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Chapter 2

Knowledge Representation

“Once the characteristic numbers of most notions are determ-
ined, the human race will have a new kind of tool, a tool that will
increase the power of the mind much more than optical lenses
helped our eyes, a tool that will be as far superior to microscopes
or telescopes as reason is to vision.”

Gottfried Wilhelm Leibniz, Philosophical Essays

2.1 Introduction

The goal of AI research is the simulation or approximation of human intelli-
gence by computers. To a large extent this comes down to the development of
computational reasoning services that allow machines to solve problems. Ro-
bots are the stereotypical example: imagine what a robot needs to know before
it is able to interact with the world the way we do? It needs to have a highly ac-
curate internal representation of reality. It needs to turn perception into action,
know how to reach its goals, what objects it can use to its advantage, what kinds
of objects exist, etc. Because this problem solving takes place in a different en-
vironment (inside a computer) than human problem solving, it is subject to
different restrictions, such as memory capacity, processing power and symbol
manipulation. Where human reasoning can resort to a wide array of highly
redundant patterns, machines will inevitably resort to parsimonious and in-
complete representation, suitable only for solving a particular set of problems.

The field of knowledge representation (KR) tries to deal with the problems
surrounding the incorporation of some body of knowledge (in whatever form)
in a computer system, for the purpose of automated, intelligent reasoning. In
this sense, knowledge representation is the basic research topic in AI. Any arti-
ficial intelligence is dependent on knowledge, and thus on a representation of
that knowledge in a specific form.

8
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The history of knowledge representation has been nothing less than turbu-
lent. The roller coaster of promise of the 50’ies and 60’ies, the heated debates
of the 70’s, the decline and realism of the 80’s and the ontology and knowledge
management hype of the 90’s each left a clear mark on contemporary know-
ledge representation technology and its application. In particular, the idea of a
Semantic Web (discussed in Chapter 3) led to the integration of insights from
two distinct fields in symbolic AI: knowledge representation, and knowledge
acquisition (expert systems). Two areas that had showed little or no interaction
for three decades, at least not significantly, since the divide between epistemic
and heuristic aspects of an intelligent system (McCarthy and Hayes, 1969).

In this chapter I give an overview of the historical origins and rationale of
knowledge representation, and the family of languages known as description
logics in particular. These languages turned out to play an important role in the
development of semantics on the web, discussed in Chapter 3, and could not
have reached their current prominence without the wide adoption of the word
‘ontology’ in the AI literature of the nineties (see Chapter 4).

2.2 Two Schools

In the early second half of the 20th century, AI housed two very different
schools of thought. The first was very much based on the idea that know-
ledge is best captured using a general purpose, clean and uniform language:
logic. With roots in philosophy, it was oriented towards the adequate repres-
entation of our theoretical understanding of the structure of the world, and
assumed that a small set of elegant first principles can account for intelligence.
The second school’s main interest was the approximation of human intelligence,
and human behaviour in particular. Its main proponents had a background in
psychology and linguistics, rather than philosophy or mathematics, and were
less concerned with rigourous formal semantics. They built systems that ‘just
work’, based on the assumption that human intelligence is a hodgepodge of
many different ad hoc conceptions and strategies. Roger Schank coined the
two groups the neats and the scruffies, respectively.

In short, research in KR can be roughly categorised as having either a philo-
sophical or psychological nature. In an influential paper McCarthy and Hayes
(1969) discussed a number of fundamental issues for AI (amongst which the
famous frame problem). They operationalise (artificial) intelligence as follows:

“. . . an entity is intelligent if it has an adequate model of the world (including
the intellectual world of mathematics, understanding of its own goals and other
mental processes), if it is clever enough to answer a wide variety of questions
on the basis of this model, if it can get additional information from the external
world when required, and can perform such tasks in the external world as its
goals demand and its physical abilities permit.”

(McCarthy and Hayes, 1969, p.4)

This definition introduces the distinction between a representation of the
world, and a mechanism that uses problems and information expressed in that
representation to perform problem solving and decision making. Artificial
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Table 2.1: Schools and systems in Knowledge Representation

intelligence systems should attain a balance between both epistemological ad-
equacy and heuristic adequacy.

The distinction between these approaches was very much evident in AI
research in the seventies. Mylopoulos (1981) organised the schools in a tax-
onomy; KR languages can first of all be divided into procedural and declar-
ative ones. The first is aimed at attaining heuristic adequacy, the second has
an epistemological perspective. The declarative languages can be further sub-
divided into logic-based and semantic network ones, see Table 2.1. It wasn’t
until the end of the seventies that so-called hybrid systems attempted to com-
bine declarative and procedural views (see Figure 2.1).

2.2.1 Intelligence by First Principles
The idea of automated intelligent reasoning has been around for a long time,
and can be traced back to ancient Greece. Aristotle’s syllogisms are often seen
as the first example of a formalisation of valid reasoning. With the separation
of mind and body in the 17th century by Descartes, and in common sense, the
road was opened up to apply newly found mathematical insights to model and
imitate parts of human thought as mechanistic processes. Perhaps the most ap-
pealing examples are Pascal’s arithmetic machine for addition and subtraction,
and Leibniz’ improvements to it to support multiplication, division and com-
puting the square root.

In the mean time other great minds, such as John Wilkins (the first secretary
of the Royal Society) were busy working on a systematic account of all of hu-
man knowledge using his Real Character. The real character encoded words in
such a way that each had a unique non-arbitrary name. For this, Wilkins used
a three-layered tree structure. All concepts are distributed over forty Genuses;
these in turn are divided into Differences which are separated as Species. Each
of these layers adds one or more letters, such that any path through the tree
can be represented as a unique four-letter word.

More influential, however was Leibniz’ invention of the binary system of
numbers that lies at the heart of his calculator. He entertained the thought of
encoding ‘notions’ as unique binary encoded numbers. Using a simple method
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Figure 2.1: History of knowledge representation

of combining these numbers by applying mathematical operators, a machine
– the calculus ratiocinator – could be built that would ‘think’. Unfortunately,
gathering all notions proved to be too formidable a task, and for various reas-
ons – his work on the differential calculus beckoning – Leibniz was unable to
continue his work in this direction. A few decades later Linnaues was more
successful when he built his Systema Naturae of a more limited domain.

In Leibniz’ view, intelligent reasoning is a form of calculation: the manip-
ulation of symbols according to a set of logical axioms. Still (or even more)
prevalent once computers became available, logic based knowledge represent-
ation was very popular during the 1960’s after the development of automatic
theorem proving using resolution. The idea of a general-purpose logical engine
fuelled the idea that logics could be used as the basis of all intelligent action.
Despite the fact that logic based knowledge representation has the advantage
of a well-understood formal semantics, standard inference rules, and relatively
simple notation, it has several drawbacks as well (Mylopoulos, 1981).

Logic based languages did not provide a way to organise knowledge in sep-
arately understandable modules. And as time progressed it became clear that
this engine was not “powerful enough to prove theorems that are hard on a hu-
man scale”, which lead to the “great theorem-proving controversy of the late
sixties and early seventies” (Newell, 1982, p.90-91). Instead of being univer-
sally applicable, research in theorem proving increasingly focussed on smaller,
theoretically hard topics. The result was a rather allergic reaction to anything
smelling of uniform procedures, and at the start of the seventies it seemed that
logic as knowledge representation language was very much done for in AI
Hayes (1977); Newell (1982).
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Another problem was that logics are not well suited to represent proced-
ural knowledge. The PROLOG programming language (Kowalski, 1974; Bratko,
1986) was designed to alleviate this problem by the interpretation of implica-
tions as procedure declarations (see Figure 2.1).

2.2.2 Production Systems
At the start of the seventies, much of AI research was targeted at building
psychologically sound computer models. Such models were used in cognit-
ive psychology research for the study of both language semantics and human
reasoning. It soon became evident that people within the two areas of research
entertained differing views on what ‘knowledge’ is. While one group main-
tained that knowledge is all about ‘how’ (the heuristic view), the other group
advocated the ‘what’ (the epistemological view). The latter is discussed in Sec-
tion 2.2.3.

