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PACS 82.70.Dd � Colloids
PACS 64.70.pv � Glass transitions of speci�c systems: Colloids
PACS 63.50.-x � Vibrational states in disordered systems

Abstract � The anomalous thermodynamic properties of glasses remain incompletely understood,
notably the anomalous peak in the heat capacity at low temperatures; it is believed to be due
to an excess of low-frequency vibrational modes and a manifestation of the structural disorder in
these systems. We study the thermodynamics and vibrational dynamics of colloidal glasses and
(defected) crystals. The experimental determination of the vibrational density of states allows
us to directly observe a strong enhancement of low-frequency modes. Using a novel method
(Zargar R. et al., Phys. Rev. Lett. 110 (2013) 258301) to determine the free energy, we also
determine the entropy and the speci�c heat experimentally. It follows that the emergence of the
excess modes and high values of the speci�c heat are directly related and are speci�c to the glass:
even for solids containing a very large amount of defects, both the low-frequency density of states
and the speci�c heat are signi�cantly smaller than for the glass.

Copyright c� EPLA, 2014

The vibrational density of states (DOS) and the nor-
mal modes of solids provide a direct route to study its
thermodynamics and mechanical properties [1]. In perfect
crystalline solids, because of their long-range order, vibra-
tional states are well understood as plane-wave phonon
modes [2�5]. However, for more disordered systems the
nature of vibrations remains elusive [6]. Structurally dis-
ordered systems such as liquids, glasses and amorphous
materials exhibit a number of peculiar properties that
are anomalous compared to those of the crystals [6�16].
These properties include anomalous acoustic behavior, a
peak in the temperature dependence of the speci�c heat
Cp/T 3, and a Boson peak observed in inelastic scatter-
ing of light or neutrons [13�16]. These suggest the exis-
tence of an excess vibrational density of states over and
above the predictions of the Debye model: at the maxi-
mum in Cp/T 3, the vibrational density of states, D(�),
scaled with the DOS of a perfect crystal, goes through
a maximum which is called the �Boson peak� [17�22].
The relation between the Boson peak and the disor-
der remains a topic that is hotly debated [12,13]; it
seems clear that there is some relation between the two,
but a direct link between the Boson peak and struc-
tural disorder in glassy systems has been di�cult to
demonstrate [17�25].

In this letter, we study the e�ects of structural disor-
der on the vibrational modes and the thermodynamics
of colloidal hard spheres. This system, as we will show
below, allows us to determine both the DOS and the
thermodynamic properties of the glassy and crystalline
states, and to provide a direct comparison between the
two states of matter. We apply the covariance matrix
analysis [7,26,27] to determine the density of states and
the normal modes of vibrations from the particle displace-
ments for a nearly perfect crystal, crystals with di�erent
amounts of defects, and for completely disordered systems
(glasses). We �nd that there is a strong enhancement of
low-frequency modes in the DOS for glasses however, no
signi�cant excess of modes is observed for very defected
crystals, regardless of the amount of disorder (crystalline
defects) present. We also experimentally determine the en-
tropy, which is a measure of the speci�c heat at constant
temperature, for several hard-sphere systems with di�er-
ent amounts of disorder. We show that while the speci�c
heat increases gradually with increasing amount of disor-
der for crystals, it shows a discontinuous jump between a
very defected crystal and a glass, as does the amplitude
of the excess modes. These observations con�rm indepen-
dently that the excess of modes is an intrinsic property
of glassy systems that is uniquely due to their vibrational
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entropy and is not directly related to structural defects,
as the fraction of particles with local sixfold symmetry in
the very defected crystal is only slightly larger than that
of the glassy system.

