In search of a perfect bond: An evaluation of potential adhesives to repair transparent poly(methyl methacrylate) objects

Laganà, A.; Doutre, M.; David, M.; Lukomski, M.; Hendriks, E.; van Bommel, M.

Publication date
2021

Document Version
Final published version

Published in
Transcending Boundaries: Integrated Approaches to Conservation

License
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 29 Dec 2023
In search of a perfect bond: An evaluation of potential adhesives to repair transparent poly(methyl methacrylate) objects

Anna Laganà
Getty Conservation Institute
Los Angeles CA, USA
ALagana@getty.edu

Michael Doutre
Getty Conservation Institute
Los Angeles CA, USA
MDoutre@getty.edu

Melissa David
Independent conservator
Turin, Italy
melissa.david@outlook.com

Michał Łukomski
Getty Conservation Institute
Los Angeles CA, USA
MLukomsky@getty.edu

Ella Hendriks
University of Amsterdam
Amsterdam, The Netherlands
E.Hendriks@uva.nl

Maarten van Bommel
University of Amsterdam
Amsterdam, The Netherlands
M.R.vanBommel@uva.nl

*Author for correspondence

Keywords
poly(methyl methacrylate), PMMA, adhesives, bonding, crazing

Abstract
This paper presents the results of an extensive research on potential adhesives for the repair of transparent poly(methyl methacrylate) (PMMA) objects used in art and design. Repairing PMMA sculptures and objects is challenging due to the difficulty of finding adhesives that are able to recover transparency and strength without being harmful to the plastic. Currently, only few adhesives are found to meet these requirements. Therefore, this study aimed to provide conservators with more options to successfully and safely repair PMMA. Thirteen products from different adhesive categories were tested on both cast and extruded transparent PMMA. The suitability of these adhesives was thoroughly assessed in terms of their optical and mechanical properties, aging behavior, and ability to induce stress crazing or cracking in PMMA. The results showed that the following adhesives are suited for the

INTRODUCTION

Identifying suitable adhesives to repair transparent poly(methyl methacrylate) (PMMA) objects is one of the biggest challenges in conserving plastic artifacts. A successful adhesive method should bond PMMA without dissolving the material or inducing changes such as crazing and cracking. It should be strong enough to bond, yet weak enough to fail before damaging the PMMA. Furthermore, it should be easy to apply, invisible, chemically stable over time, and preferably removable to allow future retreatment.

Over the past years, several papers in the conservation literature have focused on the topic of adhesive repair of PMMA objects. However, only a few studies have thoroughly investigated adhesive properties to assist conservators in making an informed selection for repairing PMMA objects, and only a limited number of options have been found to be suitable: the 1:1 mixture of Paraloid F-10 and Paraloid B-67; Plexigum PQ611; and HXTAL NYL-1. In Europe, this range of options is even narrower due to the current unavailability of Paraloid F-10.

Based on these considerations, this study had two major aims: first, to increase the adhesive options available and, second, to provide conservators with the data and tools required to select an appropriate adhesive for each specific bonding case. To achieve these objectives, the suitability of a wide range of adhesives was explored by investigating their relevant properties and performance. Bonding tests were performed on PMMA samples with 13 adhesive systems. The chemical composition of the adhesives was investigated using Fourier transform infrared (FTIR) spectroscopy and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analysis. Their optical properties were evaluated with the naked eye and refractive index measurements, their mechanical properties with tensile tests and shear tests, and their aging behavior with artificial light aging and color measurements. The results are discussed and data displayed in charts to provide easy comparison and help conservators to make better informed choices.

EXPERIMENTAL

Adhesives

The selection of the adhesives tested was jointly based on the results of previous studies on bonding PMMA (Comiotto and Egger 2011, Laganà
safe and successful repair of PMMA objects: the water-based adhesive Aquazol 500, the acrylic resins Paraloid B-67, a 1:1 mixture of Paraloid F-10 and Paraloid B-67, a 1:1 mixture of Plexisol P550-40 and Paraloid B-67, Plexigum PQ611, and the epoxy resin HXTAL NYL-1. Results are summarized in an adhesive comparison chart, designed to offer conservators a tool to select appropriate adhesives based on the bonding requirement of the broken PMMA objects to be repaired.