During the 1950s, Newell and Simon (1972) developed the Logic Theorist
and the General Problem Solver (GPS) programs which were able to perform
various tasks using a combination of theorem proving and heuristics. Al-
though they started out in a similar vain as the purist logicians, they soon de-
veloped a quite different approach. In their view, human thinking and problem
solving is by information processing: “the human operates as an information
processing machine”(Newell and Simon, 1972, p.21). Even though this inform-
ation processing system (IPS) perspective soon turned out to be overly simplistic
as a correct model of the human mind; it is a useful abstraction, and has de-
veloped into a major knowledge representation paradigm. The general struc-
ture of an IPS is that of a processor that interacts with its environment – using
a receptor and effector – and stores information about the environment in its
memory (see Figure 2.2).

The processor consist of a set of elementary information processes (eip) and
an interpreter that determines the sequence of processes to be executed as a
function of the symbols stored in memory. This view was very much oriented
towards the way in which computers can be used to do thinking. Of primary
concern, here, were the questions as to 1) how elementary information pro-
cesses should be expressed, and 2) what strategies should be implemented as
part of the interpreter.
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Systems that follow the IPS architecture of Newell and Simon are gener-
ally a type of production system (Buchanan and Shortliffe, 1984). These systems
were first conceived of as a general computational mechanism by Post (1943),
used to describe the manipulation of logical symbols. In its simplest form, a
production rule consists of a left hand side (condition) and a right hand side
(action), usually in the form of an if ...then ... statement. A production
rule is essentially the operationalisation of a reasoning step (i.e. an eip) in an
IPS: given some input structure of symbols, the rule produces a new (modi-
fied) structure of symbols. An interpreter iteratively evaluates all productions
in the system until it finds one that matches one or more symbols stored in
memory. This evaluation of the condition of rules is a passive operation that
has no impact on those symbols. When the interpreter evaluates some input to
the conditions of a rule, it is said to ‘fire’, and performs the operations specified
on the right hand side on relevant symbols in memory. Because of its depend-
ency on the order in which the interpreter carries out evaluation, a production
is not applied in the same way as the full combinatorics of logical implication.
Where the consequent of an implication necessarily holds at all times – all in-
formation implicit in the knowledge base holds at all times – the consequent of
a production rule only comes into effect after the rule has fired.

Production rules were (and still are) used for a wide variety of applications.
They can be categorised according to two views: as a means for psychological
modelling on the one hand (as in IPS), and for expert systems on the other. In
cognitive psychology, production rule systems were part of an effort to create
programs that capture human performance of simple tasks. This performance
includes typical human treats such as forgetting, mistakes etc. and rules were
a promising paradigm for capturing heuristics in human problem solving. For
these scruffies, human intelligence was rather a “particular variety of human
behaviour” (Davis et al., 1993, p.10); the ‘intelligence’ of reasoning can only be
assessed by virtue of its correspondence to human intelligence, and not neces-
sarily by whether it is clean and logical. To them, production systems provided
a clear formal way to represent the basic symbol processing acts of information
processing psychology (Davis and King, 1984). The production rule semantics
allowed an escape from the nothing-or-all inferences of theorem proving, and
could be used to capture the local, rational control of problem solving.

During the eighties, rule-based knowledge representation was applied in a
number of large scale projects, and found its way into many enterprise indus-
trial and government applications. Because of their rather practical, applica-
tion oriented perspective, focus shifted from a cognitive perspective to build-
ing large knowledge-based systems, and creating and maintaining elaborate
models that capture expert knowledge. Knowledge-based expert systems, em-
phasise problem-solving performance at the cost of psychological plausibility.
Production rules are used to capture expert knowledge about a particular task
or domain, and enable the system to support, augment or even surpass human
problem solving. Production rules can be modified and extended relatively
easily, which makes them a convenient paradigm for incremental system de-
velopment. A well known example of such a system is is the MYCIN expert
system for medical diagnosis (Buchanan and Shortliffe, 1984). Rather than at-
tempting to simulate diagnosis by human experts, it captures and formalises
the (often implicit) knowledge, i.e. the ‘rules of thumb’ used by those experts,
into the form of production rules. Because of the emphasis on performance,
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Figure 2.3: A semantic network, using the notation of Quillian (1966)

interest soon grew towards the improvement of the interpreter with more effi-
cient strategies.

2.2.3 Semantic Networks
While production systems were rather good at mimicking the heuristics of hu-
man problem solving, they were severely limited when it comes to another
major area in AI: natural language understanding. Looking at it in terms of
an IPS, a natural language processing system is all about mapping terms and
structures in natural language to their cognitive interpretation in memory. In
other words, lexical terms are to be grounded in a model that represents their
semantics, where the semantics should mimic the human understanding of
these terms in memory. This application area brought forth a number of very
influential knowledge representation technologies that count as the direct pre-
decessors of the languages currently used for representing knowledge on the
Semantic Web.

The theory of semantic memory by Quillian (1966), is based on the idea that
memory consists of associations between mental entities, i.e. semantic memory
is associative memory (Anderson and Bower, 1973). Quillian’s semantic memory
can be depicted using semantic networks, directed graphs where nodes are terms
and the relationships between those terms are represented as arcs (see Figure
2.3). In semantic networks, different senses of a word concept (a node) can
be organised into planes, and can be related through pointers (edges). Point-
ers within a plane form the structure of a definition. Pointers leading outside
a plane indicate other planes in which the referenced words themselves are
defined. The use of planes and pointers allowed the ‘import’ of a word defini-
tion by reference. Quillian (1966) distinguished five kinds of pointers: subclass,
modification, disjunction, conjunction, subject/object.

Though graph-based representations had been used extensively in the past
for a wide variety of representations, Quillian was the first to use semantic
networks for representing human knowledge:
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“His intent was to capture in a formal representation the ‘objective’ part of the
meanings of words so that ‘humanlike use of those meanings’ would become
possible”

(Brachman, 1979, p. 5)

Underpinning the cognitive perspective of this approach, was his later re-
search using reaction time in assessing the factual truth of statements (Collins
and Quillian, 1969, semantic verification) to test the psychological plausibil-
ity of semantic network models. Of particular interest was the question as
to whether the retrieval of inferred property values (over the subclass rela-
tion) would take more time than directly represented property values. The fact
that indeed this was the case provided backing for property inheritance over a
superclass-subclass taxonomic hierarchy in semantic network representations
of human semantic memory. Furthermore, he intended his model to be suit-
able for automatic inference, allowing for querying information implicit in the
model. Effectively turning the semantic network paradigm into not only a rep-
resentation but a simulation of human memory.

The expressive power of the original semantic networks soon became too
restricted, and a number of innovations and extensions followed. Quillian’s
original set of five link types turned out to be insufficient, and was superseded
by the ability to type pointers using named attributes, i.e. a means to use a token
to point to a type. Furthermore, a distinction was introduced between concepts
and examples (later instances), in Carbonell (1970). These innovations led to a
plethora of widely variant, rather unprincipled, semantic network ‘languages’.
Many of which applied the technique to domains other than psychology.

A true show-stopper, however, was that new link types, and even concept
types, were not explained and the interpretation of semantic networks was left
to the ‘intuition’ of the reader (Brachman, 1979): semantic networks did not
really have semantics. For instance, both the concept–instance distinction and
the type–token distinction were obfuscated by the use of the infamous ‘IS-A’
link (Woods, 1975; Brachman, 1983).

Perhaps most manifest to current readers was the critique that the networks
made no distinction between domain level constructs – conceptual relations in
the domain – and knowledge structuring principles such as the subclass rela-
tion. As semantic networks relied heavily on graphical notation, this is most
apparent in the uniformity of presentations. Woods stressed the importance of
considering the semantics of the representation itself.

To summarise, semantic networks were developed as part of an effort in
psychology to represent human semantic memory. Although they have been
successful in many ways, they suffered from lack of proper semantics: “The
‘semanticness’ of semantic nets lies in their being used in attempts to represent
the semantics of English words.” (Brachman, 1979, p. 26).

