinity for cancerous tissue and thus preferential accumulation occurs in this tissue. In 1948 Figge \textit{et al.} were the first to report this unique property with an \textit{in vivo} study in mice with various types of cancers using HP injection.36 This accumulation is connected to the interactions of the PS with the tumorous proteins and receptors or to the enhanced permeability and retention effect (EPR).37,38 Finally, this process will lead to cell death through apoptosis, necrosis, and autophagy with the preferable cell death pathway being the apoptotic “natural” cell death, which induces a low inflammatory response.38-42 The same concept is used for extensive ongoing research in the anti-microbial PDT (aPDT) and antimicrobial photoinactivation (PDI) (for more detail see Chapter 12.) fields; a recent review by Wiehe \textit{et al.} suitably discusses the antiviral applications and potentials.43

To summarize the physicochemical, photophysical, and pharmacological features of a PS, an ideal PS should (1) be pure and stable at room temperature; (2) have a low production cost and be commercially available; (3) display amphiphilicity and water solubility; (4) show minimum dark
Figure 9.3 Modified Jablonski diagram displaying the photochemical pathways of PS excitation. IC: internal conversion; ISC: intersystem crossing.
toxicity and high phototoxicity while not producing toxic metabolites;
(5) have optimal ADME properties (absorption, distribution, metabolism,
excretion); (6) have a strong absorption spectrum in the red or near-infrared
region of the electromagnetic spectrum (600–800 nm) so that light can
penetrate the target tissue deeply and activate the PS; (7) have high selectivity
and specific accumulation in target tumor tissues and have subcellular lo-
calization in mitochondria, lysosomes, or the endoplasmic reticulum; (8)
display high singlet oxygen quantum yields ($\Phi_A > 0.50$) or ROS generation;
(9) have a high ISC yield and thus high triplet energy state yield ($\Phi_T > 0.80$)
and triplet state lifetimes (τ_T ns – μs scale); (10) have post-excitation process
yields that sum to unity ($\Phi_f + \Phi_{ISC} + \Phi_{IC} = 1$). However, regarding the fluo-
rescence quantum yields (Φ_f) and singlet excited state lifetimes (τ_s), a com-
promise can be made. The higher the fluorescence yield, the lower the PDT
properties and vice versa. Details about fluorescence and bioimaging appli-
cations particularly for chlorins are presented in Chapter 8.

9.3.2 Photophysical Aspects of PDT

PDT and PS activation depend directly on the light source and dose. Inter-
actions between light and tissue such as refraction, reflection, and scattering
can be overcome by applying the beam of light perpendicular to the tissue.
However, the “optical therapeutic window” for PDT treatment is defined by
two factors:

The first limitation, between 650 and 1200 nm, arises from the absorption
of tissue chromophores (i.e., water, melanin, oxyhemoglobin, deox-
yhemoglobin, and cytochromes).
The second limitation between 650 and 850 nm comes from the desired
triplet state energy level of the PS, which should be sufficient to generate
efficiently singlet oxygen. Thus, ≥ 94.3 kJ mol$^{-1}$ (0.96 eV).44

Porphyrin-based molecules display a unique UV–visible absorption profile
with a strong absorption band at 400–450 nm (Soret or B band) and less
intense band(s) between 500 and 800 nm (Q bands), which are the basis of
their application in PDT. This unique profile is the result of splitting the
frontier molecular orbitals (FMO), as described by Gouterman’s four orbital
model (HOMO-1, HOMO, LUMO, and LUMO + 1 orbitals).$^{45–47}$ After irradi-
ation, a series of competitive photochemical processes commence and de-
pend on the structural pattern of the PS. Generally, the Soret band stems
from the strong electronic transition from the ground state to the second
excited singlet state $S_0 \rightarrow S_2$ and the Q bands arise from the transition to the
first excited singlet state $S_0 \rightarrow S_1$. The loss of energy (via heat) from the S_2
state by internal conversion (IC) is very fast, and fluorescence is observed
because of the depopulation of the first excited singlet state to the ground
state $S_1 \rightarrow S_0$. There are important differences in the absorption profile in
regard to the Q bands (red-shifted) and the absorption intensity (different
molar absorption coefficient) of porphyrins, chlorins (one reduced pyrrole), and bacteriochlorins (two reduced pyroles) due to the destabilization of the HOMOs (and stabilization of the LUMOs) of the latter molecules. Changes to the absorption profile can be achieved by reducing the energy gap between the HOMOs and LUMOs, leading to red-shifted absorption spectra, which is of major importance in PDT. Modifications can occur inside the macrocycle either by reducing the pyroles or by exchanging them with other rings or modifying the periphery with functional moieties. Altering the symmetry of the macrocycle results in a red-shifted absorption profile and thus enables deeper skin penetration. It is known that substitution of the periphery with substituents can cause a bathochromic shift (red-shift) of both the B and Qy bands and a hypochromic shift (decrease of the absorptivity) of the Qy band, which is of great importance for photochemical applications.

To achieve a high triplet state energy, efficient ISC from the singlet excited state to the triplet excited state ($S_1 \rightarrow T_1$) must occur. Heavy atoms such as transition metals or halogens enhance ISC via spin–orbit coupling (SOC), and when introduced to a porphyrin-type molecule, they increase the triplet state quantum yield. A consequence of the introduction of heavy atoms is often an increase in the dark toxicity of the PS; hence, new methods to increase the ISC pathway with heavy atom-free molecules are under development. Eqn (9.1) displays the relationship between the singlet–triplet energy gap (ΔE_{S1-T1}) and the ISC rate constant (k_{ISC}), indicating that ISC occurs with a small energy gap (H_{SO}: the Hamiltonian for the spin–orbit coupling):

$$k_{ISC} \propto \frac{\langle T_1 | H_{SO} | S_1 \rangle^2}{(\Delta E_{S1-T1})^2}$$ (9.1)

Moreover, the triplet excited state lifetime should be sufficiently long-lived, and the triplet energy state should be higher than that of singlet oxygen so that it can produce moderate singlet oxygen yields through energy transfer (Type II) efficiently. Except for high triplet state yields, a sufficient triplet energy level is needed to activate molecular oxygen in its triplet state condition to form the excited configuration—singlet oxygen (94 kJ mol$^{-1}$, 0.97 eV).

PSs can undergo several cycles of photoactivation and absorption of photons of energy until they lose the ability to induce further photooxidation reactions. This effect is called photobleaching and is the irreversible photo destruction of the PS linked with its photostability.

Dimeric aggregates or higher order aggregates can form in porphyrin solutions as a result of their hydrophobic skeleton, resulting in a “sandwich” (H-aggregates) or linear (J-aggregates) self-assemblies. This should be minimized since it can reduce the absorption intensity significantly, mislead clinical results, and negatively affect the efficiency of the PS. Depending on the solvent, especially in aqueous media, the ISC capability of molecules can
be reduced and energy can be dissipated through radiative (fluorescence) or non-radiative decay (IC). However, H-aggregates aid the photostability of the micellar assemblies of Photosan.54–56 The absorption profile of the aggregated PS usually differs from the monomeric form. To address this issue, amphiphilic PSs can be employed to lower aggregation, which is an active research area. Another solution lies on nanotechnology-based drug delivery systems such as liposomes or protein binding systems. These can assist with de-aggregation and lead to a red-shift in the absorption spectrum while increasing the triplet state lifetime.57

The solvent dependency of PSs post-excitation can lead to charge-separated states (CSS) and triplet formation by charge transfer (CT) or charge recombination (CR), thus establishing alternative ways to access the desired triplet state.58 BODIPYs dimers or dyads [e.g., BODIPY–fullerene C\textsubscript{60} or BODIPY–anthracene dyads (BADs)], display CSS and donor–acceptor properties, which open doors for medical and optoelectronic applications.20,58–61

The identity of the metal in the core of the macrocycle can influence the relative HOMO–LUMO energies and the triplet quantum yields. On one hand, paramagnetic metals appear to shorten triplet lifetimes, while on the other hand, diamagnetic metals appear to promote ISC with longer triplet lifetimes. However, this is not a fixed rule.62 Despite this fact, most efficient PSs are metal-free complexes. Dąbrowski et al. describe the resulting modifications of metallo-tetrapyrrolic PSs.63 Chapter 8 describes in detail the photophysical basics and aspects of PDT.