Aquazol 500 was selected especially for its advantage of being soluble and reversible in water. Acrylics were chosen for their solubility in aliphatic hydrocarbons with low aromatic content and reversibility in these solvents, their near-identical RI to that of PMMA, and some for their successful performance in previous studies. The mixture of Plexisol P550-40 and Paraloid B-67 was especially chosen as a possible replacement for the Paraloid F-10 and Paraloid B-67 mixture given the limited availability of Paraloid F-10. Epoxy resins were selected for their very low viscosity and low shrinkage, as well as their potential to create strong bonds. UV-curing adhesives were included for their good optical properties, remarkably fast curing time, and good bonding strength. The chemical composition and properties of the selected adhesives are summarized in Table 1.

Bonding tests

Bonding tests were carried out using PMMA samples sawn from clear cast sheets, as well as extruded, to evaluate the effect and efficiency of adhesives used on both types of PMMA.

Samples (8.89 × 2.54 × 0.63 cm) were not annealed and their edges were left unpolished.

Two types of joints were made to evaluate appearance and strength performance of the selected adhesives: butt joints and lap joints (Figure 1). These joints were chosen as they are most commonly used to bond PMMA
In search of a perfect bond: An evaluation of potential adhesives to repair transparent poly(methyl methacrylate) objects. Moreover, butt joints represent the type of bond generally made when repairing broken objects.

Before bonding, the areas around the joints were protected with a thin layer of Vaseline in order to easily peel off adhesive residues from the PMMA surface once set, especially when these were not reversible in solvents. The adhesives were then applied with a spatula onto the bonding surface. In the butt joints, the PMMA pieces were assembled by placing their short sawn edges together (bond: 2.54 × 0.63 cm), while in the lap joints

