Ontology Representation: design patterns and ontologies that make sense

Hoekstra, R.J.

Publication date
2009

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Bibliography

BIBLIOGRAPHY

Lame, G. (2004). Using nlp techniques to identify legal ontology components: Concepts and relations. Artificial Intelligence and Law, This Issue?

Index

CommonKADS, 30, 32
HARNESS, 140
ABox, 36
Ajax, 40
annotation
 axiom, 59
 rich, 59
ASCII, 42
association class, 157
axiom closure, 60, 97
backfiring, 200
Basic English, 88
basic level, 88, 130
basic level primacy, 88
basic notion, 199
basic-level categorisation, 88
BFO, 86
blank node, 53
brute fact, 159
Carneades, 118
causal knowledge, 120
causation, 172
 actual cause, 174
 agent, 174
 interpersonal, 174
 negative, 174
 physical, 174
Class
 anonymous class, 53
 named class, 53
 nominal, 53
 operator, 53
 restriction, 54
CLASSIC, 33, 69
classification, 33
CLIME, 1, 121
 ontology, 121
CLIPS, 29
closed world assumption, 51
cluster, 122
clusters, 87
CommonKADS, 85
CommonLogic, 124
compiled knowledge, 25
conceptual model, 29
conceptual retrieval, 121
conceptualisation, 76
conservative extension, 114
constitutive rule, 159
damage, 191
DAML+OIL, 51, 52, 71
DAML-ONT, 51, 71
DARPA, 51
decidable, 63
default, 17
definitional knowledge, 120
Description Logics, see DL
description logics, 10, 34
design knowledge, 25
design model, 29
design pattern, 81, 109, 200
 content pattern, 113–115, 200
 logical pattern, 113–115, 200
 metaphoric use, 115
 micro pattern, 200
 ontology design pattern, 111, 113
 ontology engineering design pattern, 111
 structure pattern, 115, 200
design stance, 159
INDEX

DIG, 69
DL, 34, 65, 69
 SROIQ, 64
tree model, 64
DLP, 63
DOLCE, 86, 158
domain theory, 26, 30
Dublin Core, 84, 86

E-POWER, 1
epistemic adequacy, 10
epistemological adequacy, 11, 36
epistemological framework, 119
epistemological level, 74
epistemological promiscuity, 81, 124
epistemological status, 118
epistemology, 32
expert system, 14

FACTory, 126
fantology, 73
FOAF, 86
FOL, 34
FOLaw, 119
Frame, 89
frame, 16, 104
 frame based, 16
 frame system, 17
 slot, 17
Frame Language, 33
Frame Ontology, 69
frame problem, 10
framework, 104, 199
 epistemological, 105, 107
 mereological, 106
 situational, 106
functional embodiment, 88
Functional Ontology of Law, see FOLaw

GALEN, 62
Gene Ontology, 61
generic concept inclusion, 144
global restriction, 172
Guidon, 25

heuristic adequacy, 10, 11, 36
HTML, 40, 50
 XHTML, 43
hugecess problem, 30
hybrid system, 11, 19, 33

identity, 102
criteria, 102
import closure, 60
imports closure, 97
Individual, 55
inference knowledge, 31
influence, 175
information processing system, 13
instance, 16
intentional stance, 159
inter lingua, 69
interaction problem, 30, 33, 73, 75, 108
interpretive attachment, 19, 148
IPS, 13, 15
is-a, 16

KA, 28
KADS, 32
KANDOR, 33
KB, 29
KDE, 1
KIF, 50, 69, 124
KL-One, 18, 33
KL-Two, 33
knowledge
 engineering, 199
knowledge acquisition, 28
knowledge acquisition bottleneck, 30, 73, 76, 203
Knowledge Base, 29
knowledge level, 36
knowledge management, 67
knowledge model, 29
knowledge modelling step, 109
knowledge pattern, 112
knowledge representation, 9
knowledge service, 32
KRIS, 34
KRL, 18
KRSS, 51, 69
KRYPTON, 33

