Patients with cancer on the ICU: the times they are changing

de Jonge, E.; Bos, M.M.

Published in:
Critical Care

DOI:
10.1186/cc7721

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Commentary

Patients with cancer on the ICU: the times they are changing
Evert de Jonge¹ and Monique M Bos²

¹Department of Intensive Care, Academic Medical Center, 1100 DD Amsterdam, the Netherlands
²Department of Internal Medicine and Oncology, Reinier de Graaf Hospital, Reinier de Graafweg 3, 2625 AD Delft, the Netherlands

Corresponding author: Evert de Jonge, e.dejonge@amc.uva.nl

Published: 2 March 2009
This article is online at http://ccforum.com/content/13/2/122
© 2009 BioMed Central Ltd

Available online http://ccforum.com/content/13/2/122

Abstract

A recent paper by Taccone and coworkers showed that 15% of patients from 198 European intensive care units (ICUs) had a malignancy, mostly solid tumors but also hematological malignancies. Over the past years, the prognosis of cancer patients has improved significantly, even when ICU admission is necessary. Refusal of ICU admission should not be based on a diagnosis of cancer as the underlying condition. In contrast, these decisions should be based on the availability of treatment options, and on patients’ own preferences.

Advances in oncological and supportive care have led to improved prognoses and extension of survival time in cancer patients. Such progress, however, has involved aggressive therapy and support. Consequently, increasing numbers of patients with cancer require admission to intensive care units (ICUs).

In the last issue of Critical Care, Dr Taccone and coworkers [1] reported that patients with cancer represent a large proportion of ICU patients. In their substudy from the Sepsis Occurrence in Acutely Ill Patients (SOAP) study conducted in 198 European ICUs, 15% of patients had a malignancy, mostly solid tumors but also hematological malignancies. These findings are in accordance with results from the SAPS-3 study, performed in 2002 in an international population comprising almost 20,000 ICU patients; these results showed that 3% of these patients had metastatic cancer, 6% had non-metastatic cancer and 2% had hematological cancer [2].

The high number of cancer patients treated on ICUs is remarkable. Less than 10 years ago, in guidelines for ICU admission, a taskforce of the American College of Critical Care Medicine concluded that patients with hematological or metastasized solid malignancies were poor candidates for ICU admission [3]. These patients were considered to have a very high risk (up to 90%) of mortality. At that time, immediate treatment limitations or even refusal of ICU admission for these patients were advocated [4].

In contrast with the very poor prognosis reported in the literature, Taccone and coauthors reported much lower hospital mortality of 58% in ICU patients with hematological cancer and 27% in patients with solid malignancies, compared with 23% in ICU patients without cancer. Others have also reported the improvement in prognosis after ICU admission for patients with hematological cancer. In hematopoietic stem cell transplant recipients who received invasive mechanical ventilation, mortality was uniformly higher than 90% in studies before 1993, but gradually decreased to 52% in 2000 [5]. In addition to advances in stem cell transplantations, improvements in critical care may have contributed to this improvement in prognosis for these patients. Clearly, patients should no longer be refused admission to ICUs only because they have hematological cancer. A relapsed/refractory state of leukemia and a poor Sequential Organ Failure Assessment (SOFA) score were found to be the independent risk factors associated with mortality in patients with acute leukemia [6] and should be considered when decisions regarding ICU admission are made about patients with hematological cancer. In the study by Dr Taccone and colleagues, no information was available about the state of the cancers. The relation between SOFA score and mortality was confirmed in their population.

It should be noted that patients with solid cancers form a very heterogeneous population, with many different forms of cancer, different oncological treatments and different reasons for admission to the ICU. Most ICU patients with cancer are admitted after surgery, often as primary treatment for their cancers, and the short-term prognosis of these patients is mostly good. In patients after transhiatal esophageal...
resection for esophageal cancer, hospital mortality may be as
low as 3.5% [7]. Likewise, mortality after pancreatico-
duodenectomy in patients with pancreatic cancer may be
less than 5% in experienced centers [8]. The outcome after
major oncological surgery may be mostly related to the
surgical procedure, more than to the critical care on the ICU.
Only limited data are available about patients with cancer
admitted to ICUs for other reasons than post-operative care
after oncological surgery. Azoulay and coauthors [9] reported
30-day mortality of 58% in patients admitted for medical
reasons. In a Brazilian study involving 1,090 patients with
cancer requiring ICU admission for reasons other than routine
postoperative care, hospital mortality was 51% and 6-month
mortality was 61%. Most of these patients had non-
metastasized solid cancer, and most patients required
mechanical ventilation. In patients with a prolonged ICU
length of stay, mortality was independently associated with
the number of failing organs, age and performance scale
score [10].

