Tick-host-Borrelia interaction
Wagemakers, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Propositions based on this thesis:

1. DNA vaccination by intradermal tattoo can protect against *Borrelia afzelii* infection

2. Vaccination against Bm86 homologues does not impair feeding by *Ixodes ricinus*

3. *Ixodes ricinus* salivary proteins can aid *Borrelia burgdorferi* sensu lato to survive at the tick bite site

4. *Borrelia miyamotoi* and *Borrelia burgdorferi* sensu lato have similar vectors, geographic endemicity, risk groups, morphologic appearance and therapies, and although the clinical presentation is distinct, serologic cross-reactivity might occur

5. *Borrelia miyamotoi* infections are currently missed due to a lack of awareness; Diagnostic tests and a prospective clinical study in patients with fever after a tick bite should be performed to assess the incidence of *B. miyamotoi* infection

6. *Borrelia miyamotoi* is able to infect humans due to its resistance to human complement, and relapses can occur due to expression of variable major proteins.

7. Variable major proteins are immunogenic in humans, and might be used to improve serologic diagnosis of *Borrelia miyamotoi* infection