Subsequent detection of three more bursts from FRB 20201124A using the Westerbork-RT1 25-m telescope


Publication date
2022

Document Version
Final published version

Published in
The astronomer's telegram

License
Unspecified

Citation for published version (APA):

Download date: 07 Nov 2022
Subsequent detection of three more bursts from FRB 20201124A using the Westerbork-RT1 25-m telescope

ATel #15192; O. S. Ould-Boukattine (UvA), F. Kirsten (ASTRON, Chalmers), K. Nimmo (ASTRON, UvA), M. P. Snelders (UvA), J. W. T. Hessels (ASTRON, UvA), R. Blaauw (ASTRON), M. Gawronski (NCU, Torun), R. J. van Ruiten (UvA), J. J. Sluman (ASTRON)

on 29 Jan 2022; 13:22 UT

Credential Certification: Franz Kirsten (franz.kirsten@chalmers.se)

Subjects: Radio, Fast Radio Burst

Referred to by ATel #: 15197, 15285

Tweet

Following ATel #15190, we report the subsequent detection of three additional bursts from FRB 20201124A using the Westerbork-RT1 25-m telescope. Observations were done at a central frequency of 1323.49 MHz using a bandwidth of 128 MHz. We use a DM of 410.775 pc cm^-3, as determined in our analysis of bursts discovered using the Onsala telescope (ATel #14605, Kirsten et al., in prep.).

Burst 1:
Fluence: 58 +/- 5 Jy ms
Arrival Time (MJD): 59603.754507227

Burst 2:
Fluence: 37 +/- 5 Jy ms
Arrival Time (MJD): 59603.799227754

Burst 3:
Fluence: >771 +/- 70 Jy ms
Arrival time (MJD): 59605.835730597

Arrival times are referenced to infinite frequency at the solar system barycentre (in TDB) using a DM of 410.775 pc cm^-3 and DM constant 4.14880568679703 GHz^2 cm^3 pc^-1 ms. The fluence of Burst 3 is only a lower limit as we are recording raw voltage data with 2-bit quantisation. This introduces quantisation noise lowering the measured
value compared to the real fluence. This will be corrected for in a forthcoming paper. Likewise, a full spectro-polarimetric analysis at microsecond-resolution will be presented elsewhere.

Bursts 1 and 2 are separated by roughly 1.07 hours in time. Burst 3 was detected in observations taken two days later. We spent 2.5 hours on source in each run, implying burst rates of ~1/hour above our detection limit of ~10 Jy ms.

The subsequent detection of three additional bursts from FRB 20201124A, combined with the single detection on MJD 59602 (ATel #15190), strongly suggests that the source has started a new activity cycle. We therefore encourage follow-up observations at all wavelengths.

Dedispersed plot of the bursts

Telegram Index

R. E. Rutledge, Editor-in-Chief rrutledge@astronomerstelegram.org
Derek Fox, Editor dfox@astronomerstelegram.org

14516 A redshift for the putative host galaxy of FRB20201124A
14515 ASKAP localisation of the FRB 20201124A source
14509 Correction to ATel #14508
14508 A second fast radio burst from the source of FRB 201124A detected by ASKAP
14502 ASKAP detection of a repeat burst from the FRB 20201124A source
14497 Recent high activity from a repeating Fast Radio Burst discovered by CHIME/FRB