| Table 1. Adhesives tested: composition and properties |
|---|---|
| **Type** | **Adhesive** |
| **PEOX** | 500 Poly(2-ethyl-2-oxazoline) |
| Paraloid™ B-67 | Isobutyl methacrylate |
| Paraloid™ F-10 + | Butyl methacrylate copolymer |
| Paraloid™ B-67 | Butyl methacrylate |
| Plexisol® PS50-40 + | N-butyl methacrylate |
| Paraloid® B-67 | Butyl methacrylate |
| Plexigum® PQ611 | Iso-butyl methacrylate solution in 2-ethylhexylmethacrylate |
| HXTAL NYL-1 | Hydrogenated bisphenol A. diglycidyl ether |
| EPO-TEK® 301-2FL-CX | Bisphenol A diglycidyl ether |
| asserting | Bisphenol A (P) |
| Lochtite Hyso® 945S | Bisphenol A Epichlorohydrin benzyl dimethylamine Neopentyl glycol diglycidyl ether |
| Dymax Ultra Light-Weld® 3099 | Mixture of isobornyl acrylate, N,N-dimethylacrylamide photoinitiator (proprietary), silane coupling agent (proprietary), and visible photoinitiator (proprietary) |
| Dymax Ultra Light-Weld® 431 | Mixture of methacryl ester (proprietary), 2-hydroxylethylmethacrylate acrylic acid, and visible photoinitiator (proprietary) |
| Dymax Ultra Light-Weld® 431T | Mixture of methacryl ester (proprietary), 2-hydroxylethylmethacrylate acrylic acid, and visible photoinitiator (proprietary), and silane coupling agent |
| NOA 76 | Mixture of aliphatic urethane acrylate (proprietary), methacryl acid ester 2 (2-thoxehyox), and tetrahydrofururyl acrylate |
| NOA 85 | Mixture of aliphatic urethane acrylate (proprietary), isobornyl acrylate, and 1,6 hexanediol diacrylate Fluorester |
| **Composition (datasheet information)** | **Chemical characterization** |
| **FTIR (F) – Py-GC/MS (P)** | **FTIR (F) – Py-GC/MS (P)** |
| **Chemical characterization** | **Chemical characterization** |
| **FTIR (F) – Py-GC/MS (P)** | **FTIR (F) – Py-GC/MS (P)** |
| **Ratio** | **Ratio** |
| **Viscosity cP (datasheet)** | **Viscosity cP (datasheet)** |
| **RI (Becke line test)** | **RI (Becke line test)** |
| **Epoxy resins** | |
| **Hydrogenated bisphenol A. diglycidyl ether** | |
| **Biphenol A diglycidyl ether** | |
| **Biphenol A (P)** | |
| **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** | **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** | **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** |
| **Epoxy resins** | |
| **Hydrogenated bisphenol A. diglycidyl ether** | |
| **Biphenol A diglycidyl ether** | |
| **Biphenol A (P)** | |
| **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** | **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** | **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** |
| **Epoxy resins** | |
| **Hydrogenated bisphenol A. diglycidyl ether** | |
| **Biphenol A diglycidyl ether** | |
| **Biphenol A (P)** | |
| **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** | **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** | **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** |
| **Epoxy resins** | |
| **Hydrogenated bisphenol A. diglycidyl ether** | |
| **Biphenol A diglycidyl ether** | |
| **Biphenol A (P)** | |
| **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** | **Bisphenol A Di-ethylphthalate Benzyl chloride Isophorone disocyanate (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** | **Urethane, Acrylate (F)/ Norbornanes Isophorone disocyanate N,N-dimethyl amides (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** | **Urethane, Methacrylate (F)/ Isophorone disocyanate Methacrylate (P)** |
| **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** | **Urethane (F) Isophorone disocyanate Triphenyl phosphate Phthalate (P)** |

* CAS 64742-49-0: EMPLURA® petroleum benzine, boiling range 100°C–140°C, aromatic content ≤ 0.05%.
** The Becke line test accuracy is ± 0.001.
The pieces were bonded by overlapping a portion of their surfaces (bond: 2.54 × 2.54 cm). After applying the adhesive, pressure was applied using a tailor-made clamping system until the adhesive set. For butt joints, further pressure was applied using weights, and for lap joints pegs were used.

The UV-curing adhesives were cured using a Norland Opticure LED 200 curing system (energy output at full power: 2.5 W/cm² at 365 nm). The intensity needed and curing time varied according to resin composition. The curing time and lamp distance for each UV adhesive were determined according to the manufacturer’s instructions, when available, and through preliminary tests. The intensity was measured using an Elsec 765C UV+ logger.

Chemical characterization

The composition of the adhesives was determined using a 15× Cassegrain objective attached to a Bruker Optics, Inc. Hyperion 3000 FTIR microscope with an MCT detector, and purged with dry air, collecting 64 scans at a resolution of 4 cm⁻¹.

To examine bulk chemical composition, some of the adhesives were investigated with an Agilent Technologies 5975C inert MSD/7890A GC/MS using an Agilent thermal sampling probe and a Frontier Ultra ALLOY-5 capillary column. The helium carrier gas was 1.2 mL/min. The injector was ramped up from 50°C to 450°C at 900°C/min followed by a 3-minute hold, then ramped down 25°C/min to 250°C and held for 40 minutes. The oven was ramped from 40°C to 200°C at 10°C/min, followed by 6°C/min to 300°C.

Refractive index (RI) measurements

RI measurements using the Becke line test were carried out to determine the match between the RI of the adhesives and that of PMMA. Small particles of the adhesives were immersed in a series of refractive index liquids by Cargille and observed with a Leitz DMR microscope (Leica Mikroskopie) at 10×/20× magnification, following the method described by McCrone et al. (1985).