We use sterically stabilized �uorescent poly-
methylmethacrylate particles suspended in a refractive
index and density matched mixture of cis-decalin and
cycloheptyl bromide which are the best model system
for hard spheres [28]. Our particles have a diameter
� = 1.7µm and polydispersity � 4%. The disordered sys-
tem is obtained in a second system with � = 1.5µm and
polydispersity � 7% to prevent crystallization. In both
systems an organic salt, tetrabutylammonium bromide,
is used to screen any possible residual charges. Colloidal
hard-sphere systems at volume fractions between 0.54
and 0.62 are prepared by diluting sediments that are
centrifuged to random close packing (�rcp � 0.64) [29].
Fast confocal microscopy allows us to determine the
structure and dynamics of our particles that are subject
to thermal agitation. For the DOS, we acquire sequences
of 2D images on a 3D system; this allows us to follow the
dynamics of the individual particles. Note that, following
the vibrations of particles in a full three-dimensional
system requires an extremely fast scanning microscopy
which is not feasible with the current equipment even
for small three-dimensional systems. To understand
what is the e�ect of choosing a 2D slice of a 3D system,
previously the density of states for a two-dimensional
slice of a 3D system and for a three-dimensional system
was studied by performing extensive simulations [7,8]; it
was shown that the low-frequency part of the two spectra
have a qualitatively similar behavior: the signature of the
presence of the soft modes is present both in the full 3D
system, and in its 2D cut.

Our entire crystal is polycrystalline, allowing to perform
the measurements on perfect and defected crystals on the
same sample but at di�erent regions that are character-
ized by a di�erent defect density. The 2D slices are taken
in a �eld of view 105µm × 105µm and at a distance of
25�30µm away from the coverslip, deep enough to avoid
the e�ects of the boundary. We note that hard spheres nu-
cleate with their hexagonal plane, i.e. the (1, 1, 1)-plane
of the fcc crystal, perpendicular to the external boundary
and then �ll the cell maintaining the same orientation.
The cover slide thus dictates the orientation of the crystal
but, at su�ciently long distances, has no e�ect on its ther-
modynamic properties. In other words, the orientation of
crystalline planes is due to its growth history, but at the
measurement location (at 25�30 µm from the cover plate),
the crystal behaves like a bulk crystal, i.e. its vibrational
properties are una�ected by the presence of the wall. For
amorphous phases however, the wall e�ects propagate at
most over the dynamical correlation length, which is less
than a few times of the particle diameter [30].

Acquiring about 5500 images with a rate of 25 frames
per second, we follow positions of about 2600 particles in
the 2D confocal plane. For determining the free energy,

we perform full 3D scans of the particle positions, that
allows us to determine the free volumes of a given static
con�guration [31]. Figure 1 shows a 2D con�guration of
the particles for a nearly perfect crystal, crystals with
three di�erent amounts of disorder and for a supercooled
liquid, all at the same volume fraction � = 0.56; crystals
are more and more defected going from (a) to (d). The
particles are colored according to their hexagonal order; to
quantify the order in our systems, we calculate the bond
orientational order parameter, �6 = 1

Nnn

�Nnn
k exp(6i�jk)

in which Nnn is the number of nearest neighbors and �jk
indicates the direction of particle j with respect to its near-
est neighbors k [32]. Figure 1(f) demonstrates the prob-
ability density distribution of �6. We �nd that for the
nearly perfect crystal and the two more imperfect crys-
tals, corresponding, respectively, to �g. 1(a)�(c), the dis-
tribution shows a high peak at �6 = 1: all the particles
are sixfold coordinated. For the glassy sample, the his-
togram is broad with �6 < 1 (�g. 1(f)). The very de-
fected crystal however, represents both features: a small
peak at �6 = 1 and a rather broad distribution for �6 < 1
(�g. 1(d) and (f)).

Following the motion of particles in real time, we ob-
tain all particle positions x = x(t), y = y(t) as func-
tions of time using standard particle tracking software [33].
Denoting ui(t) the components of the particle displace-
ments from the average positions along the confocal plane
ui(t) = {(xi(t) � �xi�), (yi(t) � �yi�)}, we obtain the dis-
placement correlation matrix (of dimension twice the num-
ber of particles) as

Dab = �uµiu�j�, µ, � = x, y, (1)

where a, b = 1, 2, . . . , 2N matrix index on the left runs
both over the particle indices and the Cartesian com-
ponents of displacements. The averaging �. . .� has been
done over the period of measurement, which is about
220 seconds.