2.2.4 Frames
The semantic network model received criticism from cognitive science itself
as well. Most notable in this respect is Minsky (1975),1 who argued against

1Though, as is common his ideas had been brooding in the community, cf. Schank and Abelson
(1975); Woods (1975)
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the paradigm of associative networks for representing semantic memory. In
his view the ‘chunks’ of thought should be larger and more structured, and
their “factual and procedural content must be more intimately connected”. He
proposed frames as knowledge structures that represent stereotyped situations.
This meant a move away from the focus on word concepts in semantic nets
to more contextual representation of knowledge. Frames are thus presented
as part of a theory on the contents of thought (semantic memory), similar to
the notion of script in Schank and Abelson (1975), used in natural language
understanding.

A frame can be regarded as a group of interwoven nodes and relations
(somewhat akin to Quillian’s planes), but with a fixed structure. The ‘top’
levels of a frame represent that which is always true for the situation, the lower
levels consist of terminals or ‘slots’. These terminals can specify conditions that
its assignments (through specific instances or data) must meet. Minsky distin-
guishes simple conditions – in the form of ‘markers’ that require straightfor-
ward assignments to e.g. (smaller) sub-frames – from complex conditions that
specify relations. The terminals of frames are filled with default assignments,
which may be overridden when a frame is filled by a suitable particular situ-
ation.

Frame systems are collections of closely related frames. For instance, the
effects of possible actions are reflected as transformations between the frames
of a system. Frames within a system share the same terminals; this to allow
the integration of information from different viewpoints on the same situation.
For example, two frames representing the same cube at different angles share
some of the faces of the cube.

Where semantic networks could already support a limited form of auto-
matic inference, an important addition of the frame paradigm is the require-
ment of an information retrieval network that supports a standard matching pro-
cedure for determining whether a candidate situation fits a frame. This pro-
cedure tries to assign values to the frame’s markers. In the case of a mismatch,
the network should be able to propose a new replacement frame as possible
candidate for a match. Matching is not performed solely on the constraints on
a frame, but also by the current goals, which are used to determine constraint
relevance.

The main contribution of the frame-based view was that it fixed a know-
ledge representation perspective. Semantic nets could be used to represent any-
thing – not just word concepts – and were in many ways equivalent to generic
graph representations. The frame proposal fixes the perspective on descrip-
tions of situations in general, and objects and processes in a situation in particular.
Minsky (1975) discusses how frames can be used to represent a wide variety of
domains – vision, language understanding, memory – without compromising
this perspective. His proposal is often viewed in line with the development of
object oriented programming.

Furthermore, the frame-based approach incorporates a view on the manip-
ulation of knowledge, i.e. the transitions between frames in a frame system.
This effectively introduced the reuse of information as a knowledge organising
principle. Lastly, it envisioned a procedure for matching specific situations to
candidate descriptions in frames, and introduced defaults for dealing with in-
complete knowledge.
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2.2.5 Frame Languages
Research in the late seventies produced a number of – what in retrospect could
be called – frame based KR languages. Not because they were explicitly de-
veloped to define Minsky’s original frames (they were not), but because they
share its emphasis on interrelated, internally structured concepts as primary
language primitive.

Knowledge Representation Language (KRL) The Knowledge Representa-
tion Language (KRL), developed by Bobrow and Winograd (1976), was built
on the idea that knowledge is organised around conceptual entities with as-
sociated descriptions and procedures. In their view, a KR language should be
independent from the processing strategies or representations of a particular
domain. It must provide a flexible set of underlying tools.

KRL descriptions represent partial knowledge about an entity, and can con-
sist of multiple descriptors that can be grouped to capture differing viewpoints
on the entity. KRL’s descriptions are by comparison to a known entity (the pro-
totype), extended with a further specification of the described entity. The pro-
totype provides a perspective from which to view the object being described.
The description of a concept entity can combine different modes of description
(Bobrow and Winograd, 1976, p. 6), such as category membership, stating a
relationship, or role in a complex object or event etc.

Reasoning in KRL is done by way of a process of recognition where newly
introduced objects are compared to stored sets of prototypes. Specialised reas-
oning strategies can be attached to these prototypes in the form of procedural
attachments. These procedures could be called depending various triggers (on
classes) or traps (on objects) such as goal directed procedure calls (servant pro-
cedures) and side-effects of system actions (demon procedures). Such proced-
ural attachments are coined procedural properties, as opposed to declarative
properties.

Bobrow and Winograd make a strong claim that “it is quite possible . . .
for an object to be represented in a knowledge system only through a set of
such comparisons” between prototypes (Bobrow and Winograd, 1976, p.7).
The definition of an object is wholly contained within the system, but also
functionally complete with respect to that definition as the system can an-
swer any relevant query about it. This represents a fundamental difference
in spirit between the KRL notion of representation and standard logical repres-
entations. Because the definition of an object is in terms of other objects, and
vice versa, and its position within that network of comparisons is determined
by a standard inference mechanism, it is the inference mechanism that determ-
ines the meaning of an object.

Structured Inheritance Networks (SI-Nets) Another frame-like language,
the Structured Inheritance Networks (SI-Nets) of Brachman (1979) were an at-
tempt to define an epistemologically well-founded class of KR languages (see
Section 2.3.2): granted that we distinguish concepts and relations, how can we
account for the apparent meaning of concepts that determines their position
within a network? The most prominent of these languages, KL-ONE (Brach-
man, 1979; Brachman and Schmolze, 1985), is organised around concepts. Con-
cepts are intensional, and can represent objects, attributes and relations in a
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domain. Brachman furthermore distinguishes between generic and individual
concepts:2

Generic Concept
represents a class of individuals by describing a prototypical member of
the class.

Individual Concept
represents an individual object, relation or attribute by individuating more
general concepts.

Individual Object
(or instance) is an object in the actual world that instantiates a Generic
Concept, and is denoted by an Individual Concept, see Figure 2.4.

Similar to KRL entities, KL-ONE concepts are structured objects. They are
described by role/filler descriptions, the ‘slots’ of the concept. These determine
the type of entity that can fill the role, the number of fillers and the importance
(modality) of the role. Where KRL uses five modes of description, KL-ONE is
more abstract and distinguishes three role modality types – inherent, derivable
and obligatory – that enable a modeller to distinguish between information
needed for recognition and more neutral descriptions.

KL-ONE supports procedural attachments, but distinguishes meta descrip-
tions – meta statements on concepts using KL-ONE’s formalism – from inter-
pretive attachments. The former, so-called structural descriptions (SD), can be
used to prescribe the way in which role fillers interact for any individual; SD’s
relate two or more roles. The latter are similar to KRL’s procedural attach-
ments, and can be expressed using the interpreter language that implements
KL-ONE itself (INTERLISP).

In summary, frame-based KR languages introduced a number of know-
ledge structuring principles that were absent in earlier semantic nets. They

2The distinction is similar to that between types (generic concepts), tokens (individual objects)
and occurrences (individual concepts) in philosophy.
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focus on structured concepts, which are defined by simple or very elaborate
structural or procedural descriptions in terms of other concepts. Concepts are
either generic or individual, and are clearly distinguished from their real world
counterparts. The meaning of a concept is determined by its position within
the network of other concepts, which is enforced by a standard inference mech-
anism based on the descriptions of the concept. Because of the combination of
conceptual and procedural (production rule-like) primitives, languages such
as KL-ONE and KRL are sometimes called hybrid systems.

2.3 Epistemology

“One man’s ceiling is another man’s floor”

Paul Simon, 1973

Frame based languages proved to be a significant improvement over other se-
mantic networks.3 They fixed a paradigm which was more rigourous and bet-
ter suited for representing knowledge. The development of these languages
was not only given in by the cognitive psychology argument of Minsky (1975),
but also (and perhaps more importantly) by the growing awareness of the need
to have a clear definition of what a knowledge representation is.

The interaction between psychological insights and knowledge representa-
tion practice led to two fundamental questions:

1. What is the relation between a machine representation and the thing (do-
main, body of knowledge) it denotes? and,

2. How does the representation language relate to the representation itself?

So, while at first developers of both semantic and procedural knowledge rep-
resentations were primarily concerned with the psychological plausibility of their
models, the proliferation of semantic nets and frame based languages sparkled
growing concern about the epistemological status of knowledge, representation,
and the KR languages themselves.