9.3.2.1 Light Sources

A suitable combination of PS, light source, and treatment parameters is critical for successful PDT and is directly connected to the size of the treatment area. Brancaleon and Moseley reported the available laser and non-laser options for PDT.64 The optimal light source should match the absorption maxima of the PS, and the delivery of an appropriate light dose is important for generating a therapeutic response in the target tissue. Several types of light sources are used effectively: arc and xenon lamps, light-emitting diodes (LEDs), laser beams, and increasingly daylight sun. Low-cost conventional lamps have a broad spectral output, which can be limited with filters to match the PS. Therefore, they are used in dermatology for the treatment of larger skin lesions. Advancements in light sources led to the development and use of high-energy monochromatic laser beams, which are highly efficient and provide precise light delivery to the target, particularly in cases of non-superficial tumors where a combination of laser and fibers is beneficial (e.g., endoscopic or interstitial light delivery).65,66 The development of optical fibers has enabled the precise delivery of light through a specially designed illuminator tip such as microlens, cylindrical, or spherical diffusers where light can pass through and reach the target.67 Lasers used for PDT are (1) argon dye lasers (primary choice for PDT); (2) metal-vapor lasers
(Cu- and Au-vapor lasers); (3) solid-state lasers (Nd:YAG, Ho:YAG, KTP:YAG/dye laser), and (4) semiconductor diode lasers. Diode lasers are employed in PDT especially because they are small and cost-effective, easy to install and operate, and can be operated with a pumped or continuous wave beam of light (picosecond to millisecond). The main limitation of a diode laser is that it operates at a single wavelength and a separate unit is required for each photosensitizer. A breakthrough will open the road to new multi-wavelength laser diode systems where the wavelength can be adjusted. Light-emitting diodes (LEDs) are an alternative low-cost and highly efficiency technology used to irradiate tissue surfaces. Their versatility enables a flexible arrangement and the (different irradiation geometries) potential to cover and irradiate larger areas for treatment. Femtosecond lasers are presently used for two-photon excitation in several advanced research areas such as microscopy and spectroscopy. Due to the suitability of the fs-pulsed lasers for two-photon absorption, they have been proposed for two-photon PDT as discussed extensively in reviews by Kobuke et al. and Sun et al.

Kercher et al. developed a cost-effective LED technology capable of switching between wavelengths to facilitate the next generation of PDT systems. Using two well-known PSs, aminolevulinic acid (ALA) and verteporfin, 90% cell death was observed in a primary ovarian cancer cell line after treatment with 50 J cm\(^{-2}\) of light. Another tunable light source of interest is organic light-emitting diodes (OLEDs). Attili et al. reported an open pilot study of ambulatory ALA-PDT and suggested that use of a low-irradiance device can be painless, effective, and convenient. The use of a wearable low-irradiance OLED light source after ALA application showed positive outcomes for patients with non-melanoma skin cancer (Bowen’s disease and superficial basal cell carcinoma). These discoveries enable OLEDs to be the ideal candidate for ambulatory PDT light sources. Clinically applied PDT treatment regimens use various light dose approaches. ALA, in the case of the treatment of actinic keratosis, is topically administered and activated by a blue fluorescent lamp with a light dose of 10 J cm\(^{-2}\) (BLU-U Blue Light Photodynamic Therapy Illuminator) at 417 ± 5 nm. Visudyne, which is used for the treatment of age-related macular degeneration (AMD), is activated by a laser (689 ± 3 nm with a light dose of 50 J cm\(^{-2}\)). TOOKAD soluble (WST11), a recently approved drug used as an alternative treatment for prostate cancer, delivers light to the target tumor through fiber-optic tubes; although invasive, this approach benefits from deeper tissue penetration. The TOOKAD regime is a focal vascular targeted PDT (VTP) that focuses particularly on the prostate and delivers a laser light energy of 200 J cm\(^{-2}\) at 753 nm.

9.3.2.2 *Photooxidation Processes with Molecular Oxygen*

Singlet oxygen is the major cytotoxic agent that allows for the PDT therapeutic effect. Molecular oxygen or dioxygen is in the ground state, and it has two unpaired electrons with parallel spins in two degenerate antibonding
orbitals, which give a spin multiplicity of three. Thus, without activation, molecular oxygen is in the triplet state. It very seldom reacts with other molecules in the singlet state; however, it can react with radicals.75–77 Excited triplet configurations of a PSs induce chemical reactions, including Type I and II reactions, with neighboring molecular oxygen O\textsubscript{2} (3Σ\textsubscript{g}−) (see Figure 9.3). Type I involves electron or proton transfer to yield radical cations or anions (ROS). The latter can react with oxygen to form superoxide anions (O\textsubscript{2}•−), which are not very reactive but can undergo dismutation or electron reduction to form hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), which is cytotoxic. Hydrogen peroxide can further react with superoxide anions to produce hydroxyl radicals (OH•), which can oxidize cellular components. Furthermore, iron or copper from the microenvironment promotes hydroxyl radical formation. Both hydrogen peroxide and hydroxyl radicals have high diffusion properties and can pass through biological membranes, causing cellular damage to several cellular compartments (plasma, mitochondria, lysosomes, proteins, nuclear and cell membranes). Type II involves energy transfer from the triplet PS directly to oxygen resulting in singlet oxygen 1O\textsubscript{2} (1Δ\textsubscript{g}). Singlet oxygen is an uncharged molecule that can diffuse through the cytoplasm and biological membranes.40,44,63,78,79 Singlet oxygen in its excited singlet state is characterized by paired electrons (with opposite spins) in the outer orbital. Although it is common to refer to the first excited state as singlet oxygen, there are two excited electronic states of oxygen and the second excited state (1Σ\textsubscript{g}+) (157.0 kJ mol−1, 1.63 eV) decays efficiently to the first excited state (94.3 kJ mol−1, 0.98 eV).80 There is no evidence that the latter is an intermediate in solution-phase photo-oxygenations.81,82 Type II reactions dominate the action of porphyrin PSs, while Type I reactions are dominant for other PS structures.40,44 Hamblin and Abrahamse outlined a non-oxygen photoinactivation pathway for aPDT (Type III reaction process), which opened a new PDT perspective.83

Singlet oxygen production is dependent on various parameters: the triplet state yield of the PS, the triplet lifetime, the sensitization efficiency of the PS, oxygen concentration, photosensitizer photostability under those conditions, and the reactivity of singlet oxygen in a particular environment. First, singlet oxygen production is a second-order effect that depends on the triplet PS concentration and the triplet lifetime. Second, the concentration of ground state oxygen (triplet state configuration) also plays a role in singlet oxygen generation. The fact that the quantum yield of singlet oxygen upon purging with oxygen gas is higher than it is under ambient conditions indicates that the emission of singlet oxygen is due to a second-order process. As such, the oxygen quenching constant is a universal expression for the potential of singlet oxygen generation.84,85