Photoelastic stress analysis

PMMA samples, before and after bonding, were examined using the Sharples General Purpose Strain Viewer to visualize stresses in the material, which may be a precondition for crazing and crack formation. During measurements, the transparent sample, which has a stress-dependent refractive index, is placed between two polarizing filters and a full wave tint plate and viewed in transmitted light. When polarized light passes through stressed areas, interference patterns are formed. These patterns provide information about the distribution and concentration of stress (see http://www.sharplesstress.com).

Mechanical testing

Mechanical tests were performed using an Instron 59444 testing machine with a 2 kN load cell to determine the bond strength of each adhesive. Strength is the maximum measured force divided by area of bonding. Butt
joints were subjected to tensile tests and lap joints to shear tests following the ASTM standards D3163-01 and D638-14 (ASTM International 2001 and 2014).

The crosshead speed was set at 1 mm/min, and force was applied until bond failure occurred.

Tests were performed in fivefold for butt joints and lap joints with each adhesive using both cast and extruded PMMA. The type of bond failure was determined by examining the de-bonded surfaces of each sample in UV light.

Stress crazing and cracking test method

A test method was designed following two ASTM standards, F791-96 and F484-08 (ASTM International 1996 and 2008), to determine whether the adhesives selected could cause stress crazing or cracking within stressed PMMA objects. These phenomena can occur in areas of high localized stresses introduced during manufacturing of the PMMA or as a result of applied loads. Stresses can be unequally released upon exposure to certain fluids (Wright 1996) contained in adhesives (e.g., solvents, monomers, catalysts, or plasticizers). This results in the development of fine fissures (crazes) or fractures (cracks) in the PMMA.

For this test, samples (17.78 × 2.54 × 0.31 cm) were sawn from cast and extruded PMMA sheets. A hole was drilled at the bottom of each sample to hold a weight of 500 g (Sale 1993). Two samples of each type of PMMA were used to evaluate each adhesive, and two as control.

Samples were placed in a tailor-made stress apparatus with a fulcrum that bears on the samples, and then weights were applied to cause bending and induce stress. After 10 minutes under stress, adhesives were applied to the top surface of the PMMA samples held under tension, directly over the fulcrum. Adhesive layers were covered with Melinex to restrict evaporation of any adhesive components as occurs in real joints (Figure 2).

Test duration was 24 hours (h). Samples were inspected using a LED torch after 10 min, 30 min, 1 h, 2 h, 4 h, 8 h, and 24 h.

Accelerated light aging

Films of each adhesive were prepared on Mylar using an 8-mil drawdown bar. UV-curing adhesives were cured between two Mylar sheets to avoid oxygen inhibition. The films were exposed in an Atlas Weather-Ometer Ci4000, following ASTM standard D4459-99 for xenon-arc exposure of plastics intended for indoor application (ASTM International 1999). Irradiance was controlled at 0.33 W/m² at 340 nm; test pieces were aged for 400 hours.

Color measurements

Color measurements were performed on adhesive films before and after artificial light aging using a Konica Minolta 2600d spectrophotometer (D65 illuminant, 10° observer, 3 mm aperture) and a ceramic white standard tile as backing to the films. Each film was measured nine times. Results for L* a* b* and ΔE94 were averaged using Spectra Magic software.
RESULTS AND DISCUSSION

Visual appearance and working properties

Generally, results proved that the closer the match between the RI of the adhesive and that of the PMMA (less than 0.02), the more invisible the repair will be (Laganà and Van Oosten 2011). Moreover, they showed that low viscosity, allowing adequate wetting of irregular surfaces, also plays a role in improving the visual appearance of bonds.

Bonds performed with Aquazol 500 showed generally good visual results. Although this product appears slightly yellow, this is not perceivable in thin films. The only defect was observed in butt joint interfaces: tiny bubbles developed while drying, primarily along the saw marks.

