A semantic model for complex computer networks: the network description language
van der Ham, J.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction

1.1 Computer Networks .. 1
1.2 e-Science Applications 2
1.3 Hybrid Networking .. 4
1.4 Military Networks .. 5
1.5 Management of Computer Networks 7
1.6 Research Overview ... 8
 1.6.1 Thesis Outline .. 11

I The Network Description Language 13

2 Describing Computer Networks 15

2.1 Introduction .. 15
2.2 Requirements for a Network Model 16
2.3 Information Models ... 17
 2.3.1 Comparing Information Models 20
2.4 Topology Descriptions in Routing Protocols 21
2.5 Data Models .. 22
 2.5.1 Introduction to the Semantic Web 22
 2.5.2 Resource Description Framework 23
 2.5.3 RDF Schemata .. 25
 2.5.4 Distributed Repositories 26
2.5.5 Comparing XML and RDF .. 26
2.6 Conclusion .. 28

3 The Network Description Language 31
3.1 Introduction ... 31
3.2 Terminology for Computer Networks 32
3.3 The Network Description Language 34
3.4 Extending the Network Description Language 38
3.5 The Multi-Layer Network Description Language 41
 3.5.1 NDL Topology Schema .. 41
 3.5.2 NDL Layer Schema ... 43
 3.5.3 NDL Capability Schema 48
 3.5.4 Domain Schema .. 49
 3.5.5 Technology Independence 49
 3.5.6 Comparing NDL and GMPLS 51
3.6 Conclusion .. 52

4 NDL Applications ... 55
4.1 Introduction ... 55
4.2 Network Graph Generation ... 56
4.3 Automatic Generation of Network Descriptions 57
 4.3.1 Topology Generation for TITAAN 59
 4.3.2 Topology Generation from OSPF-TE 59
4.4 Extracting Data from Network Descriptions 60
 4.4.1 Lightpath Planning in SURFnet6 61
 4.4.2 Lightpath Planning in GLIF 62
 4.4.3 Lightpath Monitoring in NetherLight 63
4.5 Python NDL Toolkit ... 65
4.6 Virtual Network Experiments 65
4.7 Conclusion .. 66

II Topology Aggregation in Multi-Domain Networks 69

5 Introduction to Network Topology Aggregation 71
5.1 Introduction ... 71
 5.1.1 Hierarchical Routing ... 72
5.2 Topology Aggregation ... 74
5.3 Performance Evaluation of Topology Aggregation 75
 5.3.1 Performance Evaluation Study by Guo and Matta 75
 5.3.2 Performance Evaluation Study by Awerbuch et al. 76
 5.3.3 Aggregated Topologies in Optical Networks 78
5.4 Summary ... 80

6 Emulations of Aggregated Network Topologies 81
 6.1 Introduction .. 81
 6.2 Aggregation Methods .. 82
 6.2.1 Formal Definitions of Topology Aggregation 83
 6.2.2 Topology Aggregation from NDL Descriptions 85
 6.3 Experimental Setup .. 86
 6.3.1 Generating the Graphs and Pairs 87
 6.3.2 Pathfinding Using Aggregations 88
 6.4 Results of the Emulations 89
 6.4.1 Fit Functions ... 90
 6.4.2 Domain Sizes .. 92
 6.4.3 Results on Inter-Domain Pathfinding 96
 6.5 Discussion and Conclusion 100

7 Summary and Conclusion .. 105
 7.1 The Road Ahead .. 107
 7.1.1 RDF Infrastructure Descriptions 107
 7.1.2 Topology Aggregation 108

A Translation of OSPF to NDL 111

B Translation of OSPF-TE to NDL 121

C List of Abbreviations .. 133

List of Author’s Publications 137

Bibliography .. 139

Summary .. 149

Samenvatting .. 151
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>153</td>
</tr>
</tbody>
</table>