
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Self-assembly via anisotropic interactions
Modeling association kinetics of patchy particle systems and self-assembly induced by critical
Casimir forces
Newton, A.C.

Publication date
2017
Document Version
Other version
License
Other

Link to publication

Citation for published version (APA):
Newton, A. C. (2017). Self-assembly via anisotropic interactions: Modeling association
kinetics of patchy particle systems and self-assembly induced by critical Casimir forces.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:15 May 2021

https://dare.uva.nl/personal/pure/en/publications/selfassembly-via-anisotropic-interactions(df647fba-5dcb-4a42-b2d0-9e09852379f8).html

2 Computational methods

2.1 Ensemble averaging

In statistical thermodynamics a system in the canonical ensemble consists of N
particles in a volume V at a temperature T , where a configuration of all particles
is denoted as x = {r1, r2, ...rN} with ri ∈ R3 the coordinates of the ith particle.
If the particles interact with a pair potential, U(x), the equilibrium probability of
a configuration is given by the Boltzmann weight:

P (x) =
exp (−βU(x))

Z
(2.1)

where β is 1/kBT and the partition function Z =
∫
dx exp (−βU(x)) normalizes

the relative probability, where
∫
dx is a proper integral over every configuration

x. In computer simulation averages can be calculated based on the coordinates of
particles. The ensemble average of an observable, O(x), is given by:

〈O〉 =

∫
dxO(x) exp (−βU(x))∫
dx exp (−βU(x))

(2.2)

The explicit evaluation of the integral is typically not feasible for systems with
a large number of particle due to the huge number of configurations possible.
The same problem underlies the calculation of the free energy, from which all
thermodynamic properties can be determined:

F = −kBT logZ (2.3)

A simple Monte Carlo integration which calculates Eq. 2.2 by generating random
configurations of particles, calculating the corresponding Boltzmann weight and
adding to the running average is extremely inefficient in getting correct results, as
it is extraordinarily more likely to generate configurations with a very low weight
than not.

Instead of generating configurations with uniform probability, configurations
could be generated proportional to their Boltzmann weight. As such, configura-
tions with a high Boltzmann weight would simply occur more frequently during

19

Computational methods

sampling than configurations with a low weight. In doing so, the statistical weight
of each configuration is then taken into account in the generation probability and
therefore ensemble averages can be calculated as unweighted averages:

〈O〉 ≈ 1

m

m∑
k=1

O(xk) (2.4)

where on the right hand side the estimate of the integral as we can compute it in
computer simulations is shown when generating m configurations and computing
the value of O for configuration xk, which is now generated with a probability
proportional to its Boltzmann weight.

Unfortunately, we can not use the same method to calculate F as it explic-
itly depends on the phase space volume. More advanced techniques need to be
employed, such as thermodynamic integration, umbrella sampling, etc. [48].

Below we discuss two techniques which ensure the generation of new configu-
rations with the proper relative Boltzmann weight. One is doing a Monte Carlo
simulation according to the Metropolis algorithm and the other is using Molecular
dynamics.

2.2 Monte Carlo

In the Metropolis Monte Carlo (MC) technique new configurations are not gen-
erated randomly, but are generated according to the relative Boltzmann weight
between old and new configurations. In practice this means that starting from a
given configuration of particles, xo, a trial move is performed which changes the
system to a new configuration, xn. This trial move is rejected or accepted on
the basis that it should preserve the equilibrium distribution once it is reached.
Usually, an even stronger condition, detailed balance, is imposed:

p(xo)T (xo → xn) = p(xn)T (xn → xo) (2.5)

This process is iterated m times, where after m iterations a sufficient number of
configurations is collected. In doing so, we ensure that the most relevant configura-
tions are sampled and from this ensemble of configurations the correct equilibrium
properties are calculated according to Eq. 2.4.

Monte Carlo trial moves

Several Monte Carlo moves are used in the following chapters to sample config-
uration space [48]. As the particles are anisotropic in shape and/or potential,
translational and rotational moves are used. In a translation move we translate
a randomly chosen particle, i, by a random shift in the range of [−δrmax; δrmax].
The probability of accepting the move is:

Pacc(xo → xn) = min [1, exp (−β∆E)] (2.6)

20

where ∆E = E(n) − E(o) is the energy difference between the new and old con-
figuration.

The rotation move is a bit more involved as we need a way to change the
orientation of particles randomly. Rotations of objects could be done via the three
Euler angles. However, when converting the Euler angles to rotation matrices,
they would also require the use of trigonometric functions which are expensive
and not numerically stable. Therefore, we make use of quaternions to represent
the orientation. Quaternions are an extension to complex numbers first described
by William Rowan Hamilton in 1843 and take the form:

q = q0 + q1i+ q2j + q3k (2.7)

where the complex numbers, i, j and k, follow the relation:

i2 = j2 = k2 = ijk = −1 (2.8)

Importantly, if we only use unit length quaternions we can represent quaternions
as rotations. In three dimensions, any rotation of an object can be seen as a single
rotation around an unit axis û over an angle θ. Quaternions can encode this exact
rotation as follows:

q =

q0

q1

q2

q3

 =

cos
(
θ
2

)
ûx sin

(
θ
2

)
ûy sin

(
θ
2

)
ûz sin

(
θ
2

)
 (2.9)