The quantum yield of singlet oxygen emission is defined as the number of photons emitted by singlet oxygen divided by the number of photons absorbed by the photosensitizer. The detection of singlet oxygen and the determination of its quantum yield are challenging. Most methods rely on relative indirect chemical methods such as using singlet oxygen scavengers
and probes with high selectivity for singlet oxygen. The use of 9,10-diphenylanthracene (DPA) or 1,3-diphenylisobenzofuran (DPBF) is the most frequent method where a stable endoperoxide is formed and singlet oxygen quantum yield can be calculated from the absorption decay of the probe. Alternatively, fluorescent probes such as 9-[2-(3-carboxy-9,10-dimethyl)anthryl]-6-hydroxy-3H-xanthen-3-one (DMAX), DPBF, and Singlet Oxygen Sensor Green (SOSG) are non-fluorescent dyes but their endoperoxide derivatives fluorescence, allowing for singlet oxygen detection and yield calculation.\(^8^6\) The same techniques can be applied to ROS detection, but quantification is limited by the specificity of the reaction toward singlet oxygen.\(^8^7\) Fluorescence microscopy is also used for the spatial detection of singlet oxygen, thus helping to reveal the intracellular localization pattern. Electron paramagnetic resonance (EPR) detects unpaired electrons in molecules. Thus, it consists of an indirect method to detect singlet oxygen in combination with spin traps (e.g., 2,2,6,6-tetramethylpyridine (TEMP), 4-hydroxy-TEMP) to form spin-active stable radicals. However, short lifetimes and side products from microenvironment interactions can influence the results and lead to significant errors.\(^8^8,^8^9\)

Direct determination of singlet oxygen via its phosphorescence emission at ~1275 nm can be challenging to detect because the emission is usually weak. Therefore, highly sensitive NIR detectors are required, such as cryogenic germanium diodes, semiconductor detectors, and photomultipliers.\(^8^5\) Appropriate reference materials for calibrating the NIR detector are needed. For instance, a Nd:YAG laser rod is suitable for solid-state lasers. Time-resolved spectroscopy is used to determine the lifetime and provide insight into the kinetics and the decay profiles.\(^9^0\) The singlet oxygen lifetime is sensitive toward its environment, and it has been calculated in solvents on the µs scale from time-resolved phosphorescence experiments by Ogilby and coworkers.\(^9^1\) However, singlet oxygen has a shorter lifetime in biological media and can only react with biomolecules in its proximity, which limits the possible applications.\(^4^0,^9^2\) Singlet oxygen’s intracellular lifetime is ~3 µs \((\tau_A)\) and is longer than what was reported initially (0.04 µs).\(^9^2–^9^4\) This new estimate also changed the singlet oxygen diffusion distance, which is calculated using eqn (9.2), defining its sphere of activity approximately at ~100 nm (previously reported at 20 nm).\(^9^5\)

\[
d = \sqrt{6tD} \tag{9.2}
\]

where \(d\) is the diffusion distance that singlet oxygen would move in a period time \(t\) (i.e., a period equal to its intracellular lifetime) and \(D\) is the diffusion coefficient (a value of ~2–4×10\(^{-6}\) cm\(^2\) s\(^{-1}\) for intracellular \(D\)).

Elucidating the fundamentals of the mechanism of action and kinetics of singlet oxygen can help the design of PS by regulating the long-lived triplet states of the PS, leading to high concentrations of singlet oxygen in biological media and resulting in cell death.\(^3^8,^4^2,^9^6\) Singlet oxygen has a longer lifetime in deuterated water (\(\text{D}_2\text{O} \sim 67 \mu\text{s}\)) than in water (\(\text{H}_2\text{O} \sim 3.5 \mu\text{s}\)).
Surprisingly, replacing H₂O with D₂O has no major effect on cells with the exception of neuron cases where membrane ion channels respond to this difference.⁸⁵,⁹⁰ Nierde et al. used a NIR photomultiplier to first report the lifetime of singlet oxygen \textit{in vitro} and \textit{in vivo} in the skin and liver of rats during PDT.⁹⁴ High-level computational methods are now shedding light on the electronic states of oxygen, its properties in solution and biological media, and its cellular mechanisms.⁹⁷

9.3.3 Photopharmacological Aspects of Photodynamic Therapy

“What is there that is not poison? All things are poison and nothing is without poison. Solely the dose determines that a thing is not a poison.” Paracelsus defined the concept of the balance between the benefits (therapeutic effects) and the risks (adverse effects) of a drug in correlation to the dosage.⁹⁸ In PDT, treatment efficacy depends on the PS dose, the time of exposure, and the intensity of the light, considering that the overall protocol is not life-threatening and does not result in serious complications.

Important factors influencing the properties of the PS and light activation aspects were discussed above. However, what a drug does to the body and \textit{vice versa} determines the pharmacological response. The pharmacodynamics (PD) and pharmacokinetics (PK) explain the relationship between drug dose and response. Usually, the administration route of PDT is intravenous, which circumvents the first-pass effect and metabolism, allowing direct absorption from systemic circulation and a higher drug availability with minimum delay. Although in the case of a pro-drug formulation such as ALA-mediated PDT, metabolic activation is required to form the photosensitizing protoporphyrin IX.

Since 1924 and the first report of porphyrin localization, it has been established that porphyrins display a greater affinity for cancer cells and malignant tissues compared to normal ones.¹ The higher accumulation of PSs in malignant tissues/cells can be influenced by several factors: enhanced vascular permeability in tumor vessels; lymph drainage, which decreases excretion; protein binding; the upregulation of LDL-receptors, which increase the mediated endocytosis; the acidic pH of the tumor (pH average: 6.5), which can increase the distribution of the weak acid PS; the large number of macrophages, which can excessively accumulate porphyrin-type molecules; and larger interstitial space.⁹⁹–¹⁰²

Protein binding followed by distribution to the targeted tissue (via diffusion or receptor-mediated endocytosis) and consequent cellular localization is dependent directly on the hydrophilicity, molecular weight, and charge of the PS.³⁸ Hydrophobic and small drugs passively diffuse through the cell membranes equilibrating between the inside and outside of the cell. The blood flow strongly determines the rate of absorption since it constantly maintains the concentration gradient, which is necessary for passive
diffusion. The affinity of the PS to bind proteins in plasma can influence its half-life significantly, define the time interval of the treatment, and affect photosensitivity. Larger particles with incorporated PSs can be absorbed by phagocytosis or micropinocytosis.103 Carrier-mediated diffusion occurs for less hydrophobic molecules and to those that resemble endogenous compounds for which specific membrane receptors and carrier systems already exist. It is worth noting that heme biosynthesis takes place partly in mitochondria and cytosol, starting from mitochondria where ALA is formed, then in the cytosol where several enzymatic reactions form coproporphyrinogen III, which transports the compound to the mitochondria to form heme.104 Porphyrins, including Photofrin, display an affinity for binding to mitochondrial benzodiazepine receptors, which can explain to some extent the internalization and accumulation in this vital organelle.105–107 The mechanism of action is also dependent on the cell genotype, the adenosine triphosphate levels (ATP), and the PS localization.108,109 There are three mechanisms of tumor destruction: direct cytotoxic effect against malignant cells, indirect vascular damage of the tumor, and macrophage-mediated immune system activation. The latter is a result of a pharmacological response and is described in the referenced reviews.110,111