All bonds carried out with acrylic resins had a very good appearance due to their close RI match with PMMA. However, these adhesives did show a tendency to form voids/bubbles as the solvent evaporated during curing; this only occurred where bonded pieces did not fit perfectly, or when the pressure applied was not uniform and/or was insufficient to compensate for adhesive shrinkage up to the moment when it had completely set.

Conversely, all bonds made with epoxies were generally bubble free. Very good visual results were also achieved with HXTAL NYL-1 and EPO-TEK 301-2FL-CX for their appropriate optical properties enhanced by their low viscosity. Hysol 9455, however, gave unsatisfactory visual results due a mismatch in the RIs.

Bonds performed with UV-curing adhesives showed very good visual results, especially the ones made with DYMAX 3099, with a RI very close to that of PMMA and the lowest viscosity.

Only NOA 76 did not show consistent results; some bonds appeared perfectly transparent, while others strongly yellowed due to batch-to-batch variation in the clarity of the adhesive.

The majority of the adhesives were easy to work with. An exception was Hysol 9455, due to its short working time and the dual-cartridge system of delivery, which did not allow for precise mixing.

Mechanical performance

The maximum load at point of failure was measured for both lap and butt joints on cast and extruded PMMA samples to examine the bond strength of the adhesives (Figures 3, 4).

Butt joints of cast PMMA with EPO-TEK 301-2FL-CX demonstrated the highest bond strength, followed by HXTAL NYL-1 and DYMAX 3099 and 431. Conversely, NOA 85, Hysol 9455, and Aquazol 500 exhibited the lowest bond strength. All acrylic resins and DYMAX 431T showed an intermediate bond strength. For cast PMMA, the butt joints made using EPO-TEK 301-2FL-CX exceeded the capacity of the load cell (2 kN) and therefore these bonds were measured instead with the Instron machine 5885H with a higher-capacity load cell. The maximum load measured when these bonds broke was three times higher than HXTAL (3224 N).

Similar results were obtained with the extruded PMMA, with the exceptions of HXTAL NYL-1 and EPO-TEK 301-2FL-CX, for which the bonds made
on cast PMMA exhibited higher strength. In general, small differences between cast and extruded PMMA could be related to a closer fit between the sawn surfaces of the cast pieces bonded, which were slightly less rough than the extruded ones. The UV-cured adhesives were found to produce a less consistent bond strength, likely due to inhomogeneous curing caused by the angled position of the UV lamp, necessary in butt joints for the light to reach and cure the bonding interface.

In the lap joints, the difference in the strength of the adhesives was found to be much smaller. Dymax 3099 was found to be the strongest. Similar to the butt joints, Aquazol exhibited the lowest bond strength. All of the other materials were found to have similar strengths. The performance of the lap joints on cast versus extruded PMMA was almost identical, other than Dymax 3099 and Aquazol 500, which exhibited higher strength bonding in extruded PMMA. In the lap joint made with Dymax 3099 on extruded PMMA, the PMMA itself cracked and broke before the bond failed. Despite the much larger bonding area of the lap compared to butt joints, most of the lap joints were found to fail at a lower load, which suggests that these adhesives may be more sensitive to shear and peel than their tensile loads.

For both lap and butt joints, the majority of the bonding materials failed at the adhesive interface, separating such that residues remained on only one side of the join. An exception were the acrylic materials, which often failed cohesively. This may indicate that the acrylic adhesives had a greater affinity to the surface of the PMMA due to their chemical similarity.

Stress analysis

Tiny interference patterns, indicating stresses, were observed in the PMMA along some of the bonds carried out with Epo-tek 301-2FL-CX and the UV adhesives (Dymax 3099, Dymax 431 and 431T, NOA 85, and NOA 76). Based on UV adhesives manufacture’s sources, stresses can occur with these materials on the bonded surface due to non-uniform curing/UV exposure or to a nonlinear shrinkage in thicker layers (Norland and Martin 2009). However, to fully comprehend the impact of these stresses on the long-term stability of PMMA, future research should be considered.