In his 1980 inaugural presidential address to the AAAI4 Newell (1982) dis-
cussed exactly this topic: the nature of knowledge, and in particular the re-
lation between knowledge and representation. In his view, the latter is used
precisely and clearly in computer science while the former is often used in-
formally. He identifies a problem with representation, in that it is attributed a
‘somewhat magical’ role.

“What is indicative of underlying difficulties is our inclination to treat repres-
entation like a homunculus as the locus of real intelligence.”

(Newell, 1982, p.90)

3The above quote was taken from Brachman (1979).
4American Association of Artificial Intelligence
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Table 2.2: Computer System Levels (Newell, 1982)

Level Description
Knowledge Level Knowledge and rationality
Symbol Level Symbols and operations (also program

level)
Logic Level Boolean logic switches (e.g.

AND/OR/XOR gates, consists of the
register-transfer sublevel and logic circuit
sublevel)

Circuit Level Circuits, connections, currents
Device Level Physical description

The most salient task in AI is identifying the proper representation of a
problem. It can make the difference between combinatorial and directed prob-
lem solving: “... the crux for AI is that no one has been able to formulate in a
reasonable way the problem of finding the good representation, so that it can
be tackled by an AI system.” (Newell, 1982, p.3). The capability to find the
proper representation apparently requires some special kind of intelligence.

What epistemological adequacy is, turned out to differ widely, as we have
seen in the previous section. McCarthy and Hayes propose to construct a prac-
tical philosophical system, based on our common sense understanding of the
world. For semantic network-adepts, epistemological adequacy equates to
psychological plausibility. But even the criterion of psychological plausibil-
ity is not suitably specific to distinguish between production systems and net-
work representations. All three proposals, the logic-based, production-based
and network approach, aim to answer the two fundamental questions raised
at the start of this section. Although they formulate some description on what
a knowledge representation should contain and how it relates to the world
it represents, this description remains vague: none of them clearly defines a
framework for this relation. And secondly, they do not give an answer to how
knowledge relates to the language it is represented in: what are the primitives
of knowledge representation?

2.3.1 Knowledge and Representation
In his discussion on the nature of knowledge, Newell (1982) presented the
knowledge level as a computer system level. The execution of computer pro-
gram code is made possible by its translation to physical operations on a circuit
board. This translation passes through a number of steps, or ‘levels’ at which
the program can be expressed (e.g. from java code at the symbol level, to java
byte code to processor instructions etc.), see Table 2.2. Levels have a medium,
the system it is used to express, primitive processing components and guidelines
for their composition, and a definition of how system behaviour depends on the
behaviour and structure of components.

Every computer system level can be defined autonomously – without refer-
ence to another level – and is reducible to a lower level. Because a description
of a system at some level does not imply a description at a higher level, these
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levels are not levels of abstraction: A level is rather a specialisation of the class
of systems that can be described at the level directly below it. Computer sys-
tem levels are concrete and really exist, they are “a reflection of the nature of
the physical world” (p. 98). Newell postulated the existence of the knowledge
level as a hypothesis:

The Knowledge Level Hypothesis. There exists a distinct computer systems
level, lying immediately above the symbol level, which is characterised by
knowledge as the medium and the principle of rationality as the law of be-
haviour.

(Newell, 1982, p.99)

The question is, how does the knowledge level fit into the rather technical
framework of levels in a computer system? The idea is that when we perform
knowledge representation – both procedural and declarative – we express our
rather abstract, implicit notions of knowledge manipulating systems (people,
or rather agents) in terms of a symbol level system. This includes the definition
of the medium (knowledge), components (actions, goals), and laws of beha-
viour (rationality) prevalent at this level. Newell (1982) insisted that a know-
ledge level description of a system is not just a matter of treating a system as a
rational agent as in the intentional stance of Dennett (1987). But rather that the
level exists and behaves in the same way as any of the other computer system
levels. The term ‘knowledge level’ is often used to describe representations of
knowledge in terms of concepts, tasks, goals etc. The representation is said to
be ‘at’ the knowledge level. For Newell, however, the knowledge level is the
knowledge itself, a representation will always be ‘at’ the symbol level (Newell,
1993).

One implication of this perspective is that a knowledge representation is
to be regarded as truly a representation of knowledge and not a representation
of physical, philosophical or psychological reality. Though, by its very nature
knowledge is itself some representation of a reality. The relations between con-
cepts and individual objects of KL-ONE in Figure 2.4 are in fact reflections of
our knowledge of that object.

Figure 2.5 is an extended version of Brachman’s triangle and illustrates the
relation between a knowledge representation and reality. At the far right are
the individual objects that exist in reality, our knowledge of reality is cast both
in terms of knowledge of these individuals as individual concepts and as gen-
eralisations over these individuals. A knowledge representation is constructed
in a similar fashion. Individual concepts in representation are denoted by our
knowledge of individual concepts; generic concept representations are indi-
viduated by these individual concepts. However, we can also choose to repres-
ent a generalisation over the generic concepts in human knowledge, these meta
concepts individuate representations of generic concepts, and are instantiated
by actual generic knowledge. Finally, a knowledge representation language
provides constructs that allow us to formulate the concepts in our representa-
tion through instantiation.

Although it is clear that all knowledge representation occurs by proxy of our
knowledge of reality, it is not always practical to take the separation between
knowledge and reality explicitly into account. If a system is to represent reality
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Figure 2.5: Relation between a representation and the world.

as we understand it, there is no more useful and well-tuned proxy than the
mental models of reality we use and live by every day.

2.3.2 Representation and Language
The introduction of the knowledge level helps us to put the representation of
knowledge into perspective, but does not address the suitability issue of the
knowledge representation languages of Section 2.2.

Levels In his review of lessons learned in semantic nets, Brachman (1979)
identified five distinct groups of primitive types used in these languages. He
considered each of these groups to stand for a particular viewpoint, or concep-
tual ‘level’. Any network, he argued, can be “analysed in terms of any of the
levels” (p.27). In other words, a concept expressed in a language at one level,
can be understood and expressed at all other levels as well. On the other hand,
an interpreter usually commits to support only one of these sets.

At the implementational level, semantic nets are mere graphs, data struc-
tures where links are pointers and nodes are destinations for links. The logical
level emerged in reaction to criticism that semantic nets did not have formal
semantics. It perceives semantic nets as a convenient depiction of predicates or
propositions (the nodes) and the logical relationships between them (the links).
Originally, however, semantic nets were meant to capture the meaning of word
concepts. At this conceptual level, links are case relations between nodes rep-
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Table 2.3: Levels of Semantic Networks (Brachman, 1979)

Level Primitives
Implementational Atoms, pointers
Logical� Propositions, predicates, logical

operators
Epistemological Concept types, conceptual sub

pieces, inheritance and structur-
ing relations

Conceptual Semantic or conceptual relations
(cases), primitive objects and ac-
tions

Linguistic Arbitrary concepts, words, ex-
pressions

� Note that the logical Level of Brachman is not the same as Newell’s Logic Level

resenting word senses. Here, the primitives are less neutral, and encompass
conceptual elements and relations, such as action types and cases (thematic
roles) respectively. Not always are these primitives explicitly defined as part of
the semantic net language, but on the whole the relations do have this flavour.
One level higher, nodes and links are language dependent. Linguistic level net-
works are composed of arbitrary relations and nodes that exist in a domain.
Each consecutive level adds a commitment to a particular interpretation of the
structure of the world.

In line with the criticism of Woods (1975), who urged the consideration of
the semantics of KR languages, and Minsky (1975), who argued for structured
concepts, Brachman postulates that part of the promiscuity of semantic net-
work languages lies in the absence of an intermediate level between the logical
and conceptual levels. He proposed the introduction of an epistemological level
which allows the definition of knowledge-structuring primitives as opposed to
knowledge primitives:

“The formal structure of conceptual units and their interrelationships as concep-
tual units (independent of any knowledge expressed therein) forms what could
be called an epistemology.”