In this case, we also make use of trigonometric functions. It is, however, less
than using Euler angles. To actually rotate the rigid object we could convert the
quaternion into a rotation matrix without the use of trigonometric equations as
follows:

A =

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 (2.10)

and rotate a vector p̂ to p̂′ using p̂′ = Ap̂. Alternatively, we can directly use
the quaternion and rotate the vector p̂ by p̂′ = q̂p̂q̂−1, where q̂−1 is the complex
conjugate of q̂. Note that the vector p̂ first needs to be converted to a quaternion:
p̂ = (0, p̂x, p̂y, p̂z). A random unit quaternion which uniformly samples a sphere
can be generated by randomly choosing an angle θ in range of [0; δθmax] and a
random unit vector û. A rotational move is then performed by again choosing a
random particle, choosing a random orientation and accepting the move according
to Eq. 2.6.

To ensure that configurations decorrelate and the samples become independent,
δr and δθ should be chosen carefully. However, as systems studied here have a low
density, two versions of the rotational and translational moves are used, one with
no limit to δr or δθ and one where the acceptance ratio is somewhere between 0.3
and 0.7.

21

Computational methods

These two moves only change the old configuration to the new one, by changing
only a single particle. If strongly binding particles are considered clusters of differ-
ent sizes are formed quickly. However, the subsequent relaxation of these clusters
is limited by only using single particle moves. In order to get further relaxation,
we also employ moves where not only entire clusters but also parts of clusters are
translated and rotated. In this thesis the cluster move was used as explained in
Ref. [90].

2.3 Molecular dynamics for colloidal particles

Molecular Dynamics is a simulation technique where uncle Isaac Newton’s equa-
tions of motion are solved:

~F = mẍ (2.11)

where ~F = −∂U/∂r. Typically, this would entail the calculation of forces be-
tween each and every particle in the system. However, we make use of effective
potentials where we have integrated out the degrees of freedom of the solvent par-
ticles. To describe Brownian motion which colloidal particles exhibit due to the
now ’disappeared’ solvent molecules, the Langevin equation can be used:

~F − γẋ+
√

2γkBTζ = mẍ (2.12)

where the friction term, γ, is related to the diffusion constant via the Einstein
relation, D = γkBT . The random collisions with the solvent are captured by the
random force, ζ, which satisfies the following relations:

〈ζ(t)〉 = 0

〈ζ(t)ζ(t′)〉 = δ(t− t′)
(2.13)

which is referred to as white noise. Here we further assume that the inertia of
particles is negligible relative to the friction and random forces, i.e. the over-
damped limit, mẍ ≈ 0. This leads to the following equation for over-damped
Langevin dynamics or Brownian Dynamics (BD):

βD~F +
√

2Dζ = ẋ (2.14)

Eq. 2.14 can easily be integrated for isotropic particles, however, for patchy parti-
cles both the position and orientation need to be evolved over time. An elementary
algorithm developed for rigid patchy particles that updates the orientation of par-
ticles by the use of quaternions is described in Ref. [91]. If BD is used, some
potentials, especially when anisotropic are not possible or difficult to convert to
forces. A list of expressions for the calculation of forces and torques is given in
Ref. [92]. However, in this thesis Dynamic Monte Carlo is used to evolve particles
in time.

22

Dynamic Monte Carlo

Dynamic Monte Carlo (DMC) simulations can be used to study dynamics of simple
systems, because in the limit of very small displacements and when no unphysical
moves are used, it is equivalent to Brownian dynamics (BD) [74, 93, 94]. DMC
is, however, easier to implement in the case of patchy particles, especially in the
case of step potentials, lattice models, ’reactive’ patches or other exotic potentials
from which the derivative of the energy is hard to calculate. A disadvantage of
DMC is that collective motion is suppressed if anything but infinitesimal steps are
being used. However, if collective motion is not important then this is no problem.
Additionally, recent DMC methods also incorporate cluster moves in a dynamically
correct way, which makes hierarchical assembly dynamics also possible, in exchange
for a more complex algorithm [74, 93].

In molecular simulation we make use of reduced units, also for time. In BD a
time-step is related to physical time via the diffusion constant at infinite dilution,
D0
T :

∆t =
∆tBDσ2

D0
T

(2.15)

where σ is the diameter of the particle. Therefore, to convert time-steps from
a Brownian Dynamics simulation to physical time, the diffusion constant of the
particles need to be known. In DMC there is no integration cycle with a well
defined time-step, but MC cycles with a given set of displacements. In what
follows, a MC cycle will consist of on average N translations and N rotations, N
being the number of particles. We need to connect the displacements in a MC
cycle to translational and rotational diffusion constants, and thus Brownian time.
To achieve this, we should obtain the ’translational time’, ∆ttrans, and ’rotational
time’, ∆trot, per MC cycle.