Clearly, ICU treatment is not futile for all patients with cancer.
Despite these recent data, rates of refusal of ICU admission
in cancer patients remain high [11] and the criteria on which
triage decisions are based differ between oncologists and
intensivists. Decisions to withhold life-sustaining treatments
are more often made for patients with cancer than patients
with other terminal diseases, even when these other diseases
have at least the same poor prognosis. This has been
demonstrated clearly for patients dying from chronic heart
failure compared to patients with metastatic cancer [12].

Over the past years the prognosis of cancer patients has
improved significantly, even when ICU admission is
necessary. Refusal of ICU admission should not be based on
the diagnosis of cancer as the underlying condition. In
contrast, these decisions should be based on the availability
of treatment options, and on patients’ own preferences.
Unfortunately, current prognostic models for ICU patients,
all based on data from the first 24 hours after ICU admission,
such as APACHE (Acute Physiology and Chronic Health
Evaluation) II and SAPS (Simplified Acute Physiology Score)
II, can not reliably predict whether cancer patients will survive
ICU admission [4,13]. When in doubt, it may be a very good
option to start full unlimited treatment for a few days.
Discontinuation of treatment should be considered if
progressive organ failure is seen after 3 to 5 days [4].

Competing interests
The authors declare that they have no competing interests.

References
 JL: Characteristics and outcomes of cancer patients in Euro-
 RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall JR; SAPS 3
 investigators: SAPS 3 - from evaluation of the patient to evalu-
 ation of the intensive care unit. Part 1: Objectives, methods
 and cohort description. Intensive Care Med 2005, 31:1336-
 1344.
3. Task Force of the American College of Critical Care Medicine,
 Society of Critical Care Medicine: Guidelines for intensive care
 unit admission, discharge, and triage. Crit Care Med 1992, 27:
 633-638.
4. Azoulay E, Bele N, Thiery G, Schlemmer B: An alternative to
 refusing ICU admission of cancer patients. In 25 years of
 progress and innovation in Intensive Care Medicine. Edited by
 Kuhlen R, Moreno R, Ranieri M, Rhodes A. Berlin: Medizinische
care unit support and acute physiology and chronic health
 evaluation III performance in hematopoietic stem cell trans-
 Kim K, Jang JH, Jung CW, Kang E, Kim M-J: Outcome and prog-
nostic factors of patients with acute leukemia admitted to the
 intensive care unit for septic shock. Leukemia Lymphoma
7. van Sandick JW, van Lanschot JJ, ten Kate FJ, Tijssen JG, Obertop
 H: Indicators of prognosis after transthiatal esophageal resection
8. Van Geen RC, Gouma DJ: Impact of hospital volume on in-
 hospital mortality in pancreatic surgery. Surg Technol Int 2002,
 10:61-65.
 Cottu P, Levy Y, Le Gall JR, Schlemmer B: Predictors of short-
 term mortality in critically ill patients with solid malignancies.
10. Soares M, Salluh JI, Torres VB, Leal JV, Spector N: Short- and
 long-term outcomes of critically ill patients with cancer and
11. Garroute-Orgeas M, Montuclard L, Timis JT, Reigner J, Desmet-
tre T, Karoubi P, Moreau D, Montesino L, Duguet A, Boussat S,
 Ede C, Monseau Y, Paule T, Misset B, Carlet J; French ADMIS-
tic models in critically ill patients - a review. Crit Care Med
12. Tanvetyanon T, Leighton JC: Life-sustaining treatments in
 patients who died of chronic congestive heart failure com-
13. den Boer S, de Keizer NF, de Jonge E: Performance of prognos-
tic models in critically ill cancer patients - a review. Crit Care