(Brachman, 1979, p.30)

To illustrate, even while we can argue about which properties exist, we can
still agree that properties exist. See table 2.3 for an overview of Brachman’s
levels. Perhaps his levels are best understood as levels of detail or abstraction.
When regarding a linguistic level representation, using plain English words
etc., we can zoom in to see the case structure and concepts that underlie the
language. If we then zoom in again, we can view the internal structure of
these concepts and what makes that they can be related in certain ways. Not
very surprisingly, his KL-ONE is designed for representing knowledge at the
epistemological level.

We must be careful, however, not to misinterpret the analysis Brachman
made as a deconstruction of layers in semantic-network based knowledge rep-
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resentation only. In fact, it remains rather unclear what Brachman believes to
be at a level. His description leaves room for the following alternative inter-
pretations:

Language
A KR language can be designed to be adequate for the representation of
knowledge using primitives at a particular level.

Knowledge
The knowledge represented using a KR language can be of a type corres-
ponding to one of the levels. For instance, it is quite common to describe
concepts using some form of logic, but we can just as readily represent
logical primitives as concepts.

In the first sense, the knowledge primitives determine the level of a lan-
guage; where in the second sense the level describes the kind of knowledge
expressed in a model. The two interpretations of the levels are not wholly un-
related, and Brachman formulates a number of requirements for KR languages
to adequately support the representation of knowledge at a particular level.
Firstly, a language should be neutral with respect to knowledge at the level
above it. Secondly, it should be adequate for supporting the level above it, i.e.
it should be expressive enough to account for knowledge at that higher level.
And thirdly, it should have well defined semantics: it should prescribe legal
operations, and provide a formal definition of its primitives.

Types For a long time, the expert systems field seemed to steer clear of the
epistemological crisis of declarative knowledge representation. And indeed,
the levels presented in the previous section do not particularly fit the heuristic
perspective of production systems. Although the PSI architecture includes a
‘memory’ in which knowledge of the world is stored declaratively, these sym-
bol structures are usually very simple hierarchies with limited semantics, and
were used chiefly as database-like place holders for instance data.

All of this changed when it became clear that production rule systems were
not particularly usable in settings other than which they were designed for.
This realisation emerged when Clancey (1983) attempted to use MYCIN rules
in the GUIDON tutoring program, i.e. to “transfer back” expert knowledge
from a rule base. The idea was to use the rules to explain each step in the
diagnostic reasoning process. As the original design goal of MYCIN was for
it to be built using a simple mechanism for representing heuristics that would
support explanations and advice, it seemed at first that this educational use
would be relatively straightforward. It turned out not to be. Merely using
MYCIN’s built in explanation facility did not work as expected. GUIDON was
incapable of explaining many rules because of insufficient information about
the way the rule base was structured. In order to support a tutoring setting, it
is necessary to extract this “compiled knowledge”(Clancey, 1983).

Rules in MYCIN, but in other systems as well, implicitly encode the design
rationale behind the way rules are fitted together. Clancey clarifies the different
ways in which design knowledge is lost when building rules by distinguishing
between goals, hypotheses and rules. These three categories are organised in a
network of dependencies (see Figure 2.6). Goals are formulated as questions
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Figure 2.6: Network of goals, hypotheses and rules, adapted from Clancey
(1983)

that need to be answered for the system to solve a problem (e.g. making a
diagnostic decision). Hypotheses are potential answers to the questions, and
are ascertained by rules that have the hypothesis as their consequent. Rules
fire, i.e. make their consequent hold, when their antecedent is satisfied. This
antecedent is composed of other hypotheses that answer some goal.

The decomposition gives insight in the way the different categories interact
when MYCIN traverses the search space. For instance, when it tries to satisfy
e.g. the “meningitis” hypothesis, MYCIN will in fact consider all related hypo-
theses that answer the more general goal “what infection?”. The links between
these categories are the ‘points of flexibility’ in a rule representation.

A problem solving strategy can be conveyed by making explicit the rationale
behind the order of premises in a rule as this affects the order in which goals
and hypotheses are pursued. A decision to determine the ordering of hypo-
theses in a particular way is a strategic decision, which can be stated in relatively
domain-independent terms. The example given by Clancey is “consider differ-
ential broadening factors”. Also some level of structural knowledge is neces-
sary to “make contact with knowledge of the domain”, it provides a “handle”
by which a strategy can be applied. For instance, it seems reasonable to invest-
igate common causes of a disease before considering unusual ones.

The justification for a rule is captured by the rationale for the connection
between the conclusion in the consequent and hypotheses in the antecedent.
Justification depends on knowledge of the domain. Clancey (1983) identifies
four different types of justification, and consequently four different types of
rules (the domain theory):

• Identification rules use properties of an object to identify it, e.g. “if it walks
like a duck and talks like a duck, it is a duck”.
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• Causal rules convey a causal relation between two objects, e.g. “problem
causes disease”. In fact MYCIN distinguishes several different types of
causal relation.

• World fact rules capture common sense knowledge about the world, e.g.
“if the patient is male, he is not pregnant”

• Domain fact rules capture domain specific knowledge on the basis of do-
main definitions, e.g. “if a drug was administered orally and it is poorly
absorbed in the GI tract, then the drug was not administered adequately”

This distinction between strategy and justification proved to be a very po-
tent methodological tool. The structural domain theory can be used to make
the strategy explicit that ‘indexes’ the domain model (the knowledge base). In
other words, instead of a hodgepodge of entangled rules, the different com-
ponents of a production rule system can now be considered separately and
relatively independently. All this by a shift from the dominant heuristic per-
spective to a more epistemological analysis of the types of knowledge involved
in production systems.

2.3.3 Adequacy
The distinction between epistemological and heuristic adequacy of McCarthy
and Hayes (1969) turned out to have a deeper impact than originally envi-
sioned. Although it was primarily presented as the two main goals of AI, it
soon turned into a rift in artificial intelligence research between epistemological–
declarative (semantic networks) and heuristic–procedural (production system)
systems. Because they were treated as very distinct notions, their pursuit has
produced very different representation perspectives. But as we have seen,
these are really two sides of the same coin.

Firstly, heuristic and epistemic approaches tend to deal with the same kinds
of knowledge. Albeit in quite divergent ways. Frame descriptions are not
purely ‘epistemological’; surely the assignment of default slot values based on
a ‘match’ is a form of inference and presupposes some procedure for feeding
new information to a knowledge base. Both KRL and KL-ONE are in fact
hybrid systems and combine declarative concept definitions with procedural
attachments. Vice versa, production systems encode identification knowledge
and knowledge of facts, the primary issue in declarative approaches, and are
thus just as susceptible to the epistemological crisis.

Secondly, the two approaches interact; how can a representation mean any-
thing without some form of standard inference? McCarthy and Hayes’s rep-
resentation is “in such a form that the solution of problems follows from the
facts expressed in the representation” (p.5), but how to check whether a solu-
tion indeed follows from the representation? In other words, the inference
mechanism in frame languages is just a particular heuristic strategy of the kind
production systems are intended to capture.

Newell’s analysis showed that both aspects should be present for any know-
ledge level representation as roles of behaviour on the one hand, and the com-
position of components on the other. Both Brachman and Clancey hold that
KR languages should provide the basic elements that shape our knowledge.
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Figure 2.7: Levels of Knowledge Representation

Brachman emphasises the explicit definition of knowledge-structuring prim-
itives. Clancey distinguishes components of a knowledge base, the interaction
between different types of knowledge.

Furthermore, the separation of heuristics and epistemology is still import-
ant, but has been detached from the KR formalisms and has become rather
an interaction between strategic and domain knowledge. A strategy ‘indexes’
domain facts, and the combination of the two constitutes a domain model.

Both Clancey and Brachman thus operate at the epistemological level, and
argue that only knowledge representation at this level can account for know-
ledge level system behaviour. For Clancey the ultimate test is the reuse of a
knowledge system for a different task (explanation vs. diagnosis: same do-
main, different strategy), for Brachman this was the built-in appropriateness of
a language to represent a particular kind of (higher-level) knowledge.