A translation move is performed by randomly choosing a shift in position in
a range of [−δr, δr] for each Cartesian axis. We start the derivation by using
the relation between mean square displacement and the unit of time at infinite
dilution, D0

T :

〈∆r2〉
∆t

= 6D0
T (2.16)

The mean square displacement in a single MC cycle is given by:

〈∆r2〉
cycle

=
3

2δr

∫ δr

−δr
r2atrans(r)dr ≈ δr2ātrans (2.17)

where atrans(δr) is the acceptance ratio for translation. Combining equation 2.16
and 2.17 we get the translational time corresponding to a MC cycle:

∆ttrans
cycle

≈ δr2ātrans
6D0

T

(2.18)

A rotational move is performed by choosing a random unit vector and a random

23

Computational methods

angle between [0, δθ]. Just like in Eq. 2.16 the requirement is:

〈∆θ2〉
∆t

= 6D0
R (2.19)

where θ is measured in radians. The mean squared rotational displacement (mrd)
per cycle:

〈∆θ2〉
cycle

=
1

δθ

∫ δθ

0

arot(θ)θ
2dθ ≈ ārotδθ

2

3
(2.20)

The rotational time per cycle is then given by:

∆trot
cycle

=
δθ2ārot
18D0

R

(2.21)

The argument of Romano [94] to bootstrap the algorithm is by saying that
in order for both ’translational and rotational time’ to flow evenly, ∆ttrans and
∆trot per MC cycle have to be equal on average (plus having a high acceptance
probability):

∆ttrans
cycle

=
∆trot
cycle

(2.22)

Using Eq. 2.21 and 2.18 and rearranging, we find that the ratio between δr and
δθ should be:

δr

δθ
= σ

√
ārot
ātrans

f2
SEDT

3DR
(2.23)

In Ref. [94], it is shown that for DMC to correspond to BD, it is necessary
that ārot > 0.7 and ātrans > 0.7. For spherically shaped particles, the Stokes-
Einstein relation between translational and rotational diffusion constants can be
used, D0

R = 3D0
T /σ

2. However, a constant, fSE , is added to the ratio that can
take non-Stokes-Einstein conditions into account:

During the simulation several diagnostics should be checked. For instance the
ratio 〈∆θ2〉/〈∆r2〉 should be equal to the state dependent ratio Dr/Dt in the
diffusive limit. In Ref. [94] it is shown that this ratio is the same for MD and
DMC for several packing fractions.

If one wants to compare simulations to experiments, D0
t and D0

r have to be
known a priori from experiments. In this way the reduced unit of time in simula-
tions can be converted or the experimental values can be converted to Brownian
units.

2.4 Structural and dynamical properties

Both MC and MD (DMC) can be used to obtain thermodynamic properties of the
system by collecting a statistically relevant number of configurations for systems
of anisotropic particles. Here, we discuss radial distribution functions which need
special attention when considering anisotropic particles, and how to calculate the
second virial coefficient for anisotropic particles which gives information about
when particles tend to aggregate into clusters.

24

Radial distribution functions

The radial distribution function or pair correlation function, g(r), gives the prob-
ability of observing a particle at a distance r from a reference particle. There-
fore, it characterizes the local structure around a particle. The g(r) can be mea-
sured experimentally via either neutron and X-ray scattering for molecular fluids
or light-scattering for colloidal suspensions. Furthermore, g(r) is important for
many theories of simple liquids. For isotropic particles and in the low density
limit, g(r) is related to the pair potential U(r) via a simple Boltzmann inversion:
βU(r) = − log(g(r). Therefore, measuring g(r) in experiment can give direct
information on the microscopic interactions between particles.

However, for anisotropic particles this relation naturally does not hold. For
this purpose, we adopt the approach explained in Eq. 1.2. Here a particle is
considered to be a rigid framework made up of different spheres, comparable to
how atoms form a molecule. A radial distribution is then defined where the trivial
neighbor contributions, the contributions from the same ’molecule’, are ignored.
This is called the site-site radial distribution and will be further explained in
chapter 3. The site-site radial distribution is typically used for molecular liquids,
however, in chapter 3 we use this correlation function to characterize the structure
of anisotropically shaped colloids.

Second virial coefficient

Particles interacting with a relatively short ranged isotropic interaction obey a
generalised law of correspondence states (GLCS) which states that thermodynamic
properties of these type of systems are insensitive to details of the potential, but are
only dependent on the density and the second virial coefficient B2. A condition for
this phenomenon to arise is that each bond contributes independently and equally
to the partition function which is usually true for a short ranged interaction, [51].
Conveniently, it is shown that GLCS is also true for particles with anisotropic
interactions [51]. In general, when B2 < −1.5 the system will aggregate [95].
Sometimes B2 can be calculated analytically such as in Ref. [52]. However, it can
also be calculated numerically. The general definition for the virial coefficient in
three dimensions without an assumption about the potential is:

B2 =
1

2

∫ 2π

0

∫ π

0

∫ rc

0

dφdθdRR2 sin(θ)
[
1− eβUeff (R)

]
(2.24)

However, for anisotropic particles we also need to integrate over every possible
orientation:

B2 =
1

2

∫ 2π

0

∫ π

0

∫ rc

0

dφdθdRR2 sin(θ)[
1−

∫ π

0

∫ 2π

0

∫ π

0

∫ 2π

0

dα1dβ1dα2dβ2 sin(α1) sin(α2)eβU(Ω1,Ω2,R)(4π)−2

]
(2.25)

25

Computational methods

where the Euler angles αi and βi properly define every possible orientation of both
particles. Note that symmetry arguments can reduce the number of integrations
necessary, e.g. in the case of anisotropic but linear particles.