During the study, it was also observed that this type of examination can be used to distinguish cast and extruded PMMA. This distinction is very important for conservators, considering that cast and extruded PMMA are known to have different behaviors. Due to the orientated alignment of the polymer chains in the extruded PMMA, this material interacts with polarized light differently depending on its orientation. Specifically, when polarized light passes through an extruded PMMA piece and this element is rotated in different directions, the color will change, whereas in a cast piece, rotating the material in polarized light will not result in color change as the polymer chains are randomly aligned (Figure 5).

Craze/crack formation

The formation of crazing and cracking depended on the composition of the adhesives applied and on the type of stressed PMMA; extruded PMMA was affected more than the cast variety.
Specifically, Aquazol 500 and all of the acrylic resins did not cause any visible change. Epoxy resins showed different results, most likely due to their varied composition: EPO-TEK 301-2FL-CX was able to crack and break all extruded samples after only 30 minutes, but did not affect cast samples, while HXTAL NYL-1 and Hysol 9455 did not induce any change in both types of PMMA.

The results obtained with the UV-curing adhesives also differed according to composition. Dymax 3099 and NOA 76 did not cause any changes, while Dymax 431 and 431T, as well as NOA 85, caused the formation of crazes on cast PMMA and severe cracks on the extruded samples.

Aging behaviors

Color measurements performed on adhesive films after accelerated aging mainly revealed alterations in the b* value that corresponded to yellowing (increased b*), with minor alterations in the L* value that represented darkening (decreased L*).

Changes in ΔE94 values are shown in Figure 6. No color changes were visible to the naked eye on aged films, which had a ΔE94 value below 2. Aquazol 500 proved to have good stability with ΔE94 below 2. All of the acrylic resins performed very well during accelerated light aging with values below 1. Epoxy resins performed differently on aging. The hydrogenated epoxy HXTAL NYL-1 showed very good stability (<1 ΔE94), while EPO-TEK 301-2 FL-CX and Hysol 4955 yellowed noticeably (7.17–6.81 ΔE94). The aging performances of the UV-curing materials also varied widely depending on composition. Dymax 3099 and NOA 76 appeared very stable with less than 1 ΔE values, followed by NOA 85 (1.37 ΔE94), while Dymax 431 and 431T exhibited yellowing (3.73–4.08 ΔE94).

Summary and application of results

Based on the results obtained, six adhesives were shown to meet all the evaluation criteria and were considered suitable for repairing PMMA objects: Aquazol 500, Paraloid B-67, the 1:1 mixture of Paraloid F-10 and Paraloid B-67, the 1:1 mixture of Plexisol P550-40 and Paraloid B-67, Plexigum PQ611, and HXTAL NYL-1. All of these adhesives proved to be stable upon aging, gave visually satisfactory bonds, and, most importantly, were not harmful for the PMMA. However, they also exhibited different properties and performances that can be used to meet specific bonding requirements. For instance, depending on the bond strength required, one could choose between Aquazol 500 (low bond strength), the acrylic resins (medium bond strength), or HXTAL NYL-1 (medium to high bond strength). Similarly, if reversibility is key, Aquazol 500 and the acrylic resins might be suited as they can be safely removed and allow future retreatments. If appearance of the bond is the primary concern, one might opt for an acrylic resin, or otherwise HXTAL (Figure 7).