More than a decade later, Davis et al. (1993) tried to settle the issue once
and for all. A lot of the discussion in the field of knowledge engineering is, in
their view, caused by a conflation of the different roles played by a knowledge
representation. As we have seen, knowledge representation is first, and fore-
most, a surrogate for ‘the thing itself’ – a particular domain – used to enable
reasoning as a simulation of the domain. As a representation cannot cover all
of the domain, it needs to make a selection of relevant features of the domain
and thus fixes a perspective on it. Every representation is therefore a set of
ontological commitments, a commitment to the terms in which one should think
about the domain (the domain and world facts of production systems). This
commitment pertains not only to the contents of a particular model, but also to
the KR language used. The ontological commitment accumulates in layers. For
instance, a language for describing knowledge at the conceptual level commits
to the existence of concepts, whereas a logical level language makes no such
claims.

As we have seen in the preceding, a well designed representation language
includes a standard inference mechanism. This makes a language a fragmentary
theory of intelligent reasoning; it sanctions heuristic adequacy, and prescribes the
way in which an AI system reasons on the basis of some adequately represen-
ted domain. Also, in its ‘magical’ role (Newell (1982), cf. Section 2.3.1) a KR
language includes a commitment to a particular way of formulating problems
that turns it into a medium for pragmatically efficient computation. The combina-
tion of language and representation is by itself a language which allows us to
describe the world in a particular way; it is a medium of human expression (Stefik,
1986).
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2.4 Components of a Knowledge Based System

As described in Section 2.3 the reusability of expert systems can be enhanced
by separating the different types of knowledge in a model. In particular, this in-
sight proved valuable in dealing with the problem first encountered by Wilkins
and Leibniz in the 17th century: accumulating and representing all knowledge
necessary for performing a particular task can be an arduous undertaking. Of
the three schools discussed, the expert systems field was the one exposed to
such large quantities knowledge, that this step of knowledge acquisition (KA)
became regarded as worthy of study in its own right.

In early expert system development, models were built in an ad hoc, un-
principled and incremental manner. This lead to models such as that of MY-
CIN, in which expert knowledge was ‘compiled’ away, which made them very
hard to understand for people other than the original designers. The models
could not be reconstructed for other purposes than the one originally intended.
Another problem was that this left no other means to check the correctness of
a model, than by evaluating system behaviour as a whole. The knowledge ac-
quisition field soon set out to develop a priori ways for ensuring expert system
quality. Knowledge representation had become an engineering task, know-
ledge should be modelled rather than merely extracted from experts, and this
process of knowledge engineering should be guided by a principled method-
ology. The methodology guarantees a level of quality by making design de-
cisions explicit (see also Chapter 5).

2.4.1 Modelling Principles
In most approaches of the 1990’s, knowledge engineering is regarded as a creat-
ive activity in which the construction of a knowledge base should be preceded
by a modelling step. As in software engineering, the actual implementation
of a KBS is guided by a functional specification. These approaches had a very
strong methodological perspective, and covered every step in the construction
of a KBS. From the identification of the purpose of a system and methods for
knowledge elicitation and acquisition, to the specification and actual imple-
mentation of the system.

For instance, in the KADS methodology (Wielinga et al., 1992; van Heijst
et al., 1997) knowledge acquisition is the construction of a knowledge level
model (the knowledge or conceptual model).5 Knowledge representation is then
the implementation of this knowledge-level model in a knowledge base. This
design model is a symbol level representation and takes into account addi-
tional considerations regarding e.g. computational efficiency of the system
(See Figure 2.8). These considerations are recorded as design decisions. The
PROTÉGÉ system of Puerta et al. (1992) adopted a similar approach where an
initial knowledge level model was automatically translated into a CLIPS rule
base.6

5Rather than a model consisting of ‘concepts’, the KADS conceptual model itself has concept
status, it is a preliminary, abstract version (in another language) of the design model (a system
component).

6CLIPS: C Language Integrated Production System, see http://clipsrules.
sourceforge.net
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Figure 2.8: Steps in the knowledge engineering process (van Heijst et al., 1997)

Knowledge systems can be described at the knowledge level of Newell
(1982), as long as the description is properly abstracted from the structural or-
ganisation of knowledge. In other words, the knowledge base (KB) of such
a system should be described in terms of its competencies: “knowledge is to
be characterised entirely functionally, in terms of what it does, not structurally
in terms of physical objects with particular properties and relations” (p. 105).
Levesque (1984) describes a functional perspective on KB characterisation. A
KB can be treated as an abstract data type, where its behaviour is described in
terms of a limited set of TELL and ASK methods. The capabilities of a KB are
a function of the range of questions it can answer and assertions it can accept.
How a KB implements this functionality should be hidden from the rest of the
system. The advantage of this functional approach is that the knowledge en-
gineer does not have to take into account considerations of implementation
while constructing the knowledge model – at least to a large extent. As a res-
ult, the knowledge level model is less biased towards the implementation in a
particular knowledge representation language.

Knowledge level models are more accessible to domain experts as they can
be constructed and interpreted without in-depth understanding of technical-
ities. A knowledge level model can therefore help to reduce the knowledge ac-
quisition bottleneck (Feigenbaum, 1980): the general difficulty to correctly extract
relevant knowledge from an expert into a knowledge base.

Reuse of symbol level representations in the way discussed by Clancey
(1983) turned out to be problematic because of the interaction problem (Bylander
and Chandrasekaran, 1987). The problem that different types of knowledge in
a knowledge base cannot be cleanly separated, because the purpose of the KBS,
– translated into strategies – influences the way in which the domain theory is
structured (recall Newell (1982) in Section 2.3). This is similar to the context
dependency of the meaning of concepts. However, as knowledge models are
formulated at a more abstract level – relatively untainted by issues of imple-
mentation and structure – it was thought that reuse of such models would be
feasible. This “limited interaction hypothesis” (Wielinga et al., 1992) assumed
that if domain knowledge was represented in a ‘well structured and principled
manner’, general descriptions of methods should be possible. Unfortunately
the structure of domain knowledge is often characteristic for a domain, and is
not merely a matter of design (Valente et al., 1998).

The development of libraries of skeletal models, partially filled-in models of
typical use, was thought to be the answer to the hugeness problem. Building
a KBS requires a significant effort, not only because of the KA bottleneck, but
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Figure 2.9: The standard diagnosis PSM, from Schreiber et al. (2000).

also because expertise domains in general are very large and complex. Skeletal
models do not only help to reduce the amount of specification needed, but
provide guidance with respect to the knowledge needed to build a KBS as well:
they ensure coverage.

To enable knowledge level reuse, the roles played by elements in a model
should be identified (Clancey, 1983; Bylander and Chandrasekaran, 1987). Ap-
proaches based on role limiting facilitate reuse by indexing symbol level repres-
entations – executable models – to types of knowledge at the knowledge level
(Valente et al., 1998). These models are detailed blueprints for implementation
in a system. Other approaches, such as KADS, rather took skeletal models to
be sketches of models and provided no direct connection to implementation.
The models in KADS supported reuse of ‘understanding’.

Role limiting and knowledge typing are accomplished firstly by the separ-
ation between heuristics and epistemology.7 For instance, KADS categorises
elements as a type of control knowledge or as part of a domain theory (See also
Figure 2.7). Control knowledge is the knowledge regarding how a system ob-
tains it goals and solves problems. The CommonKADS approach distinguished
two types of control knowledge in expertise models (van Heijst et al., 1997;
Valente et al., 1998; Schreiber et al., 2000):

Task Knowledge
is a abstract high level description of the decomposition of the goals
within a KBS that must be achieved by problem solving.

Inference Knowledge
An inference is an primitive problem solving step which is solely defined
in terms of its input/output signature. Its internal workings cannot be
meaningfully expressed at the knowledge level even though they can
perform very complex operations. Inferences can be combined in infer-
ence structures.

Tasks and inferences are combined in problem solving methods (PSM); these
are descriptions of a particular way to perform some task: a PSM expresses a
strategy, and reflects the “competence to decompose a task” (Valente et al.,

7Note that at the knowledge level, this does not correspond to a distinction between procedural
vs. declarative: everything specified at the knowledge level is declarative.
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Figure 2.10: A suite of problem types, dependencies and views from Breuker
(1994).