Diffusion constants of patchy particles

From MC we can only obtain static properties such as the quantities described
above. However, from MD or DMC we can also calculate dynamic transport
properties related to the diffusion of particles. When considering anisotropic par-
ticles, both translational and rotational diffusion constants are important quanti-
ties. Note that DT and DR are input parameters in Brownian dynamics, but we
need to check whether the implemented dynamics is consistent.

Translational diffusion constant

To calculate the translational diffusion constant, the mean square displacement
(msd) can be measured. The msd grows in time without bound as follows:〈

∆r2(∆t)
〉

=
〈

[r(t+ ∆t)− r(t)]2
〉

(2.26)

where r(t) is the position of the particle at time t. If we take the limit:

lim
∆t→∞

〈
∆r2(∆t)

〉
= 2dDT∆t (2.27)

where d is the number of dimensions. It follows that the translational self-diffusion
constantDT can be easily calculated by taking the slope of the msd in the long time
limit. Note that for particles with anisotropic shape, each cartesian component in
the reference frame can show different diffusion constants which can be taken into
account by using a diffusion tensor with differing diagonal components.

DT can in principle also be calculated from the velocity autocorrelation func-
tion (vacf) using linear response theory via the Green-Kubo relation:

DT =

∫ ∞
0

dτ 〈vx(τ)vx(0)〉 (2.28)

However, as particles considered in this thesis have no inertia and thus no velocity
because they are considered to be completely over-damped (Brownian), the vacf
can not be calculated.

Rotational diffusion constant

The rotational diffusion constant, DR, can be calculated by measuring the mean
square angular displacement, msad, which quantifies the rotational motion of the
unit vector û that defines the orientation of the particle. Rotation of a parti-
cle in a time difference ∆t can be envisioned as the rotation of û by an angle
θrot = arccos (û(t) · û(t+ ∆t)) around a rotation vector defined as the cross prod-
uct urot = û(t)× û(t+ ∆t).

26

If simply the angle is used to construct the msad, the msad will be bound as
particles will eventually have rotated full circle towards the initial orientation û(0),
which would seem as it has returned to the initial orientation. This would limit the
time over which one can measure the msad. To measure a msad which is unbound
just like the msd described above, a more involved calculation is necessary. A
rotational displacement is defined, δφ(t), whose magnitude is given by θrot and
direction is given by urot [96]. The total angular displacement is given by:

φ(t) =

∫ t

0

δφ(t′)dt′ (2.29)

The unbound msad is then given by:〈
∆φ2(∆t)

〉
=
〈
[φ(t+ ∆t)− φ(t)]2

〉
(2.30)

The long time limit is as follows:

lim
∆t→∞

〈
∆φ2(∆t)

〉
= 4DR∆t (2.31)

from which it follows similarly to DT , that DR can be calculated by taking the
slope of the msad even when measured over long times.
Digression :
Note that in Eq. 2.19 d = 3, whereas in Eq. 2.31 d = 2. It depends on how rotation
is actually measured. Rotation can be measured by the diffusion of a rotating unit
vector û which is described by a two-dimensional diffusion on a spherical plane
and it leads to a pre-factor of 4 as in Eq. 2.31. However, if rotation is measured by
the angular displacement we need three dimensions as we have three independent
Euler angles to consider, which leads to a pre-factor of 6 as in Eq. 2.19.

2.5 Simulating self-assembly rare events

Rare events are transitions between stable regions of phase space that are ex-
tremely infrequent due to the presence of large free energy barriers. Typical ex-
amples in chemical physics are the folding of proteins, homogeneous nucleation or
chemical reactions. In self-assembly of patchy particles, transitions between stable
states where particles are clustered can also be viewed as rare events. Due to the
reduction of binding volume for patchy particles relative to isotropic particles, high
binding energies are necessary for stable clusters, which causes unbinding events
to be rare. Moreover, due to the small binding volume, the binding transition of
patchy particles also encounter significant entropic barriers.

Although the ground-state is known to be an ordered structure, a system can
still become kinetically trapped in states where particles are clustered into dis-
ordered aggregates. Therefore, knowing how the dynamics and the interactions
of particles affect the association or dissociation rate constants and transition be-
tween intermediate states becomes important, besides when the thermodynamic
phase behavior is known.

27

Computational methods

However, obtaining accurate (un)binding rate constants is often difficult in sim-
ulations due to the same high free energy barriers that naturally arise in strongly
bound particles. When brute-force simulations are used, a majority of the simula-
tion time is wasted inside the stable state which does not give information about
the transitions. To alleviate this problem of separation of timescales between simu-
lating the particle dynamics and the macroscopic binding rate constants, advanced
path sampling techniques have been developed that bias the sampling of reactive
pathways.