In the bloodstream, a hydrophobic PS (e.g., unsubstituted phthalocyanines, tin-etiopurpurin) usually binds to low-density lipoproteins (LDL, HDL, and VLDL). Amphiphilic PSs (e.g., disulfonated derivatives of tetraphenylporphyrin, lutetium texaphyrin, and benzoporphyrin derivates mononacid) bind with both HDL and albumin. The more hydrophilic [e.g., tri- and tetrasulfonated tetraphenylporphyrins, chloro(phthalocyaninato)aluminum] bind to serum proteins such as albumin. Following this, the PS should bind and penetrate through the vessel walls and thus diffuse throughout the target. The hydrophobic PS usually diffuses faster into the diseased cells and preferentially localize in intracellular compartments such as mitochondria and nuclear membranes. The hydrophilic PS is absorbed by pinocytosis or endocytosis and localized mostly in lysosomes. Upon photoactivation, a chain of photoreactions together with enzymatic reactions and alterations are triggered and result in cancer treatment through necrosis, apoptosis, or autophagy.112–114 First, necrosis is unprogrammed cell death that involves degradation, cytoplasm swelling, and cell membrane disruption and leads to inflammation. Second, apoptosis is a programmed cell death that involves cell shrinkage. The intracellular organelles are being removed by phagocytes through membrane-enclosed spherical vesicles. Apoptosis usually does not involve inflammation. Finally, autophagy is a process that involves the transportation of cellular organelles through lysosomal degradation pathways; usually, it does not involve inflammation.

Cellular targets of PSs include the plasma membrane, mitochondria, lysosomes, the Golgi apparatus, the endoplasmic reticulum (ER), and components of the cytosol. Vascular targets include the vascular wall of normal and tumor vessels, which can destruct blood supply to the tumor by depriving the tissue of oxygen and nutrients, causing starvation of the diseased
A review by Almeida et al. regarding intracellular signaling mechanisms thoroughly describes the molecular pathways of PDT and the role of each enzyme factor and receptor. Briefly, there are two apoptotic pathways both leading to pro-caspase-3, -6 and -7 activation, which play a pivotal role in apoptosis.

The first is the extrinsic pathway, which is death receptor-mediated through activation of the cell surface death receptors (Fas, TNF-RI, TRAIL), leading to the formation of death-inducing signal complexes (DISCs) and activating pro-caspase-8 and pro-caspase-10 (see Figure 9.4). The second is the intrinsic pathway, which is mitochondria-mediated through disruption of the mitochondrial function, resulting in the cytochrome c release to cytosol, which in the presence of ATP or dATP activates procaspase-9 and pro-caspase-3.

Hydrophilic sulfonated aluminum phthalocyanines (AlPcSₙ) with three or four sulfonated groups tend to localize in lysosomes while more hydrophobic PSs with one or two sulfonated groups target the mitochondria or membranes. However, hydrophobic molecules and molecules that localize predominantly in the mitochondria are more effective PSs, probably because they initiate cell death via the apoptotic pathway as compared to

Figure 9.4 Major molecular events leading to cell death in PDT-treated cells. The two major apoptotic pathways, the death receptor-mediated or extrinsic pathway and the mitochondria-mediated-pathway, are represented. Reproduced from ref. 109 with permission from Elsevier, Copyright 2004.
those that localize in lysosomes, although this is not a hard-and-fast rule.118,119 Lysosomal photodamage resulting in mitochondrial-mediated apoptosis has been reported by Kessel and coworkers. Murine hepatoma cells (1c1c7) were treated with N-aspartyl-chlorin e\textsubscript{6} (NPe6), and upon irradiation, the mitochondrial pathway was triggered by cytochrome c, Bid, and caspase-3 and -9 activation.120 Lutetium texaphyrin (Lu-Tex) was found to localize in lysosomes in murine mammary sarcoma cells (EMT6). By post-irradiation, there was a loss of lysosomal fluorescence resulting in cell death, which was found to follow the apoptotic pathway by DNA ladder fragmentation analysis.121

Finally, the PS will be eliminated from the tissue by lymphatic or blood vessels and excreted through the liver or kidney to the bile. From there, it can either circulate for a second time or be eliminated permanently through intestines via fecal or urine elimination.122 For example, the pharmacokinetic profile of TOOKAD soluble (Section 9.4) indicates fast body clearance rates (alpha and beta half-lives: 2 min and 1.3 h, respectively) and less post-treatment photosensitivity. Photofrin, on the other hand, stays in the body longer (alpha, beta, and gamma half-lives: 16 h, 7.5 days, and 155.5 days, respectively) and patients have persistent photosensitivity, in some cases for more than a month.123–125

Another fact that should be considered is that light irradiation can induce drug relocalization. Sulfonated meso-tetraphenylporphyrins relocalize from lysosomes to cytoplasmic and nucleus areas.126 Kessel \textit{et al.} reported that monocationic porphyrins relocalize from the plasma membrane to cytosol, which then leads to procaspase-3 and -9 photodamage.127

9.4 Photodynamic Therapy and Cancer–Clinical Applications

PDT has been developed for cancer treatment, precancerous lesions (actinic keratosis, Barrett’s esophagus), and age-related macular degeneration. Most of the PSs that are under investigation for the treatment of cancer and precancerous diseases are based on the tetrapyrrole structure. Examples include porphyrins (HPD), chlorins (BPD, SnEt\textsubscript{2}, \textit{m}-THPC), bacteriochlorins (TOOKAD soluble), phthalocyanines (Pc4, AlPcS), and texaphyrins (Lutex) (see Figures 9.1 and 9.2).

Cancer is characterized by the uncontrolled proliferation of cells resulting from DNA damage or mutation. It is the second-highest cause of deaths worldwide after cardiovascular diseases. According to the World Health Organization (WHO), the latest update in September 2018 estimated 9.6 million deaths resulting from the following six types of cancer: lung, breast, colorectal, prostate, skin (non-melanoma), and stomach. Pancreatic and cervical cancers have high fatality rates with symptoms that are often difficult to diagnose. Therefore, early-stage diagnosis can be crucial and lifesaving.128,129
Current treatments rely mainly on chemotherapy, surgery, and radiotherapy; clearly, further development is needed. PDT can serve as a treatment option for malignant and premalignant non-melanoma skin cancer and other cancers such as head and neck cancer, prostate cancer, cholangiocarcinoma, lung cancer, and breast cancer.130,131 PDT is used therapeutically in dermatology for the treatment of non-melanoma skin cancers, inflammatory skin diseases, and virus-induced skin lesions caused by human papilloma virus.132 Especially for skin treatments, PDT can be beneficial with good cosmetic outcomes since it is active locally in a controlled way.133 Gene mutations after radiation or chemotherapy develop resistance to treatment. Concerning PDT, as singlet oxygen is the mode of action, cross-resistance is rare, which encourages the use of PDT against cancers that recur after conventional therapy.134

Another significant fact to consider is that 90% of cancer deaths are due to cancer metastasis and not to the primary tumor.135 The vascular system plays a pivotal role since travel from one site to another happens through the blood and/or lymphatic vessels. It is reported that breast cancer usually develops metastases to bone, liver, brain, and lung tissue; prostate cancer frequently metastasizes to the bone, and colorectal cancer metastasizes in the liver.136,137 These cancers are being targeted by PDT, and the elucidation of the mechanism is of great importance. PDT is a potential treatment against several cancers and a possible solution for metastasis prevention especially when a PS can be used as a dual treatment and imaging agent to track and visualize tumorous lesions.138

PDT appears as an interesting therapy for acute coronary syndrome and atherosclerosis. Preclinical studies have shown that plaque progression is reduced, and restenosis post coronary intervention with balloon angioplasty or stenting is prevented. Waksman \textit{et al.} applied intravascular PDT with MV0611-porphyrin-based PS [chloro(mesoporphyrinato IX dimethylester)gallium(III)] and light through a catheter-based diode laser to rabbits and pigs. The encouraging findings showed a reduction in macrophages, and consequently, cytokines in the plaque area reduced inflammation and attenuating atherosclerosis.139,140 The perspective of applying PDT with catheter-based DT in interventional cardiology is ongoing, and clinical trials involving Antrin, an expanded porphyrin (motaxefin lutetium), are under way.141 This new feature of PDT can be of significance in the case of coronary syndromes and prevent patient’s recurrent atherosclerosis.