1998, p.400). See Figure 2.9 for an example problem solving method. Where
role limiting approaches generally used a fixed task hierarchy, PSMs are or-
thogonal to such a hierarchy and can combine several tasks to perform a more
complex one. In other words, if a task hierarchy divides a task into sub tasks,
a PSM describes a particular path along those tasks in terms of an inference
structure that implements them. Breuker and Van De Velde (1994); Breuker
(1997) argue that a library of PSMs should be indexed by a suite of problem
types, rather than by a taxonomy of tasks (Breuker, 1994).

Breuker’s suite defines an intermediate level between task decompositions
and problem solving methods. Central to this view are two standard sequences
of problem types part of any task (Figure 2.10). The two sequences can be dis-
tinguished by a behavioural view and a structural view. The former incorporates
the problems that deal with the interaction of a system with its environment:
planning and assessment. The latter includes problems of design, monitoring
and diagnosis and has a more internal perspective.

The interaction problem tells us that control knowledge and domain theory
cannot be fully separated in the way assumed in the limited interaction thesis.
On the other hand, a too close connection between the two kinds of know-
ledge severely limits reusability. A library of reusable knowledge components
should therefore contain descriptions of domain knowledge: a PSM cannot be
specified without at least some reference to domain knowledge. Firstly, a PSM
expresses domain knowledge in terms of its role in a problem solving pro-
cess. This captures the use of domain knowledge as an epistemology (see Sec-
tion 5.5.2). Secondly, this epistemology is connected to its possible role fillers:
the categories in the domain that are able to fulfil a role in problem solving. Re-
use of PSMs is achieved by connecting categories in the epistemology to their
counterparts in a generic domain theory. In short, the domain theory has two
roles:

• To index problem solving methods for reuse, and in this way

• Communicates the kinds of things an expert system ‘knows’ about.

By the way it is constructed, an expert system cannot do otherwise than
simply disregard anything it does not know about. In a way, the incorporation
of a particular domain theory is therefore a significant ontological commitment,
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in the sense of Davis et al. (1993). The domain theory expresses that which
persistently exists for an expert system: it is an ‘ontology’ (see Chapter 4).

2.5 Knowledge Representation

The views of KADS, CommonKADS and the role limiting approaches did not
just have impact on knowledge level specification (in the engineering sense)
but also influenced the languages used for knowledge representation. While
the psychological view and rationale of problem solving was abstracted to a
meta-level of problem solving and reasoning strategies, knowledge based sys-
tems still require implementation at the symbol level. Even when this imple-
mentation is not intended to be directly reusable, as in role limiting, it needs to
explicitly commit to a level of quality with respect to efficiency and computa-
tional properties.

In line with the functional paradigm of Levesque (1984), a knowledge base
is in fact a service that can function as a black-box component of knowledge-
based systems. As Levesque pointed out, to be reusable, such a component
must be well described: it should guarantee answers to a specific set of tell/ask
queries. This way, the different knowledge types of knowledge level specifica-
tion can be instantiated as separate components of a knowledge based system
architecture. This means that although reasoning, and problem solving in par-
ticular, is often a non-monotonic affair (McCarthy, 1980) where hypotheses are
frequently asserted and retracted, inference does not have to be.8

Because KL-ONE like languages were already the most targeted to a spe-
cific type of knowledge, they gradually took on the singular role of expressing
the domain theory of knowledge based systems.9 This required the fine-tuning
of standard inference over the structural descriptions that determine the position
of a concept definition in a network: classification. At the same time, the logic
approach first advocated by McCarthy and Hayes (1969) found its way back
into mainstream knowledge engineering. Classification was specified as a form
of logical inference. The functional specification advocated by Levesque was
thereby underpinned by a logical formalism that specified the exact semantics
of the representation language used by the knowledge component (Levesque
and Brachman, 1985).

Levesque and Brachman (1987) pointed at a trade off between the express-
ive power and computational efficiency of representation formalisms. Infer-
ence on a highly expressive language will generally be inefficient, or even un-
decidable, while limitations on expressive power can ensure tractability. Relax-
ing either of these requirements would result in a system whose answers are
not dependable. Its conclusions may not follow logically from the theory ex-
pressed by the knowledge base (soundness), or it does not give all possible an-
swers (completeness). Levesque and Brachman (1987) therefore propose what

8For sure, in some applications a non-monotonic knowledge base can be beneficial for perform-
ance reasons as not the entire knowledge base needs to be re-evaluated whenever information is
added or removed. However, non-monotonicity in general is no requirement as e.g. recent pro-
gress in decidable incremental reasoning over monotonic description logics shows (Parsia et al.,
2006).

9Although logic programming languages such as Prolog were very popular for the representa-
tion of domain theories, their order dependence makes that a Prolog representation will always be
slightly tainted by control knowledge.
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Doyle and Patil (1991) call the restricted language thesis:

“. . . general purpose knowledge representation systems should restrict their
languages by omitting constructs which require non-polynomial (or otherwise
unacceptably long) worst-case response times for correct classification of con-
cepts”

(Doyle and Patil, 1991, p.3)

However, as Doyle and Patil (1991) argue, this requirement cannot be posed
in general for all representation languages used in knowledge based systems.
In many applications, undecidable reasoning has no serious consequences and
languages should therefore be evaluated on the basis of whether they “provide
the rational or optimal conclusions rather than the logically sound conclu-
sions” (Doyle and Patil, 1991, p.6). Although this is a fair point for knowledge
based systems as a whole, it reintroduces the epistemological promiscuity of ra-
tionality at the implementation level, and thereby the interaction problem of
Bylander and Chandrasekaran.

Successors of KL-ONE such as NIKL (Moser, 1983), KL-TWO (Vilain, 1984)
and LOOM (MacGregor and Bates, 1987) and the Frame Language (Levesque
and Brachman, 1987, FL), KANDOR (Patel-Schneider, 1984), KRYPTON (Bra-
chman, 1983) and CLASSIC (Borgida et al., 1989; Brachman et al., 1991) were
often still hybrid systems that combined terminological reasoning with proced-
ural attachments. Once class membership or subsumption is established using
triggers (Brachman et al., 1991), additional rules could fire that assigned default
values to certain properties. Furthermore, Baader and Hollunder (1991) poin-
ted out that these systems often implemented sound, but incomplete subsump-
tion algorithms. The main reason was that sound and complete algorithms
were only known for small and relatively inexpressive languages. Addition-
ally, for many languages the subsumption problem was at least NP-hard, which
meant that complete implementations would be intractable, while incomplete
algorithms could be polynomial. Tractability is important for practical applic-
ations with often critical response time requirements.

2.5.1 Description Logics
The quest for more expressive but decidable combinations of language features
became ever more prominent in the development of description logics (DL).
These logics are often regarded as the direct successor of frame-based lan-
guages. However, where in frame-based systems descriptions (or descriptors)
are secondary to the concepts they describe, in DL the descriptions themselves
are first-class citizens. Current DLs have thus shifted away from concept-
centered representation to description or axiom centred semantics. Concepts
merely group together multiple descriptions to create some cognitively plaus-
ible aggregate. This paradigm shift is understandable, as frame-based sys-
tems, and early DL-systems, were not entirely ‘clean’ regarding the separation
between concept and description. The KRIS10 system of Baader and Hol-
lunder (1991) is one of the first sound and complete implementations of an
expressive but decidable description logic.

10Knowledge Representation and Inference System
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Description logics are fragments of first order logic (FOL) usually defined
by means of a model theoretic semantics, i.e. its semantics is based on the in-
terpretation of a language by means of set-theoretic structures. A sentence in
such a language can only be made true or false given some interpretation of that
sentence in terms of actual entities. For instance, the sentence “The person sits
on the chair” can only be determined to be true given a mapping to a corres-
ponding situation in reality, the domain, e.g. given a mapping from ‘person’ to
an actual person, from ‘chair’ to an actual chair, and from ‘sits’ to an actual sit-
ting relation between that person and that chair. An interpretation that makes
the sentence true is said to be a model of that sentence. In terms of Brachman
(1979) (cf. Figure 2.4), the interpretation of some sentence is the denotation
relation between generic and individual concepts on the one hand, and indi-
vidual objects and sets of objects in the domain on the other. See Figure 2.11
for a schematic depiction of the relation between concepts, individuals and the
domain.