In this section we will discuss what path sampling method is used in this
thesis and technical details concerning the calculation of rate constants and path
densities.

From TPS to SRTIS

A method developed to generate reactive pathways without biasing the dynamics
such as umbrella sampling or metadynamics, is Transition Path Sampling (TPS)
[88, 97–99]. In TPS reactive pathways are generated through a Monte Carlo scheme
which samples the reactive path ensemble between two or multiple states. Similarly
to conventional Monte Carlo, where configurations are visited in proportion to
the Boltzmann distribution, TPS samples reactive pathways according to their
proper weight. The advantage of TPS and related methods is that the entire
unbiased reactive path ensemble can be sampled, from which the mechanism of
otherwise elusive reactive pathways can be analyzed in a statistically meaningful
way. Moreover, a reaction coordinate is not needed, only a definition of states, i.e.
the basins of attraction of a reactant and a product. In principle, also the reaction
rate constant can be calculated via TPS.

After the development of TPS, many advances has been made in the field of
path sampling methods. Transition Interface Sampling (TIS) was introduced as
a more efficient approach to calculate the rate constant between states. It does
so by defining interfaces around states through an order parameter that gives an
indication on the progress of the reaction [100]. The rate constant calculation is
based on the effective positive flux through these dividing surfaces. In TIS, path
ensembles are simulated for each interface separately. These paths no longer only
need to be reactive, but can also consist of A→ A paths. Moreover, in the RETIS
approach the concept of replica exchange was introduced, by allowing neighbouring
interfaces to swap pathways if both pathways obey the conditions imposed by the
interfaces [101–103]. This greatly increased the convergence of the path simulations
as pathways can decorrelate quicker. A disadvantage of RETIS however, is that
the number of interfaces can easily increase to an enormous amount when for
instance multiple states need to be defined, limiting the practical implementation
as all interfaces need to be sampled simultaneously. Recently, the Single Replica
Transition Interface Sampling (SRTIS) method was developed by Du and Bolhuis
[104] where, similar to simulated tempering, only a single replica walks through
all the interfaces set by the multiple state TIS network, in contrast to RETIS
where each interface is sampled individually and simultaneously. As such, the

28

large increase in the number of interfaces is not as much of a problem, as there is
only one single replica in memory. In the following chapters, the SRTIS method
is used to sample path space for different patchy particle systems.

Paths, interfaces and indicator functions

Before continuing on to explain what path moves are actually used and how the
rate constant is calculated, it is convenient to introduce how a path is conceptu-
alised in path sampling.

A path is thought of as a discretized sequence of of configurations, xL =
[x0, x1....xL], where xi are phase space points usually defined by coordinates r
and momenta p of the N -particle system. However, in following chapters the
momenta are left out due to the use of DMC. Each configuration xk is separated
by a time ∆t, such that the total time duration of the path T = L∆t.

An unbiased trajectory xL has probability:

P [xL] = ρ(x0)

L−1∏
i=0

p (xi → xi+1) (2.32)

where ρ(x0) is the steady state distribution for the first configuration of the path,
p (xi → xi+1) is the Markov probability to move from xi to xi+1. Akin to the
Boltzmann probability for configurations, also the path probability is normalized
by a partition function:

Z =

∫
DxLP [xL] (2.33)

where DxL defines a suitable integral over all paths.
In the multiple state TIS framework we define a set S of M states. Each state

I has its own interface set ΛI of m + 1 interfaces, ΛiI , defined through an order
parameter λI(x), where the boundary of interface i of state I is set by λiI . The
boundary of a state is denoted as λ0

I . No interfaces of the same set are allowed to
intersect. However, interfaces that belong to different states of course are allowed
to overlap.

In order to define the path probability for TIS path ensembles it is convenient
to introduce indicator functions which define when a path belongs to the ensemble
of ΛiI :

hiI [x
L] =

1 if x0 ∈ I ∧ xL ∈ S∧
∀{j|0 < j < L} : xj /∈ S∧
∃{j|0 < j < L} : λ(xj) > λiI

0 otherwise

(2.34)

where the third line indicates that there has to exists a slice xj which crosses
interface ΛiI . We then define the path probability to observe a path xL in replica
i as:

PΛi
I

= hiI [x
L]P [xL]/Z (2.35)

29

Computational methods

In this thesis states are defined through the topology of the structure formed,
number of bonds and energy of the system. Interfaces are defined based on the
energy of the system which ensures that paths are biased both radially and orien-
tationally away from stable states, which avoids hysteresis.

Path MC moves

The main path sampling move is the shooting move, where usually from a (ran-
domly) chosen time slice of the current path, a new path is generated. Due to
the stochastic nature of the dynamics the newly generated path will sample a dif-
ferent part of path space. Here a time slice is not chosen randomly, but we use
constrained one-way shooting from the current interface, λiI where the new path
is always accepted as long as it ends up in a stable state [103]. The acceptance
probability of the shooting move is:

Pacc
[
xL(o)→ xL(n)

]
= hiI [x

L] (2.36)

Note that the usual TIS length criterion min
[
1, L

0

Ln

]
does not appear in Eq. 2.36.