Since 1993, when the first PDT drug was approved in Canada for the treatment of bladder cancer (Photofrin), significant effort and research focused on tumor treatment have been made. Since then, several PDT drugs have been approved worldwide by health organizations and others are in clinical trials (see Table 9.2).142,143 However, we are still awaiting the ideal PS that will fulfill all of the features listed above. PSs that have been approved or are under clinical development for PDT will be presented next.
9.4.1 Clinically Approved Photosensitizers

Porfimer sodium or Photofrin is a first-generation PS, which exists as a mixture of monomeric and oligomeric derivatives of hematoporphyrin (HPD) linked by ether and ester bonds (up to eight porphyrin units). It is employed for the treatment of esophageal cancer, endobronchial non-small-cell lung cancer, and the ablation of high-grade dysplasia in Barrett’s esophagus. Photofrin is intravenously administered; then the treatment area is illuminated by laser light using cylindrical fiber-optic diffusers to activate the drug after 40–50 h.

It selectively accumulates in malignant tissues and localizes in the Golgi apparatus and plasma membrane. The primary mechanism of action is vascular damage of diseased tissue by ischemic tumor cell necrosis. The main drawbacks are high post photosensitivity, long clearance (7 to 14 days), poor water solubility, and a low molar absorption coefficient (\(\approx 1170 \text{ M}^{-1}\text{cm}^{-1} \)) at 630 nm, which leads to a low penetration depth (5 mm in tissue). Photosensitivity can occur up to 30 days after the injection; thus, it is advised that exposure to sunlight should be avoided. In addition to the approved indications, Photofrin has been clinically tested against bladder cancers, brain recurrent cancers, biliary tract cancer, breast metastases, skin cancers, gynecological malignancies, cholangiocarcinoma, and head and neck cancers. Phase II clinical trials are ongoing for patient recruitment for a combination of interstitial PDT with chemotherapy against the locally advanced and recurrent head and neck cancer.

Second generation PSs have been developed to overcome the drawbacks of the first generation. They are chemical pure compounds, display a red-shift in their absorption spectrum \(\approx 650–750 \text{ nm} \) and thus deeper penetration (1–2 cm), display higher singlet oxygen quantum yields, and show higher tumor selectivity.

5-Aminolevulinic acid (ALA) is a naturally occurring precursor of PpIX and heme and it is widely used as a second-generation PSs (Levulan or Ameluz) against face and scalp actinic keratosis, and bladder cancer. Effective responses to ALA-PDT have been reported for the treatment of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). ALA is used as a 20% aqueous solution (Levulan), which enhances penetration from the abnormal epithelium. It is applied topically with a typical time interval of 14–18 h in the case of actinic keratosis, but only 3 h for upper extremities. ALA selectively accumulates in mitochondria, cytosol, and cytosolic membranes in tumor lesions increasing the production of PpIX and directly resulting in tumor cytotoxicity. PpIX as a photoactive PS absorbs light at 635 nm with a quiet low molar absorption coefficient (5000 \(\text{ M}^{-1}\text{cm}^{-1} \)) and has a reported 1 mm penetration depth.

ALA hydrochloride (ALA HCl, Gleolan) was recently approved by the U.S. Food and Drug Administration (FDA) for fluorescence-guided surgery (FGS) as an adjuvant to assist conventional glioma surgery providing real-time detection and visualization of malignant tissues during surgery. A dose of
<table>
<thead>
<tr>
<th>Photosensitizer</th>
<th>Application</th>
<th>λ_{max}</th>
<th>Drug dose</th>
<th>Fluence</th>
<th>Fluence rate</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photofrin</td>
<td>Bladder, esophageal, lung, and brain cancer; Barrett’s esophageal cancer;</td>
<td>630</td>
<td>2 mg kg$^{-1}$</td>
<td>130 to 300 J cm$^{-1}$</td>
<td>100 mW cm$^{-2}$</td>
<td>Worldwide (Withdrawn from the EU for commercial reasons)</td>
</tr>
<tr>
<td></td>
<td>cervical dysplasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levulan/Ameluz</td>
<td>Skin, bladder, brain, and ovarian cancer, Barrett’s esophageal cancer,</td>
<td>635</td>
<td>20% aqueous solution</td>
<td>100 J cm$^{-2}$</td>
<td>100–150 mW cm$^{-2}$</td>
<td>Worldwide</td>
</tr>
<tr>
<td></td>
<td>actinic keratosis, BCC, diagnostics of brain and bladder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metvix/Metvixia</td>
<td>Actinic keratosis, BCC, Bowen’s disease</td>
<td>570–670</td>
<td>16.8% cream</td>
<td>75 J cm$^{-2}$</td>
<td>200 mW cm$^{-2}$</td>
<td>Worldwide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexvix</td>
<td>Bladder diagnosis</td>
<td>380–450</td>
<td>100 mg (HCl salt)</td>
<td>180–360 J cm$^{-2}$</td>
<td>0.25 mW cm$^{-2}$</td>
<td>Europe, the United States</td>
</tr>
<tr>
<td>Foscan</td>
<td>Head and neck, lung, brain, skin, bile duct, prostate, bronchial, and</td>
<td>652</td>
<td>0.15 mg kg$^{-1}$</td>
<td>20 J cm$^{-2}$</td>
<td>100 mW cm$^{-2}$</td>
<td>Europe</td>
</tr>
<tr>
<td></td>
<td>pancreatic cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visudyne</td>
<td>AMD, pancreatic adenocarcinoma, BCC</td>
<td>690</td>
<td>0.1–2.0 mg kg$^{-1}$</td>
<td>50 J cm$^{-2}$</td>
<td>600 mW cm$^{-2}$</td>
<td>Worldwide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tookad soluble</td>
<td>Prostate cancer</td>
<td>762</td>
<td>4 mg kg$^{-1}$</td>
<td>200 J cm$^{-1}$</td>
<td>150 mW cm$^{-1}$</td>
<td>Europe, Mexico</td>
</tr>
<tr>
<td>Photosense</td>
<td>Lung, skin, breast, gastrointestinal, head and neck cancer, AMD</td>
<td>675</td>
<td>1 mg kg$^{-1}$</td>
<td>100 J cm$^{-2}$</td>
<td>150–250 mW cm$^{-2}$</td>
<td>Russia</td>
</tr>
<tr>
<td>Talaporfin</td>
<td>Early stage lung cancer, liver metastases of colorectal cancer, hepatocellular carcinoma</td>
<td>664</td>
<td>0.5–3.5 mg kg$^{-1}$</td>
<td>100 J cm$^{-2}$</td>
<td>150 mW cm$^{-2}$</td>
<td>Japan, Russia</td>
</tr>
<tr>
<td>Laserphyrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redaporfin</td>
<td>Biliary tract cancer</td>
<td>749</td>
<td>0.75 mg kg$^{-1}$</td>
<td>50–100 J cm$^{-2}$</td>
<td>100–150 mW cm$^{-2}$</td>
<td>Orphan status in Europe</td>
</tr>
<tr>
<td>Synthetic hypericin</td>
<td>Cutaneous T-cell lymphoma</td>
<td>570–650</td>
<td>0.25% ointment</td>
<td>5 J cm$^{-2}$</td>
<td></td>
<td>Orphan status in Europe, the United States</td>
</tr>
</tbody>
</table>
20 mg kg\(^{-1}\) is orally administered 3 h before the anesthesia and consequently, blue light illumination is used to visualize PpIX with a neurosurgical microscope.\(^ {154}\) Patients are advised to avoid exposure to light for 24 h post-treatment (body clearance: 1–2 days).