Given that there can be multiple and varied requirements for repairs, the main properties and bond performances of the adhesives are summarized here in an Adhesive Comparison/Selection Chart (Table 2).
In search of a perfect bond: An evaluation of potential adhesives to repair transparent poly(methyl methacrylate) objects

Table 2. Adhesive comparison/Selection chart

<table>
<thead>
<tr>
<th></th>
<th>Aquazol® 500</th>
<th>Paraloid™ B-67</th>
<th>Paraloid™ F-10 + Paraloid™ B-67 (1:1)</th>
<th>Plexisol® P550-40 + Paraloid™ B-67 (1:1)</th>
<th>Plexigum® PQ611</th>
<th>Hxtal NYL-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type and ratio</td>
<td>PEOX 40% in d. water</td>
<td>Acrylic resin 40% in solvent</td>
<td>Acrylic resins 40% in solvent</td>
<td>Acrylic resins 40% in solvent</td>
<td>Acrylic resins 40% in solvent</td>
<td>Two-component epoxy resin (3:1)</td>
</tr>
<tr>
<td>Color (product)</td>
<td>Light yellow</td>
<td>Clear</td>
<td>Clear</td>
<td>Clear</td>
<td>Clear</td>
<td>Clear</td>
</tr>
<tr>
<td>Color (bond film)</td>
<td>Colorless</td>
<td>Colorless</td>
<td>Colorless</td>
<td>Colorless</td>
<td>Colorless</td>
<td>Colorless</td>
</tr>
<tr>
<td>Viscosity cP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200-300</td>
</tr>
<tr>
<td>Viscosity (based on observations)</td>
<td>High viscosity</td>
<td>Medium viscosity</td>
<td>Medium viscosity</td>
<td>Medium viscosity</td>
<td>Medium viscosity</td>
<td>Low viscosity</td>
</tr>
<tr>
<td>Tg (°C)</td>
<td>55</td>
<td>50</td>
<td>20 (F-10) / 50 (B-67)</td>
<td>25 (P550-40) / 50 (B-67)</td>
<td>ca. 32</td>
<td>-</td>
</tr>
<tr>
<td>RI (Becke line test)</td>
<td>1.516</td>
<td>1.486</td>
<td>1.486</td>
<td>1.487</td>
<td>1.483</td>
<td>1.516</td>
</tr>
<tr>
<td>Appearance of bond</td>
<td>Good</td>
<td>Very good</td>
<td>Very good</td>
<td>Very good</td>
<td>Very good</td>
<td>Very good</td>
</tr>
<tr>
<td>Possible defects</td>
<td>Bubbles</td>
<td>Bubbles</td>
<td>Bubbles</td>
<td>Bubbles</td>
<td>Bubbles</td>
<td>-</td>
</tr>
<tr>
<td>Bond type</td>
<td>Nonstructural</td>
<td>Nonstructural</td>
<td>Nonstructural</td>
<td>Nonstructural</td>
<td>Nonstructural</td>
<td>Structural</td>
</tr>
<tr>
<td>Bond strength (butt joint)</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Bond strength (lap joint)</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Reversibility</td>
<td>In water</td>
<td>In solvent</td>
<td>In solvent</td>
<td>In solvent</td>
<td>In solvent</td>
<td>Mechanical</td>
</tr>
</tbody>
</table>

* CAS# 64742-49-0: White spirit, boiling range 100°C–140°C, aromatics-free (≤ 0.1%), or EMPLURA® petroleum benzine, boiling range 100°C–140°C, aromatic content ≤ 0.05%.

CONCLUSION

This research confirmed the complexity of finding suitable adhesives for bonding PMMA and highlighted the importance of thoroughly investigating material performance before introducing them into practice. Many of the adhesives tested were shown to be unstable and/or to affect the stability of PMMA. However, the results of this extensive investigation have identified more adhesive systems able to successfully and safely repair PMMA, increasing the number of current options. Moreover, it also provided a selection chart comparing relevant properties and performance aimed to assist conservators in making an informed selection when repairing PMMA objects.

ACKNOWLEDGMENTS

The authors would like to thank Elena Joulin and Alexandra Bridarolli for their valuable assistance in this study, and David Carson, Anna Flavin, and Odile Madden for their support.
In search of a perfect bond: An evaluation of potential adhesives to repair transparent poly(methyl methacrylate) objects

REFERENCES