Diagonalizing Dab we obtain the eigenvalues, �a, and
the corresponding 2N normal modes of the system.
Results are presented in terms of the mode frequencies
which are related to the eigenvalues as

�a =
�

1/�a. (2)

We note that the covariance matrix analysis is exten-
sively used to study the vibrational density of states for
di�erent systems [4,7�9,27,34]. This method allows us to
gain information on the nature of low-frequency modes,
but completely ignores dissipative e�ects and anharmonic-
ity that are present in the system. On the other hand, for
the dynamical matrix method while both dissipative ef-
fects and anharmonicity are taken into account, all spatial
information is lost, which is not the case for our method.
Connecting the two methods is not possible here: the
eigenvalues of the covariance matrix �a with the dimen-
sion of length squared, are related to those of the dy-
namical matrix �a with the dimension of inverse time,
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Fig. 1: (Color online) Con�guration of the particles in a 2D plane. The average position of the particles are shown for (a) a nearly
perfect crystal, ((b), (c)) two more imperfect crystals, (d) for a crystal with a large amount of disorder, a �very defected crystal�
and (e) for a supercooled liquid, all at the same volume fraction � = 0.56. The amount of disorder increases from (a) to (e).
Particles are colored according to the hexagonal order. A Voronoi tessellation is shown for each con�guration. (f) The probability
density distribution of the bond orientational parameters for a nearly perfect crystal, crystals with defect, and for liquids.

as �a = (kBT )/(m�2
a) with kBT the thermal energy, only

for systems with non-dissipative dynamics at equilibrium
which is not valid for our dense hard spheres. Therefore,
the combined e�ects of damping, anharmonicity and hy-
drodynamic interactions can alter the frequency scale of
the covariance matrix analysis from the real frequency of
the damped anharmonic system. Thus, �a are the tempo-
ral frequencies the system would have if it were harmonic
and undamped.

The resulting density of states, D(�), is shown in �g. 2;
the DOS is plotted vs. the frequency for a nearly per-
fect crystal, crystals with three di�erent amounts of dis-
order and for a supercooled liquid all at the same volume
fraction � = 0.56. Since �hard� modes are expected to
have eigenvalues proportional to the pressure, we scale
out this e�ect by plotting the density of states in terms
of the scaled frequency �/p [7,8,26,35]; to do so, we use
the Hall [36] equation of state for the crystal and the
Liu [37] equation of state for the supercooled liquid and
glassy phases. Scaling the frequency with the pressure,
allows us to compare the DOS for systems with di�er-
ent amounts of disorder and di�erent volume fractions,
since trivial e�ects due to the density change are already
scaled out. The density of states is normalized such that� �

0 D(�) = 1. It has been established [28] that for high
frequencies the experimental noise becomes important due
to the lack of accuracy in determining individual parti-
cle positions. Dashed lines show the limits below which
the frequencies should remain una�ected by noise (�g. 2).

Fig. 2: (Color online) The density of states for a nearly perfect
crystal, crystals with three di�erent amounts of disorder, and
for a completely disordered system all at the same volume frac-
tion � = 0.56. Dashed and dotted lines show the upper limit of
the frequency until which the data is not a�ected by noise for,
respectively, crystals and liquid. The DOS of the nearly perfect
crystal is subtracted from all the densities of states (inset).

Figure 2 shows that for a given low frequency, the ob-
served density of states for defected crystals is larger than
the DOS for a perfect crystal; the di�erence increases with
increasing disorder. For the supercooled liquid however,
the di�erence is much larger than any of the crystal sam-
ples (�g. 2). We also �nd that the DOS shows a shift
towards lower frequencies with increasing disorder. The
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most striking observation is however the large di�erence
between all crystalline samples and the supercooled liquid,
which shows a large peak at low frequencies. We note
that, we compare the DOS for (defected) crystals and
completely disordered system at the same volume fraction
� = 0.56, for which the pressure is pHall = 12.21�kBT for
the crystals and pLiu = 22.97�kBT for the supercooled liq-
uid; � is the number density. Scaling the frequency with
p changes the height of the supercooled DOS with respect
to the crystal DOS by a factor of 22.97/12.21 = 1.88.
However, this factor is considerably smaller than the ob-
served di�erence between the crystal and the disordered
system (�g. 2). We note also that the shape of the DOS
spectrum for the (defected) crystals and the disordered
system are qualitatively similar around the peaks, but as
we show later, what is important is the large di�erence in
the intensity.