ALA-methyl ester derivative (MALA or Metvix) also is a second-generation PSs, approved for actinic keratosis and BCC.\(^ {155}\) It has the same mechanism of action and localization as Leuval; however, it displays deeper penetration (2 mm) compared to Leuval (1 mm) due to its lipophilicity.\(^ {156}\) A short time interval is required (3 h) after the application of Metvix for the achievement of the high fluorescence of PpIX in the treated lesions after illumination with red light (570 to 670 nm). Currently, daylight PDT (DL-PDT) has attracted attention from clinical dermatologists who aim to reduce the use of blue or red-light irradiation. Recent reports for actinic keratosis treatment show that Metvix application under daylight has the same effect as in the combination with blue light PDT and that ALA is more effective than MALA in DL-PDT.\(^ {157,158}\) In the case of DL-PDT, the quantification of light dose, which is directly dependent on the environmental conditions, is of great importance.\(^ {159}\)

Other ALA-hexyl ester derivatives are Hexvix and Cysview. They are approved for bladder cancer diagnostics in combination with blue light fluorescence cystoscopy. The recommended dose for adults is 100 mg dissolved in 50 mL of diluent, which is administered \textit{via} intravesical instillation into the bladder, where it selectively localizes in the bladder walls.\(^ {160,161}\) Illumination during the cystoscopic examination should take place within 60 min with blue light (380–450 nm).

Benzoporphyrin monoacid ring A (BPD) derivative or verteporfin (Visudyne) is a second-generation PS, too. It is a liposomal formulation of a 1 : 1 racemic mixture of two regioisomers (BPD-M\textsubscript{AC} and BPD-M\textsubscript{AD}). It is approved for the treatment of subfoveal choroidal neovascularization (CNV) due to age-related macular degeneration (AMD) or pathologic myopia.\(^ {31,162}\) 15 Minutes after intravenous administration, red-light (689 nm) is delivered to the retina as a single circular spot \textit{via} fiber optics and a slit lamp. In the bloodstream, verteporfin binds to LDL and selectively accumulates in the neovasculature, resulting in apoptosis in neoplastic tissues.\(^ {163}\) Verteporfin reaches the maximum concentration after 30 min and has rapid body clearance rates and subsequently minimal skin photosensitivity (3 days). It has a high molar absorption coefficient (35 000 M\(^{-1}\) cm\(^{-1}\)) at 689 nm, which allows for deeper penetration. Promising outcomes from clinical trials against BCC have been reported, and a Phase II clinical trial is currently recruiting patients for PDT treatment of advanced pancreatic adenocarcinoma.\(^ {164–166}\)

5,10,15,20-Tetrakis\textit{(meta)-hydroxyphenyl})chlorin (\textit{m}THPC, temoporfin, formulation as Foscan) is a second-generation PS from the chlorin family. It is approved for the treatment of squamous head and neck carcinoma.\(^ {167}\) After 96 h intravenous administration, red-light illumination at 652 nm is delivered to the tumorous site through a microlens optic fiber. Temoporfin
accumulates in the vasculature walls of tumor brain tissue as well as intracellularly, resulting in tumor cell death and vascular damage through both necrosis and apoptosis.39,167–169

\textit{mTTHPC} has a relatively high molar absorption coefficient (30 000 M$^{-1}$ cm$^{-1}$) at 652 nm. Thus, compared to Photofrin, a low dose is needed (100 times lower).170 Temoporfin is one of the most effective PSs, although its main drawback is its poor water solubility and high post-treatment photosensitivity, where patients are advised to avoid exposure to light for 15 days. Moreover, the treatment area should not be exposed to light for up to six months.150,171 PDT with Foscan had promising results in clinical trials for the treatment of breast and pancreatic cancer.172,173

\textsc{TOOKAD} soluble (Padeliporfin-dipotassium, WST-11) is a Pd(II)bacteriochlorin second-generation PS derived from the photosynthetic pigment bacteriochlorophyll \textit{a} (BChl \textit{a}), which is found in bacteria. It is a follow-up PS to Padoporfin (WST-09) designed with increased water solubility and is one of the more recent developments in PDT. In the European Union (EU), it is approved for the treatment of adenocarcinoma of the prostate.174,175 After 15 min intravenous administration, under general anesthesia, light is delivered through interstitial optical fibers to the prostate gland area.176 \textsc{TOOKAD} is a vascular-targeted photodynamic therapy (VTP) and thereby localizes in the tumor blood vessels where it initiates inflammation, hypoxia, necrosis, and tumor eradication through vascular damage.177 It has the advantage of deeper penetration (4 mm) as it absorbs in the red area of the spectrum with a high molar absorption coefficient at 762 nm (88 500 M$^{-1}$ cm$^{-1}$).178 \textsc{TOOKAD} has a fast body clearance rate, resulting in low skin photosensitivity as patients are advised to avoid light for only 6 h post-treatment. \textsc{TOOKAD} has also been tested against established bone metastasis and orthotopic prostatic models.179 Recently (February 2020), the FDA's Oncologic Drugs Advisory Committee (ODAC) refused to accept \textsc{TOOKAD} VTP, questioning the therapy's trial design, endpoints, missing follow-up data, and adverse events.180 A follow-up Phase IV is ongoing to evaluate erectile dysfunction, urinary incontinence, and related quality-of-life post-treatment for low-risk prostate cancer.181

Mono-L-aspartyl chlorine \textit{e}_6 (Talaporfin sodium, Laserphyrin, NP\textit{e}6) is a hydrophilic rhodochlorin derived from chlorophyll \textit{a}. The Japanese government has approved it for the treatment of lung cancer.182,183 Talaporfin selectively accumulates in the malignant site, and 4 h after intravenous administration, laser light is endoscopically delivered through a quartz optic fiber. By post-irradiation, it causes vascular flow stasis and direct tumor cytotoxicity through apoptosis and necrosis.184,185 It has a high molar absorption coefficient (40 000 M$^{-1}$ cm$^{-1}$) at 664 nm and efficient antitumor effects, as well as low skin photosensitivity (1 week) and fast body clearance rates compared to Photofrin, making this PS a promising PDT agent.182 Talaporfin was also employed in clinical trials for the treatment of early stage head and neck cancer, colorectal neoplasms, and liver metastasis.186,187
9.4.2 Photosensitizers Under Development