More formally, in DL a model consists of a domainΔI and an interpretation
function ·I that maps individual names to elements in the domain (individual
objects), class names to subsets of the domain, and property names to binary
relations on the domain. The vocabulary N of a DL knowledge base K corres-
pondingly is a tuple {NI , NC , NR} consisting of a set of individual namesNI , a
set of class names NC , and a set of role names NR. To give an example, apply-
ing the interpretation function to an individual o ∈ NI must result in a member
of the domain: oI ∈ ΔI . Similarly, the interpretation of a class C ∈ NC is a sub-
set of the domain (CI ⊆ ΔI), and the interpretation of a property R ∈ NR is a
subset of the set of all possible object pairs in the domain: RI ⊆ ΔI ×ΔI . The
meaning of axioms in a DL knowledge base is given by the relations between
individuals, classes and properties in that knowledge base and correspond-
ing constraints on models. For instance, if A � B (A is a subclass of B), then
AI ⊆ BI for all models of the knowledge base. In fact, this meaning does not
depend on any meaning of objects in the domain, or on which objects make up
the domain. Rather, the meaning of an axiom arises in its relation to the other
axioms in a knowledge base: every DL knowledge base consists at least of the
two classes top (�) and bottom (⊥) which are defined as �I = ΔI and ⊥I = ∅,
respectively. The meaning of a DL knowledge base “derives from features and
relations that are common to all possible models” (Horrocks et al., 2003).

The way in which the semantics of DL axioms is defined has several im-
portant implications. First, and foremost, every assertion in the knowledge
base should be seen as a restriction on the possible models of that knowledge
base. This means, conversely, that even though something might not have been
explicitly stated, it may still be assumed to hold (i.e. be a model of the know-
ledge base). Description logics thus adopt the open world assumption which puts
a rather counter-intuitive spin on negation: an axiom is only ‘false’ iff it has no
model, i.e. that model is not a model of the knowledge base. Negation is there-
fore quite hard to enforce in DL.

A second implication is that there exists no direct link between a knowledge
base and a domain. Although a knowledge base is defined in terms of the
interpretation to the domain, determining adequacy of the knowledge base
can only be determined internally, i.e. by 1) inferring that some axiom can not
have a model (there cannot exist a (set of) objects that can make the axiom true)
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Figure 2.11: Instantiation, individuation and denotation in DL

or by 2) explicit assertions about individuals that relate directly to individual
objects in the domain. Whether the latter relation holds or not is up to an
observer external to the knowledge base. Related to this, is the fact that DLs
do not necessarily adopt the unique name assumption, the assumption that an
individual object is denoted by exactly one individual in the knowledge base:
any number of individuals may share the same model.

As discussed earlier, the balance between computational complexity and
decidability on the one hand, and expressiveness on the other plays a promin-
ent role in description logics research (Baader et al., 2003). As a result, various
description logics can be constructed out of several basic building blocks, for
which the effect on combinations is well known.11 These building blocks each
have an associated letter, the combination of which gives the name of a par-
ticular description logic (see Table 2.4). For example, the DL SHIQ(d) is the
attributive language with complex concept negation, transitive properties, in-
verse properties, qualified cardinality restrictions and datatype properties.

The emphasis on computational efficiency has furthermore lead to a dis-
tinction between axioms in the terminological, role and assertional boxes:

Terminological Box (TBox)
Contains class axioms, the generic concepts of Brachman (1979).

Role Box (RBox)
Contains descriptions of the characteristics of properties and the relations
between them.

11See e.g. the Description Logics Complexity Navigator at http://www.cs.man.ac.uk/
~ezolin/dl/.
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Assertional Box (ABox)
Contains the assertions about individuals, the individual concepts of Bra-
chman (1979).

Although the distinction between these boxes is not formally relevant, sep-
arating the various types of reasoning – classification for the TBox and real-
isation for the ABox – significantly improves reasoner performance (Levesque
and Brachman, 1987). For instance, the use of class axioms such as nominals,
that define a class by enumerating its individual members and thus cross the
boundary between TBox and ABox, can have a remarkable effect on reasoning
time (Klarman et al., 2008).

2.6 Discussion

As the issues raised in this chapter show, knowledge representation is not a
trivial task and from its rise in the late sixties, the field underwent numer-
ous changes. We discussed the computational crisis of uncontrolled logical
inference in theorem proving, the debates on heuristic and epistemological ad-
equacy, the status and psychological plausibility of knowledge representation
languages, the epistemological promiscuity of expert system implementations
and the rise of an engineering perspective on knowledge based systems devel-
opment.

Although the three schools of knowledge representation (Section 2.2) em-
barked on distinct journeys, they each have a distinct role in this knowledge
engineering view. The procedural perspective of production systems allows
to express rational control in knowledge based reasoning, the semantic net-
work paradigm grew into robust languages for expressing domain theories,
and logic returned in full swing as means to define the semantics and guaran-
tee correct inference of implicit knowledge expressed using these languages.

The most important lesson learned is certainly that though human experts
may be very successful in applying highly heterogeneous knowledge, directly
mimicking this human expertise has a serious detrimental effect on know-
ledge based systems development, maintenance and performance. Knowledge
based systems should be specified at the knowledge level. This specification
contains a description of the different types of knowledge involved in the sys-
tem, and how they interact. The most prominent distinction can be made
between the domain theory of a system – what it knows about – and the con-
trol knowledge that expresses the rationale of reasoning over the domain. Con-
trol knowledge consists of a decomposition of tasks and inference types, the
performance of which can be specified by generic problem solving methods. In-
ference types are characterised by an input/output signature and can be im-
plemented by separate knowledge components that have a matching functional
specification. The different types of knowledge in an implemented knowledge
based system operate at different levels: control knowledge is applied at a meta
level with respect to the inferences performed by knowledge components.

The functional specification of knowledge system components is most vi-
gourously adopted by description logics systems, the successors of KL-ONE like
frame-based languages. Description logics are a family of decidable formal
languages designed to express concepts, relations and their instances and are
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thus naturally suited for expressing the domain theory of knowledge based
systems. DL algorithms are optimised for calculating the inferred subsumption
hierarchy, class satisfiability and class membership of instances (realisation).

Description logics research continued throughout the nineties, but played a
relatively modest role until it entered a global stage when DL became the form-
alism of choice for knowledge representation on the Semantic Web (Berners-Lee,
1999). Arguably, the development of a web-based knowledge representation
language is not trivial. Chapter 3 discusses the trade-offs and restrictions im-
posed on languages for the semantic web, and gives an overview of the result-
ing Web Ontology Language (Bechhofer et al., 2004, OWL).

Davis et al. (1993) characterised the domain theory of knowledge based sys-
tems as its ontology, a term that increased in popularity throughout the nineties.
Although the exact meaning of this term is not directly relevant for the discus-
sion of OWL as representation language in Chapter 3, ontologies do have a
specific role to play in knowledge engineering. Chapter 4 discusses the vari-
ous, often confusing, interpretations of what ontologies are, and gives a char-
acterisation of an ontology as knowledge representation artefact.
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Table 2.4: DL abbreviations

Abbreviation Description
AL Attributive Language:

• Atomic negation (negation of concepts that do
not appear on the left hand side of axioms)

• Concept intersection

• Universal restrictions

• Limited existential quantification (restrictions
that only have fillers of owl:Thing)

FL_ A sub-language of AL, without atomic negation
FLo A sub-language of FL_, without limited existential

quantification
C Complex concept negation
S AL and C with transitive properties. In SROIQ:

some additional features related to the RBox
H Role hierarchy (subproperties)
R Limited complex role inclusion axioms; reflexivity

and irreflexivity; role disjointness.
O Nominals, i.e. enumerated classes and object value

restrictions
I Inverse properties
N Cardinality restrictions
Q Qualified cardinality restrctions
F Functional properties
E Full existential quantification
U Concept union
(D) Datatype properties, data values and datatypes

Source: http://en.wikipedia.org/wiki/Description_logic


