Physiological and genetic studies towards biofuel production in cyanobacteria

Schuurmans, R.M.

Publication date
2017

Document Version
Other version

License
Other

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References


23. de Winder B, Stal LJ, Mur LR. Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly-β-(1, 4) glucan (cellulose). Microbiology. 1990;136: 1645-1653.


References


94. Mulkidjanian AY. Activated Q-cycle as a common mechanism for cytochrome bc(1) and cytochrome b(6)f complexes. Biochimica Et Biophysica Acta-Bioenergetics. 2010;1797: 1858-1868.


References


References


234. Singh AK, Sherman LA. Iron-independent dynamics of IsiA production during the transition to stationary phase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett. 2006;256: 159-164.


293. Habib MAB, Parvin M, Huntington TC, Hasan MR. A review on culture, production and use of spirulina as food for humans and feeds for domestic animals and fish: Food and agriculture organization of the united nations; 2008.


References