LAM, see legal abstract knowledge
language compatibility, 100, 197, 198
legal abstract knowledge, 120
legal argumentation, 119
legal assessment, 119
legal planning, 119
legal qualification, 120, 123
level, level2
 computer system, 21
 conceptual, 23
 epistemological, 23
 implementational, 23
 linguistic, 23
 logical, 23
lex posterior, 119
lex specialis, 119, 121
lex superior, 119
liability, 191
literal
 plain, 44
 typed, 44
LKIF Core, 86, 198
lockdown, 145
LOOM, 33, 69
LRI Core, 127, 133
macro, 200
marker property, 165–170, 179, 180, 192
medium of human expression, 28
memory
 associative memory, 15
 semantic memory, 15
meta-legal knowledge, 119
metaphoric use, 200
middle-out approach, 87, 130
MILE, 121
mismatch
 language, 91
 semantic, 91
model theory, 34, 50
monotonic, 63
morphism, 112
motif, 173
Mycin, 25, 119
n-ary relation, 156
named link, 16
namespace, 42
natural language processing, 40
neats, 10
negation as failure, 51
Newspeak, 88
nominalism, 76
normative knowledge, 119
object oriented programming, 17
observer relative, 102
OCL, 118
OIL, 51, 71
OKBC, 69
ON-LINE, 120
Ontoclean, 198
Ontolingua, 68
ontological commitment, 28, 32, 66, 195
ontological level, 74
ontological status, 66
ontologically objective, 102
ontologically subjective, 102
Ontology, 66
ontology, 32, 37, 66, 195
 application, 93
 core, 93, 199
 domain, 93
 engineering, 199
 extraction, 70
 formal, 197
 foundational, 95, 124
 generic, 93
 knowledge management, 197
 knowledge representation, 78, 195, 197
 learning, 70
 representation, 75, 93
 top, 93
 unified, 94, 126, 127
ontology engineering, 67
ontology interaction problem, 98, 196
open world assumption, 35, 51, 63
OpenCyc, 127
OWL, 37, 39, 52, 65, 71, 82
 EL++, 61
 DL, 52
 Full, 52
 Lite, 52
 OWL 2, 57
 OWL 2 EL, 61
 OWL 2 QL, 62
 OWL 2 RL, 62
 owl:Ontology, 60
 profile, 60
 Punning, 59
 SROIQ, 62

particular, 76
plane, 17
pre-conceptual, 88
problem solving method, 31, 107, 200
procedural attachment, 18, 148
production system, 13
Prolog, 13
Property
abstract role, 57
annotation, 59
asymmetric, 58
chain inclusion, 58
complex, 57, 170
composite, 57
concrete role, 57
datatype property, 57
disjoint, 58
equivalence, 56
functional, 55
inverse functional, 56
irreflexive, 58
object property, 57
owl:differsFrom, 55
owl:equivalentClass, 53
owl:import, 60
owl:inverseOf, 55
owl:sameAs, 55, 64
rdf:Property, 59
reflexive, 58
symmetric, 56
transitive, 56
property inheritance, 16
proportionality, 175
PSM, 31
purpose, 83
RBox, 36
RDF, 43
RDF Schema, 43, 47
rdf:type, 47
RDFS MT, 50
rdfs:Class, 47
rdfs:Datatype, 47
rdfs:Literal, 47
rdfs:Resource, 47
rdfs:subClassOf, 47
rdfs:subPropertyOf, 47, 55
RDFS, 39, see RDF Schema, 52
realism, 72
regulative rule, 159
reification, 45, 157
Resource, 44
responsibility knowledge, 120
restricted language thesis, 33, 51, 198
Restriction
qualified cardinality, 58
Self, 58
reuse, 17
informal, 96
semi formal, 97
rigidity, 74
role inclusion axiom, 164
role limiting, 30, 32
RSS, 84, 86
safe implementation, 114
safe reuse, 172
scope, 83
script, 104
scruffies, 10, 14
semantic network, 15, 41, 47
Semantic Web, 15, 37, 39, 41, 65, 82
layer cake, 41
serialisation, 45
SGML, 42
SHIF(D), 53
SHOE, 50, 70
SHOIN(D), 52
SI-Nets, 18
signature, 112
skeletal model, 30
SKOS, 43, 203
SNOMED-CT, 61
stratification, 92
structural description, 19, 33
structured object, 147
subjective entity, 190
suitability factor, 92
summarisation, 161, 200
SUMO, 86, 124
SUO, 86
surrogate, 28
syllogism, 11
syntactic sugar, 58, 200
task knowledge, 30
taxi logical trap, 89
TBox, 36
theorem proving, 36
Topic Maps, 43
XTM, 43
TopicMaps, 156
TRACS, 120

UML, 43, 118
Unicode, 41
 UTF, 42
Unified Modelling Language, 157
 UML, 70
unique name assumption, 35, 55
unity, 103
universal, 73, 76
URI, 42
 URL, 42
 URN, 42

Web Ontology Language, see OWL,
 see OWL
world knowledge, 120

XML, 42
 XML Schema, 43