This term should be used when the generation probability of a shooting point is
uniform along the path, because then the generation probability is dependent on
the length of the current and new path.

In order to walk through replicas, a replica swap is used, where an attempt is
made to change the sampling from the current interface to a neighbouring interface
which is only possible when the path crosses both interfaces. Naturally, as stable
states are strong attractors, this would lead to oversampling near the state and
undersampling of any pathways that lead far away from state I. Therefore, we
employ a Wang Landau bias on the replica swapping probability to enforce uniform
sampling between replicas [104, 105]:

Pacc(x
L;λiI → λjI) = hjI [x

L] min

[
1,
g(λiI)

g(λjI)

]
(2.37)

where g(λiI) is the density of paths, which is updated upon visiting ΛiI via a scale-
factor fWL which is set to an arbitrary value at the beginning of the simulation.
When during the simulation all replicas have been sampled uniformly within a cer-
tain threshold, fWL is halved until it has converged to a sufficiently low number
[104, 105]. For a converged TIS simulation, g(λI) should become proportional to
the crossing probability, because to obtain uniform sampling over each interface,
the acceptance in Eq. 2.37 should be biased with the ratio of the naturally occur-
ring probability for pathways, which is the ratio of crossing probabilities between
the interfaces to be swapped (see also section 2.5).

To allow exchange between paths starting from different states, a state-swap
move is employed. The current initial state is changed to a different state and the
direction of the path is reversed which is only possible when the path connects

30

I J I J

I JI J I J

I J
shoot

shoot

replica
swap

shoot

replica
swap

state
swap

replica
swap

time
reversal

Figure 2.1: A schematic demonstrating the SRTIS path moves. From top left to
top center: a shooting move is attempted which shoots the current path from the
current interface Λ1

I and eventually also crosses interface Λ2
I . From top center

to top right: as the current path now also crosses Λ2
I , we can swap the current

replica Λ1
I with Λ2

I and start collecting pathways for this path ensemble. From
top right to bottom right: after a shooting attempt and a replica swap, a reactive
path is generated which connects states I and J . From bottom right to bottom
center: a state swap is performed which reverses the direction of the path. Also
the current interface set is changed from ΛI to ΛJ. From here a replica swap can

be performed according to the Wang-Landau bias,
g(λ3

J)

g(λ2
J)

. From bottom center to

bottom left: again a shooting move is performed, and subsequently a time-reversal
which changes the direction of the path.

state I → J with J 6= I. The acceptance probability for the state swap is:

Pacc(x
L;λiI → λjJ) = hjJ [←−x L] min

[
1,N g(λiI)

g(λjJ)

]
(2.38)

where ←−x L is denoted to indicate xL in reverse order, and N is unity if a state
swap is only performed between the same two interfaces λkI and λkJ , and it is the
fraction of the number of replicas of states, mJ

mI
if all interfaces between states are

allowed to swap. Although not commonly used as in most studies all states have
the same number of interfaces, especially when states are nested within interfaces,
it can be advantageous to allow all interfaces to state swap. Note that g(λiI) is
also used for the state swap. This ensures that each replica, across all states is
sampled uniformly.

To randomize within the state, we also employ the so-called minus move [102].
In the minus move, a path is generated that begins at the interface boundary of
Λ1
I and is subsequently evolved within the stable state I instead of away from it.

First of all, this makes sure different exits out of state I are sampled. Second,
these paths can be used to calculate the flux out of state I as shown in Eq. 2.41.

Moreover, in order to achieve further decorrelation between pathways, we also
use the time-reversal move where the order of the path is reversed. Acceptance

31

Computational methods

probability for this move is simple due to the fact that microscopic reversibility
ensures that both directions of paths are equally probable:

Pacc(λ
i
I ; x

L →←−x L]) = hiI [
←−x L] (2.39)

which indicates that only I → I paths are accepted. In Fig. 2.1 a graphical sum-
mary is presented of all the moves. Note that other path moves are also possible,
but these moves are able to efficiently sample the entire path ensemble for self-
assembling systems.
Digression:
Although TIS as described above and used in the following chapters is a very
efficient method to obtain the entire path ensemble between all states, it might
not be the best method in general for studying self-assembly. The main reason is
that self-assembly intrinsically consist of two different types of processes. One is
association where the energy decreases due to bond formation and the other is dis-
sociation where energy increases due to bond breaking. In the TIS setup described
here, we only use one set of interfaces for each state defined by the energy of the
system that can only bias the generation of pathways in one direction of the reac-
tion coordinate, up or down in energy. Therefore, it is not possible to effectively
bias the generation of pathways corresponding to both types of processes. An ob-
vious solution to this setback, is that each state gets two or more sets of interfaces,
each corresponding to a distinct process. Multiple Interface Set TIS (MISTIS) is
designed to handle different sets of interfaces per state [106]. Specifically for self-

