The sound of sediments: acoustic sensing in uncertain environments
van Leijen, A.V.

Citation for published version (APA):
van Leijen, A. V. (2010). The sound of sediments: acoustic sensing in uncertain environments
Contents

Preface ix

1 Introduction 1
 1.1 Sea bottom characterization 2
 1.2 Geoacoustic inversion 3
 1.2.1 Research challenges 3
 1.2.2 Research questions 4
 1.2.3 Methodology ... 4
 1.3 This thesis .. 5
 1.4 Work not covered in this thesis 6

2 Operational context 9
 2.1 Introduction ... 10
 2.2 Environmental information for naval warfare 10
 2.3 Acoustic sensing in shallow water 12
 2.4 REA as a research project 13
 2.5 Discreet REA .. 13
 2.6 Sound sources of opportunity 14
 2.7 Applications ... 15
 2.7.1 Basic acoustic sensing 15
 2.7.2 Advanced acoustic sensing 16
 2.7.3 Assessment of buried waste 17
 2.8 Conclusions .. 19

3 Acoustic inversion 21
 3.1 Introduction ... 21
 3.1.1 Active and passive sonar 22
3.1.2 The environmental model .. 23
3.2 Inverse acoustic sensing .. 25
3.3 Sound sources of opportunity 26
3.4 Receiving sensors .. 27
3.5 The medium .. 29
 3.5.1 Water column .. 29
 3.5.2 Sea bottom ... 30
 3.5.3 Ambient noise .. 31
3.6 Forward propagation modeling 32
 3.6.1 Ray theory ... 32
 3.6.2 Normal mode theory .. 33
 3.6.3 Parabolic equation models 33
 3.6.4 Criteria for model selection 33
 3.6.5 Available implementations 34
3.7 Objective functions ... 35
 3.7.1 The Bartlett processor 35
 3.7.2 Other processors .. 37
3.8 Optimization .. 37
3.9 Inversion toolbox .. 38
3.10 Conclusions .. 38

4 Geoacoustic inversion using a survey vessel as sound source 39
 4.1 Introduction .. 40
 4.2 Material and methods .. 41
 4.3 The Saba bank .. 42
 4.4 Low frequency measurements and inversion 44
 4.4.1 Geoacoustic inversion setup 45
 4.4.2 Objective function .. 47
 4.5 Results and discussion ... 47
 4.6 Summary and conclusions 50

5 Geoacoustic inversion with an autonomous underwater vehicle 51
 5.1 Introduction .. 51
 5.2 Inversion with AUV self noise 52
 5.3 Concept of inversion with self noise 53
 5.3.1 Error function ... 53
 5.3.2 Movement of the sound source 54
 5.4 AUV experiments .. 55
 5.5 Observations .. 55
 5.5.1 Water column and SVP 55
 5.5.2 Bottom: bathymetry and seismic profiling 55
7.5 Results ... 88
 7.5.1 Tuning results ... 89
 7.5.2 Run length distributions 92
7.6 Discussion .. 93
 7.6.1 Comparison .. 93
 7.6.2 Uncertainty assessment 99
7.7 Conclusions ... 100

8 Conclusions ... 101
 8.1 Introduction .. 101
 8.2 Conclusions ... 101
 8.2.1 Inversion with shipping sounds 102
 8.2.2 Reduction of data volume 102
 8.2.3 Uncertainty assessment 104
 8.2.4 Performance of metaheuristic optimizers 104
 8.3 Applications and future research 105

A Ambient Noise Curves .. 107
B Sound speed equations (in water) 109
C Test functions for tuning 111

Bibliography .. 113

Acronyms ... 125

Summary ... 129

Samenvatting ... 131