Redaporfin or Luz11 is a second-generation PS from the bacteriochlorin family and was developed by Arnaut and coworkers.\(^{188}\) It was granted orphan designation by the European Union and the United States for the treatment of biliary tract cancer. A pivotal Phase III clinical trial is planned.\(^{27,189}\) Gomes-da-Silva et al. investigated the mechanism of action of Redaporfin and reported that it selectively localizes in the endoplasmic reticulum (ER) and the Golgi apparatus (GA), which after light activation leads to ER and GA functional disruption. This results in tumor cell death and direct antineoplastic effects through apoptosis as well as indirect immune-dependent destruction of malignant lesions through ROS generation.\(^{27}\) Redaporfin has a very high molar absorption coefficient at 745 nm (140,000 M\(^{-1}\) cm\(^{-1}\)), which allows for deep light penetration. Recently reported by Rocha et al., an in vivo study of the necrosis depth in liver rats showed that Redaporfin benefits from deeper necrosis at a drug-light combination ca. 50 times lower than that of Photofrin.\(^{190}\) Light illumination at 750 nm was delivered 15 min following the intravenous administration of Redaporfin (0.75 mg kg\(^{-1}\)), which led to a liver necrosis depth of approximately 4 mm with frontal illumination (25 J cm\(^{-2}\)) and a necrotic radius of 0.7 cm with interstitial illumination (100 J cm\(^{-2}\)). With promising results, Redaporfin is currently in Phase I/II clinical trials for the treatment of head and neck cancer.\(^{191}\)

In the search for other improved PSs for PDT, a non-porphyrin PS has been granted orphan designation by the European Union and the United States. This synthetic hypericin (SGX301) derivative belongs to the extended quinone family. It is used to treat early-stage cutaneous T-cell lymphoma (CTCL); currently, a Phase III clinical trial is ongoing.\(^{192}\) It is administered topically as a hydrophilic ointment, twice per week, and covered with a bandage for 12–24 h. Then the area is treated with visible fluorescent light. Hypericin tends to accumulate in T-cells and localizes in the ER, GA, lysosomes, and mitochondria. After light activation, singlet oxygen and ROS are formed and initiate the mitochondrial apoptotic pathway, causing cellular toxicity and killing the targeted T-cells.\(^{193}\) Hypericin has a high molar absorption coefficient at 590 nm (45,000 M\(^{-1}\) cm\(^{-1}\)) and displays low toxicity and dark toxicity because it only targets the T-cells in the skin layer.\(^{39}\)

Texaphyrins are metal-coordinating expanded porphyrins with enhanced water solubility. This class of compounds was pioneered by Sessler for use in medicine and biology.\(^{194}\) Texaphyrins show promising results as PDT or radiation agents. Mainly two lanthanide(III) texaphyrin complexes are under investigation for PDT treatments or imaging applications. The main advantage of texaphyrins as PDT agents is their strong absorption profile at a much longer wavelength (700–750 nm), which allows for effective treatment at a greater depth. Other advantages include that they initiate the apoptotic pathway without disrupting DNA; thus, they are not mutagenic and preferably localize in cancerous sites. Moreover, they are an attractive option for
contrast agents in magnetic resonance imaging (MRI), which allows for non-invasive evaluation of tumorous tissues. Clinical trials with Motaxefin lutetium(III) (Lu-Tex, Lutrin, Antrin, or Optrin) for the treatment of prostate and cervical dysplasia or cancer are complete. However, they have not been granted approval from the FDA or European Medicines Agency (EMA). Moreover, this drug has been under preclinical investigations as a possible therapy for AMD and photo-angioplasty of peripheral arterial diseases. Young and Woodburn et al. reported the selective uptake and retention by cancerous lesions and atheromatous plaque after intravenous administration as well as microvasculature selectivity, resulting in selective photodamage. Motaxefin gadolinium(III) (Gd-Tex, Xcytrin) is a gadolinium texaphyrin complex that displays intense fluorescence at 750 nm and has found application in in vivo real-time imaging making it a potent candidate for use as a contrast agent in facilitating clinical diagnosis of atherosclerosis. Motexafin gadolinium MRI visualization showed that it preferably accumulates in tumors and is well-tolerated. Clinical trials for the treatment of brain metastases from lung and breast cancer under whole brain radiation showed promising results. However, further evaluation is required to elucidate the safety and efficacy.

Purpurins are chlorin-based structures that were first synthesized by Woodward during his seminal chlorophyll synthesis. Tin ethyl etiopurpurin or Purlytin (Rostaporfin or SnET$_2$) is the most efficient purpurin, belonging to the series of second-generation PSs. It has been under clinical trials Phase II/III for the treatment of cutaneous cancer, metastatic breast cancer, AIDS-related Kaposi’s sarcoma, and AMD. A follow-up study on the clinical trial (Phase II/III) for the treatment of breast cancer had a complete response for over 90% of patients. The tin atoms result in a redshift of the absorption profile accompanied by a high molar absorption coefficient at 660 nm (40 000 M$^{-1}$ cm$^{-1}$). Purlytin has drawbacks, including dark toxicity and photosensitivity (one month); it also has poor water solubility. The latter can be overcome by formulations with the use of lipid emulsions (i.e., Cremophor EL emulsion, liposome encapsulation, or cyclodextrins). Although promising, there is still no authorized approval for cancer treatment.

Another novel and very promising chlorin-based PS currently in clinical trials is the hexyl ether derivative derived from pheophorbide-a from Spirulina algae (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a, HPPH or Photochlor). HPPH is under evaluation in Phase I for its safety and tolerability post-injection in patients with esophageal cancer. A search of clinicaltrial.gov identifies several clinical trials involving HPPH in Phase I (treatment of oral cavity carcinoma, Barrett’s esophagus, lung cancer, head and neck cancer, BCC, and esophageal cancer), Phase II (lung cancer,
esophageal cancer), and an active study (Phase II) for treating patients with oral cavity squamous cell carcinoma. The main advantages of HPPH are its high molar absorption coefficient at 665 nm (47 000 M⁻¹ cm⁻¹) and the considerably low cutaneous phototoxicity compared to patients treated with Photofrin or Foscan.

Phthalocyanines (Pcs) are extended, artificial porphyrin systems with a unique structure. Each pyrrole moiety is fused with a benzene ring resulting in a red-shifted absorption spectrum and a deeper penetration range. They are characterized by a relatively easy preparation; thus, large-scale synthesis at a relatively low cost can be performed. Lately, there has been a focus on Pcs in PDT, and two recent reviews by Lo et al.²¹³ and Li et al.²¹⁴ perfectly summarize their properties and applications. Their main drawback is their very low water solubility, which can be overcome by introducing polar groups (e.g., in sulfonated Pc derivatives) or using nano-formulations such as nanoparticles (liposomes or polyethylene glycol polymers).²¹⁵,²¹⁶ It was shown that metal insertion increases the triplet state yield and the singlet oxygen quantum yield of Pcs (i.e., the zinc, aluminum, and silicon derivatives).²¹³ As such, Pc derivatives are under development and currently are undergoing preclinical and clinical evaluations. One liposomal Zn(II) Pc developed by Ciba-Geigy underwent Phase I/II clinical trials against squamous cell carcinomas of the upper aerodigestive tract; however, no additional data have been reported yet.²¹³,²¹⁶

Photosense or AlPcS is a water-soluble sulfonated mixture of di-, tri-, and tetra-sulfonated aluminum phthalocyanines; it has been approved by the Russian Ministry of public health.¹⁴⁶ It is indicated for patients with AMD and head and neck, lung, breast, skin, and gastrointestinal cancers. It is administered intravenously with a 24 h drug-light interval, and it selectively accumulates in the cancerous sites.²¹⁷ Laser light is delivered to tumors via quartz optical fibers at 675 nm, where Photosense absorbs with its characteristic high molar absorption coefficient (42 000 M⁻¹ cm⁻¹). Noteworthy, a Photosense analog with two sulfonic groups in the adjacent isoindole subunits (AlPcS₂adj) proved to be a powerful photochemical internalization (PCI) agent.²¹⁸

Pc4 is a silicon-based phthalocyanine that has been under Phase I clinical trials for cutaneous cancers. After activation, it initiates apoptosis in cancer cells, leading to photodamage. A clinical study reported by Baron et al. showed that Pc4-PDT is a safe and tolerable treatment for cutaneous malignancies such as mycosis fungoides.²¹⁹,²²⁰ In another trial from the same principle investigator, Pc4-PDT was used to treat cutaneous T-cell non-Hodgkin lymphoma.²²¹

9.5 Strategies for Improvement of Photosensitizers

There are several ways to control the selectivity of cancerous cells and modulate singlet oxygen production. Below, some of the strategies under investigation to achieve advanced PSs are discussed briefly. Third-generation
PSs aim to advance the photophysical properties and improve the drug delivery properties. Expanding the \(\pi \)-conjugation to refine the absorption profile, introducing functional groups to enhance singlet oxygen generation, utilizing antibody bioconjugation, or encapsulating PSs in nanoparticles to control cancer targeting methods and drug delivery are some of the ways to manage the therapeutic outcome.

9.5.1 Modulation of the Photophysical Properties

As mentioned, triplet state formation (through ISC) and singlet oxygen generation directly influence the overall PDT effect. Slight changes in the molecular structure of a compound may modulate its photosensitizing properties. The photophysical properties of a PS are influenced by the presence and nature of a metal atom in the core or at the periphery. Enhancing the triplet state quantum yield and consequently the singlet oxygen quantum yield can occur primarily by heavy atom insertion (e.g., Br, I), the so-called “heavy atom effect”, particularly when it is attached directly to the porphyrin macrocycle.\(^{50}\) In addition, a variety of second-generation PSs contain a chelated central metal atom (e.g., TOOKAD, SnEt\(_2\), and AlPcS\(_n\)); however, this does not directly define the photoactivity of a PS.\(^{62}\) The development of PSs with an absorption profile in the red-visible region or near infrared (NIR) along with an enhanced molar absorption coefficient specifically at the Q bands (500–750 nm) is a challenge. The position of the Soret band can be influenced by the structural variation of the macrocycle. The position and the relative intensities of the Q bands can vary according to the nature and position of the substituents. Expanding the \(\pi \)-conjugation of the macrocycle can result in a bathochromic shift due to the delocalization of the frontier MO, as discussed earlier. This can be achieved by modulating the periphery with either \(\beta \)- or meso-substituents, which can promote a bathochromic shift and at the same time endorse a hyperchromic effect on the peak intensity (molar absorption coefficient).\(^{45,49,222}\) Additionally, an increased absorption coefficient in the NIR wavelength region can be obtained by reducing one or two of the double bonds in the conjugated ring structure (i.e., \(\varepsilon \) bacteriochlorins > \(\varepsilon \) chlorins > \(\varepsilon \) porphyrins). Another way to alter the intensity of the visible bands is the replacement of a methine bridge with an aza-nitrogen atom, as in phthalocyanines.\(^{15}\) Also, substitution with electron-rich donor groups, in particular amino groups, induces a bathochromic shift in the absorption spectra and therefore can enhance the penetration of light in human tissue. These strategies are considered to be useful tools for altering the electronic configuration of the macrocycle; however, sometimes they are accompanied by decreased singlet oxygen quantum yields.

9.5.2 Photosensitizer Uptake and Cellular Localization

Among the PSs is a preferable selectivity toward the tumorous sites, as previously discussed, which can be modulated with targeting
approaches.36,223 The hydrophobic character of the PSs usually increases the cellular uptake; however, it also causes poor solubility and hydrophobic molecules have a tendency to form aggregates in biological aqueous media, thereby preventing their biological application. Additionally, such molecules have shorter triplet lifetimes and singlet oxygen yields. On the other hand, hydrophilic PSs are unable to cross amphiphilic cellular membranes, resulting in poor cellular uptake. Hence, there should be a balance between the hydrophilicity and hydrophobicity of the PS to achieve the desired localization.62,150,224 The water solubility can be enhanced by functionalization of the porphyrin ring with cationic or anionic substituents (\textit{i.e.}, amine, pyridyl, pyridinium, imidazolyl, carboxylate sulfonyl, and phosphate groups).225 Third-generation PSs are envisaged to overcome this limitation by designing amphiphilic PSs through the introduction of hydrophilic groups such as peptides, PEGs, and carbohydrates at their peripheral or axial positions.226,227 Also, the introduction of bioconjugates that are either covalently bound to the PS or incorporated into a drug delivery system (DDS) aims to improve the tumor specificity of the PS.

\subsection*{9.5.3 Targeted Photodynamic Therapy and Nano-approaches}

Targeted PDT is a far-reaching field and there are extensive article reviews where this is widely discussed. In 1891, Ehrlich, the pioneer of chemotherapy, coined the “magic bullet”, which represents the first description of the drug-targeting concept.228,229 Nanomedicine refers to the use of so-called nanoparticles (NPs) designed for specific drug delivery with an accurate concentration over a specific period of time. Nanoparticles are stable, solid colloidal particles consisting of biodegradable polymer or lipid materials and range in size from 10 to 1000 nm. It should be noted that the EMA has a limit of 100 nm for nanoparticle-containing drug systems.230,231 NPs can improve water solubility and the biocompatibility of a drug, can mitigate the degradation of a drug after administration, and can potentially decrease side effects. The clinical use of targeted PDT is still limited. The best example of targeted PDT involving porphyrins is Visudyne, which is a liposomal formulation of verteporfin approved for treatment of AMD and polypoidal choroidal vasculopathy.232 In addition to liposomes, DDS utilizes various NPs, including polymeric nanoparticles, niosomes, solid lipid nanoparticles, nanoemulsions, nanocrystals, cubosomes, hexasomes, dendrimers, micelles, microcapsules, quantum dots, silica and gold NPs, superparamagnetic iron oxide nanoparticles, carbon nano-platforms, and different nanoassemblies.233–235 Finally, other approaches include the use of ligands/conjugates such as vitamins, folates, glycoproteins, peptides, oligonucleotide aptamers, growth factors, lipoproteins, and other useful tools that target nanoparticles to cancer cells.230,236–238

Additionally, to enhance the selectivity and specificity of PSs toward tumor tissue, it is possible to utilize active targeting where PS conjugates are fashioned with receptor targeting moieties.239 Examples include monoclonal
antibodies such as herceptin (antibody to the HER2 receptor); folate-modified nanocarriers; antibodies against transferrin receptors (TfR), which are overexpressed on the surface of many solid tumors; and Tf itself.240,241

A recent and interesting study by Sitti et al. involved the use of micro-robots, the “micro-rollers,” which consist of gold and nickel layers that allow for the control of blood flow circulation by applying a weak magnetic field. After reaching the tumor target, they bind to cancer cell proteins (anti-HER2) via the antibody. Following UV irradiation, they release the anticancer drug (doxorubicin). This opens new approaches to drug delivery that can be applied in PDT.242,243 One of the most important advances in nanomedicine is the improvement of targeted DDS that can maximize the therapeutic efficacy.

9.6 Conclusion

Porphyrin-based PDT has found broad application as a therapeutic modality not only against high-risk cancers but also against pre-cancerous and non-cancerous diseases. The progression from bench to bedside is a long-term process, and promising pre-clinical research and clinical trials show benefits to human health. Nevertheless, PDT is a field with many aspects that are open to exploration with the hope that PDT can contribute even more to human health. PDT was discussed in this chapter along with an update of the PSs and strategies that can enhance their efficiency.

Acknowledgements

This work received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 764837 and was supported by a grant from Science Foundation Ireland (IvP 13/IA/1894).

References

5. J. D. Spikes, Ann. N. Y. Acad. Sci., 1975, 244, 496.