P4 P5 P6

associationdissociation

�ass
P5

�diss
P5

Figure 2.2: An example system where MISTIS might be better suited for than
SRTIS with a single set of interfaces. Solid lines are the boundaries of stable state
definitions and dashed lines are interfaces. Here a system, residing in a state where
the largest cluster is made of 5 particles, P5, can transition via dissociation towards,
P4 or via association towards P6. Having two sets of interfaces, one that generates
pathways for dissociation and one that generates pathways for association could
work more efficiently.

assembly transitions, two different interfaces can be defined. One for association,
λassA = min[rcut − dij] where dij are all distances between possible binding sites
and rcut is the distance where two binding sites are considered to be completely
unbound, and where the min function returns the minimum of all pairs. Another
interface set would be for dissociation, λdissA = min[dij]. Now, in contrast to the
TIS setup described above, when the system resides in an intermediate state, both

32

associating and dissociating pathways can be generated, see Fig. 2.2. Note that
the rate constant calculation is a bit more involved than TIS with one interface
set [106].

Rate equation

One of the main reasons to perform a TIS simulation, is that one is interested
in calculating rate constants. From a TIS calculation, the rate constant can be
obtained via [100]:

kIJ = φIP (λ0
J |λ1

I) (2.40)

where the flux, φI , is defined as the number of positive crossings per unit of time
out of the stable state I through the first interface λ1

I and P (λ0
J |λ1

I) is the crossing
probability from the first interface of state I to the first interface of state J , which
can be factorized as P (λ0

J |λ1
I) = P (λmI |λ1

I)P (λ0
J |λmI). The flux is calculated on

the fly as follows:

φI =
(〈
τ0
〉

+
〈
τ1
〉)−1

(2.41)

where
〈
τ0
〉

is the average path-length in the minus interface and
〈
τ1
〉

is the average
path-length from the first interface. Typically, P (λ0

J |λmI) can also be calculated
on the fly from the outermost interface:

P (λ0
J |λmI) =

nIJ(λmI)∑
J nIJ(λmI)

(2.42)

where nIJ(λmI) is the number of pathways from I to J for the outermost interface
λmI and the sum is over all states. Note that both φI and P (λ0J |λmI) could also
efficiently be calculated from a brute force MD run. The crossing probabilities,
P (λmI |λ1I), are usually very small in the case of rare events and therefore, difficult
to obtain via brute-force MD. However, because in TIS crossing histograms are
accumulated for each interface, we can obtain good statistics on the crossing prob-
ability by performing histogram reweighting (WHAM) on the individual crossing
probabilities for every interface which is described next.

Crossing probability and WHAM

Crossing histograms can be constructed by monitoring the maximum order pa-
rameter value a path has reached away from state A as follows:

PA(λ|λi) =

∫
DxLPΛi

A
[xL]H(λmax[xL]− λ) (2.43)

where PΛi
A

[xL] is the probability of a path, xL, when sampling pathways in replica

i, and H(x) is the Heaviside step function.
In order to obtain the full unbiased crossing histogram, each individual crossing

histogram obtained by sampling pathways for each replica ΛiA has to be combined

33

Computational methods

and given its proper weight. This is done via WHAM and the combined crossing
probability is defined as follows:

PA(λ|λ1
A) =

n=1∑
i=1

w̄iAH(λi+1
A − λ)H(λ− λiA)

i∑
j=1

PA(λ|λjA) (2.44)

where w̄iA are given by:

w̄iA =
1∑i

j=1(wjA)−1
(2.45)

where wjA are the optimized WHAM weights for each interface crossing histogram.
Digression :
Now, Eq. 2.45 looks at first sight a bit magical. Why wouldn’t each interface be
given the weight wiA which comes directly from WHAM? It is basically constructed
such, that it avoids over counting of paths.

However, the following simple example might give some more comfort. Imagine
a state A with three interfaces. Imagine the WHAM weights for each interface are
w1
A = 1.0, w2

A = 0.5 and w3
A = 0.1, which according to Eq. 2.45 would lead to

w̄1
A = 1.0, w̄2

A = 1
3 and w̄3

A = 1
13 . If we perform a TIS simulation for this system

and generate a thousand pathways for each replica, we could make the following
histogram which gives the total number of pathways starting from replica Λi (row)
and has crossed replica Λj (column) with j ≥ i, nIJ(λ), which would resemble the
continuous crossing histogram as in Eq. 2.43:

nIJ(λ) Λ1 Λ2 Λ3

Λ1 1000 500 100
Λ2 1000 200
Λ3 1000

Total 1000 1500 1300

As the distribution of pathways from Λ1 represents the distribution of the
natural ensemble, we want the total number of pathways given in the last row
after reweighting to match the distribution of Λ1. If we multiply the weights w̄iA
with nIJ(λ) we obtain precisely that!

However, in the above histogram we did not give a path a particular weight as
a path can belong to all three replicas. It seems more intuitive and clean to assign
a path one certain weight, i.e. it belongs to only one replica. To assign pathways
only one certain weight we histogram the pathways differently (which will also be
used in the Reweighted Path Ensemble below). We will create a histogram where
a path is only assigned to a replica which it has maximally crossed, nIJ(λmax):

nIJ(λmax) Λ1 Λ2 Λ3

Λ1 500 400 100
Λ2 800 200
Λ3 1000

Total 500 1200 1300

34

Mindbogglingly, the same weights w̄iA multiplied with
∑
I∈S nIJ(λmax) also

returns the distribution of Λ1! Note that this reweighting does not depend on
the fact that we have uniformly sampled across each replica, as wiA would scale
accordingly, which becomes important for SRTIS. A more formal proof is given in
Ref. [107].