Measuring the density of states for a nearly perfect crys-
tal, we identify a peak and a shoulder. However, ide-
ally, there are two peaks in the vibrational spectrum for
a perfect crystal that are vestiges of van Hove singulari-
ties. In our experiments the van Hove singularities may be
rounded by several factors, e.g. size polydispersity of par-
ticles, uncertainties in �nding particle positions and the
limitation due to the �nite number of frames; on the other
hand, at low frequencies the density of states is hardly af-
fected by these [27]. We investigate the e�ects of the �nite
number of statistics on the vibrational density of modes for
a nearly perfect crystal. We �nd that the low-frequency
part of the DOS spectrum remains unchanged with in-
creasing the number of statistics by almost one order of
magnitude (see [38] for a more detailed discussion).

To investigate the e�ects of disorder more consistently,
we subtract the DOS of the nearly perfect crystal from all
the densities of states (�g. 2 inset). The very existence of
the peak in the density of states for supercooled liquid with
respect to that of a perfect crystal implies a strong excess
of low-frequency modes. We �nd that the excess of low-
frequency modes or equivalently, the height of the peak is
very small for defected crystals compared to completely
disordered systems (�g. 2 inset), implying that the excess
of modes is an intrinsic property of glasses and does not
arise due to structural disorder in crystals.

Plotting D(�)/� and D(�)/�2 is a usual way to iden-
tify the excess modes for respectively a 2D and 3D system.
However, it was shown previously that the density of states
for a 2D slice through a 3D system, that we measure, dif-
fers from that for a 2D system [4]: for a 2D slice of a 3D
system, it is shown that the Debye behavior is D(�) � �3.
To measure the excess of modes with respect to the cor-
responding crystal, we subtract the DOS of the nearly
perfect crystal from all the densities of states (see [39] for
a similar analysis); in our system we can be assured that
this is (nearly) defect free, as we directly visualize all the
defects.

To check whether the DOS for a very defected crystal
represents more crystalline features or is more liquidlike,

Fig. 3: (Color online) Density of states for a nearly perfect
crystal, two more imperfect crystals and several crystals with
a large amount of disorder.

we measure the density of states for several crystals with
a large amount of defect, i.e. with the wide distribution
of the �6, lies between crystal and liquid, (e.g. �g. 1(d)
and (f)); we �nd that for all very defected crystals, the
observed DOS stays much closer to that of the perfect
crystal and far below the DOS for the liquids (see �g. 3),
implying that there is a discontinuous jump between the
vibrational density of states for a very defected crystal and
that of a supercooled liquid or a glass. This happens in
spite of the observation that the fraction of particles with
local sixfold symmetry in the very defected crystals is only
slightly larger than in a glassy system.

We note that for non-overdamped systems the density
of states obtained from di�erent regions of the same sam-
ple do not di�er signi�cantly from each other, since the
DOS reports the vibrational properties of the whole sam-
ple. However, since our colloidal system is an overdamped
system, the vibrational state inferred from each image is
basically independent from each other.

We proceed by investigating the disorder dependence
of the excess of modes in more detail (�g. 4). For each
system we quantify the disorder exploiting two quantities:
1) the bond order parameter and 2) the number of nearest
neighbors; a particle is considered as a defect if the former
is less than 0.95 or the latter di�ers from six, the expected
value for a 2D crystalline lattice. Disorder is then de�ned
as the fraction of defected particles relative to the total
number of particles, i.e. it is zero for a perfect crystal and
one for a completely disordered system. However, for our
experimental system, the disorder is 0.14 for the nearly
perfect crystal, 0.35, 0.55 for the two more imperfect crys-
tals, 0.87 for the very defected crystal and 0.99 for the
completely disordered system. We �nd that, although the
amounts of disorder in a supercooled liquid is only slightly
larger than that in very defected crystals, the amplitude
of the excess modes for the former is signi�cantly larger,
while it is negligible for the latter (�g. 4). This unam-
biguously shows, for the �rst time, that the excess modes
is not directly related to the disorder, but rather to the
nature of the glassy state.

