Toxicity of coastal waters: use of a quick algal bioassay


Citation for published version (APA):
TU 081
Optimization of the SPE step in the analysis of β-blockers and β-anidrometics in natural water samples by SPE- GC technique
MF Caban, A Michalak, M Ciekrwa, Mwigowska, M Kwiatkowski, P Stepnowski, J Kumiska University of Gdańsk, GDANSK, Poland
Environmental samples, especially sewage and marine-water samples are complex and often contain interfering elements that can mask or interfere with the analysed pharmacuetics. Our group has described the application of different SPE columns in the analysis of β-blockers and β-anidrometics in natural systems and the results are presented in this work.

TU 082
Method development for the determination of neonicotinoids in environmental samples
N G-red1, J M Porcher1, H Budzinski2, S Ait-Aissa1
1INERIS, VEUILLES, FRANCE
2ISPTC, TALENCE, FRANCE
An exact mass determination by an offline HPLC-EI-MS method was developed and applied to environmental samples to determine the presence of neonicotinoids. 

TU 083
Toxicity of coastal waters: use of a quick algal bioassay
MB Sestunski1, P Boon2, J van der Geest1, R Laane3, P Leonard4, LM Louwerse5, W Admiral1, D Tekat6, P de Vos7
1University of Amsterdam, AMSTERDAM, The Netherlands
2Institute for Environmental Studies (IVM), VU University, AMSTERDAM, The Netherlands
3Department of Aquaculture, WAGENINGEN, The Netherlands
4Biodetection Systems, AMSTERDAM, The Netherlands
5NOA-Langs, RIGA, Latvia
6BiotoxLab, PRAGUE, Czech Republic
7London Metropolitan University, LONDON, United Kingdom

Multiple years of sampling in the Dutch coastal waters have shown that a wide variety of anthropogenic chemicals are present in the coastal waters. In this study a combination of the continuous monitoring of algal growth and immediate testing of toxicants on the algal growth in a Toxicity monitoring system will be used to determine the presence of toxicants in coastal waters.

TU 084
Construction of a water toxicity sensor based on luminescent bacteria
M Woutersen1, J Mink1, AP van Wezel1, A van der Gaag2, RS Marks3, P Brouwer4, MB Herings4, R van Wijk5
1Water Research Centre, MARLBOROUGH, UK
2Leibniz Institute of Plant Biochemistry, HALLE, Germany
3UFZ Helmholtz Centre for Environmental Research, LEIPZIG, Germany
42EM Engineering, VELTHOVEN, The Netherlands
5Ben Gurion University of the Negev, BEER SHEVA, Israel

A sensor is being developed that is based on luminescent bacteria to detect toxicants in water. The sensor is based on the quenching of the luminescence of a bacterial strain exposed to water samples.

TU 085
Construction of a water toxicity sensor based on luminescent bacteria
M Woutersen1, A van der Gaag2, RS Marks3, H van der Graaf4, J Mink1, P Brouwer4
1Water Research Centre, MARLBOROUGH, UK
2Leibniz Institute of Plant Biochemistry, HALLE, Germany
3UFZ Helmholtz Centre for Environmental Research, LEIPZIG, Germany
42EM Engineering, VELTHOVEN, The Netherlands

A sensor is being developed that is based on luminescent bacteria to detect toxicants in water. The sensor is based on the quenching of the luminescence of a bacterial strain exposed to water samples.

References: