Self-assembly via anisotropic interactions

Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

Newton, A.C.

Publication date
2017

Document Version
Other version

License
Other

Citation for published version (APA):
SELF-ASSEMBLY VIA ANISOTROPIC INTERACTIONS

ARTHUR CECIL NEWTON
Self-assembly via anisotropic interactions

Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces
Promotor: Prof. dr. P. G. Bolhuis
Universiteit van Amsterdam

Copromotor: Prof. dr. P. Schall
Universiteit van Amsterdam

Overige leden:
Prof. dr. W. Kegel
Universiteit Utrecht
Prof. dr. M. Dijkstra
Universiteit Utrecht
Prof. dr. P. R. Ten Wolde
Vrije Universiteit
Prof. dr. D. Bonn
Universiteit van Amsterdam
Prof. dr. A. M. Brouwer
Universiteit van Amsterdam
Prof. dr. E. Meijer
Universiteit van Amsterdam

Faculty of Natural Sciences, Mathematics and Computer Science

The research described in this thesis was carried out at the Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands.

ISBN: 978-94-028-0485-0

The work described in this thesis was financially supported by the Foundation for Fundamental Research on Matter (FOM), which is part of The Netherlands Organisation for Scientific Research (NWO).
Contents

1 Introduction 5

2 Computational methods 19

3 **Modeling critical Casimir force induced self-assembly experiments on colloidal dumbbells** 41

4 **Rotational diffusion affects the self-assembly pathways of patchy particles** 59

5 **The role of multivalency in the self-assembly kinetics of patchy particle complexes** 75

6 **The opposing effects of isotropic and anisotropic attraction on dimerisation kinetics** 89

References 112

List of publications 125

Summary 127

Samenvatting 131

Resúmen 135

Acknowledgements 137