38002-p4



Disorder and excess modes in hard-sphere colloidal systems

Fig. 4: (Color online) Amplitude of the excess modes (Y -axis at
the left) is plotted vs. the scaled amount of disorder for a nearly
perfect crystal, crystals with three di�erent amounts of disorder
and for a supercooled liquid all at the same volume fraction
� = 0.56 (squares). The entropy per particle, which is indeed
a measure of the speci�c heat for a system of hard spheres at
constant temperature, in units of kB (Y -axis at right) is plotted
vs. the scaled amount of disorder for a nearly perfect crystal,
crystals with four di�erent amounts of disorder and for two
supercooled liquids all at the same volume fraction � = 0.56
(circles). The amount of disorder is scaled with respect to that
in the nearly perfect crystal. Dotted line shows the di�erence
between the entropy of a crystal and a liquid calculated in [1].
Dashed curve is plotted as a guide for eye.

A unique feature of hard-sphere colloids is that due to
the absence of interactions, the free energy can be obtained
directly from the con�guration of the particles [31,40]. To
study the e�ects of disorder on the thermodynamics, we
then measure the entropy for several 3D subsystems with
di�erent amounts of defects [31]; each subsystem that we
measure contains around 2500 particles. We calculate the
free energy F , from which the entropy follows directly as
�F/T . We determine the free volume for each individual
particle; once the free volume is known, the free energy
can be obtained directly from the cell model [31]. Note
that, for a system of hard spheres at constant temperature
T , any changes in the entropy indicates a change in the
speci�c heat according to: S(T ) =

�
Cp(T )dT

T . Results
are shown in �g. 4 where the entropy is plotted vs. the
disorder. Interestingly, we �nd that, similarly to the am-
plitude of the excess modes, the speci�c heat for crystals
increases gradually with increasing disorder and shows a
signi�cant jump between a very defected crystal and a su-
percooled liquid (�g. 4). We observe again that while the
di�erence between the amount of disorder for the very de-
fected crystal and the supercooled liquid is very small, the
di�erence between their measured entropy is very large,
implying that the thermodynamic �rst-order phase tran-
sition between crystal and liquid is not much a�ected by
the disorder, i.e. the transition between crystal and liq-
uid remains as a �rst order, even if the crystal is strongly
disordered. This observation con�rms also that the ex-
cess of modes is a property of liquid-like phase that is
uniquely due to its vibrational entropy and is not related

Fig. 5: (Color online) Spatial distributions of the normal modes
at �/p = 0.37 for (a) a nearly perfect crystal, (b) a more imper-
fect crystal, (c) a very defected crystal and (d) a supercooled
liquid all at the same volume fraction � = 0.56.

to structural disorder in crystals, in agreement with a com-
mon assertion that the excess of modes are a dynamic
phenomenon.

We now explore the e�ects of disorder on the normal
modes of the crystalline systems. Figure 5(a)�(d) shows
the spatial distribution of the normal modes at a low fre-
quency for, respectively, a nearly perfect crystal, a more
imperfect crystal, a very defected crystal, and a super-
cooled liquid corresponding, respectively, to �gs. 1(a), (b),
(d) and (e). We �nd that the lowest frequency modes in
the crystals exhibit mostly plane-wave�like features that
extend over very large length scales. This becomes less
and less evident with increasing the amount of disorder
(�g. 5(a)�(c)). For the completely disordered system, the
very lowest frequency modes show spatially correlated mo-
tions only over a few particle diameters (�g. 5(d)). See [38]
for further discussions.

For a perfect crystal the spatial distribution of the nor-
mal modes would show plane waves that extend over the
size of the system. The spatial distribution of the nor-
mal modes for our nearly perfect crystal shows wave-like
features rather than very extended plane waves. The ob-
servation of wave-like features for experimental (defected)
crystal is in fact quite common in these systems [3,4]. We
note that, one may also look at these patterns as being
non-a�ne patterns as discussed in [41].

In summary, we present the �rst experimental evidence
that the excess of modes is an intrinsic property of glasses
and does not arise due to structural disorder in crys-
tals. This conclusion takes advantage of the opportuni-
ties o�ered by hard spheres, in which the crystal and glass
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phases can be compared at the same volume fraction, and
for which a simultaneous measure of disorder and free
energy is possible with experiments. We show that this
happens in spite of the observation that the fraction of
particles with local sixfold symmetry in the very defected
crystals is only slightly larger than in a glassy system. We
show that the vibrational and thermodynamical proper-
ties, i.e. the DOS and the entropy, for a defected crystal
are signi�cantly di�erent from those for a supercooled liq-
uid or a glass, implying the di�erent nature of the glass
compared to a defected crystal.
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