Reweighted path ensemble

In SRTIS we obtain the Wang-Landau biased path ensemble. To reweight the
path ensemble to match it to the natural path ensemble, i.e. give each sampled
pathway its proper weight, we can use the crossing probabilities obtained from
WHAM [107]. The reweighted path ensemble (RPE) can be calculated as follows:

P[xL] =
∑
I∈S

cI

w1
IP−Λ1

I
[xL] +

n−1∑
j=1

PΛj
I
[xL]W j

I [xL]

 , (2.46)

where P−
Λ1

I
[xL] is the probability to sample path xL in the minus interface, PΛj

I
[xL]

is the probability to obtain path xL while sampling ΛjI , W
j
I [xL] =

∑n−1
i=1 w̄

i
IHiI [xL]

where HiI [xL] is used to select the correct weight w̄iI for a path that has its max-
imum λ between interface j and j + 1: HiI [xL] = H(λmax[xL] − λi)H(λi+1 −
λmax[xL]).

In SRTIS we strive to sample all interfaces across all states uniformly, which is
also done via the WL bias, g(λiI) in the state swap move. To get the proper weight
between states, we use the constants cI . If we would not use any bias for the state
swap, and only allow swaps between replicas ΛmI and ΛmJ , we would obtain the
natural ensemble between these two interfaces, meaning these two interfaces should
have the same weight. We can achieve this by scaling each weight wi,natI = wiI/w

m
I ,

which sets the weight of the outermost interface of each state, wmI , to the same
value. If no bias is used in state swap, cI would not be necessary. However,
we do. For this reason, we should after scaling all weights with wmI , also scale

with g(λmR)/g(λmI) where R is a reference state. Therefore, cI =
g(λm

I)
wm

I g(λ
m
R) . Note

that cI can also be obtained by matching rate constants method described in Ref.
[103]. Via the RPE we can calculate the free energy landscape, path densities and
reactive currents.

Rate calculation nested states

The rate constant calculation for the systems with only two states is given by Eq.
2.40. In a multiple state system, where states can be nested in between interfaces
of other states, Eq. 2.40 is not valid anymore as it assumes that all transitions from
I cross the outermost interface λmI , which is not necessarily the case for systems
which are nested in between interfaces. If Eq. 2.40 is used for states nested within
interfaces, many transitions could be missed in the rate constant calculation, see
Fig. 2.3 for example. One can circumvent this problem by calculating the rate

35

Computational methods

constant via the path-type numbers introduced in ref. [108]. A path-type number
is defined as niIJ(λkI), which is the number of paths in replica i joining states I and
J that have crossed at maximum interface λkI . The superscript indicates that the
paths should obey the condition of replica i in the ensemble. Because we have set
the maximum interface, we can reweight these numbers with the WHAM weights
obtained with the reweighting of the crossing probability as follows:

ñIJ(λkI) = w̄kI

m∑
i=1

niIJ(λkI), (2.47)

where w̄kI =
(∑k

l
1
wl

I

)−1

is the WHAM weight for paths that have crossed inter-

face λkI at maximum (note that also the path-type numbers themselves can be
reweighted, however, this is more difficult and should be the same as the weights
obtained via the crossing probability anyway). Now we have the reweighted num-

I

J�2
I

�4
I

Figure 2.3: When a state J is nested within the interfaces of a state I, reactive
pathways can have different path-types, λkI . The rate constant equation in Eq. 2.40
assumes that every reactive pathway crosses each interface of I and hence, certain
transitions would not be taken into account. Therefore, Eq. 2.49 is the more
general rate equation.

ber of paths that join state I with state J that have crossed interface λkI . Subse-
quently summing over all k replicas gives the reweighted number of paths coming
from state I and ending in state J :

ñIJ =

m∑
k=1

ñIJ(λkI). (2.48)

Because the Wang-Landau scheme biases the simulation to sample all states equally
via the state-swap bias, the path-numbers for each state need to be corrected for
this bias. In an unbiased ensemble there are as many reactive IJ path as JI
paths. Therefore, we split the obtained path-type matrix, ñIJ , into M matrices
and symmetrize the Ith matrix: ñJI = ñIJ and setting all other entries of the Ith
matrix to zero, resulting in M different matrices with only a nonzero Ith row and

36

a nonzero Ith column. Subsequently, all M matrices are joined via WHAM giving
the individual weights for each state (these weights can also be used to calculate
the coefficients, cI , in RPE). This leads to a M ×M transition matrix, ñ∗IJ . Nor-
malizing the matrix with the total numbers of paths going out of a state

∑
J ñ
∗
IJ

and multiplying with the flux gives the generalized rate matrix for multiple state
systems:

kIJ = φI
ñ∗IJ∑
J∈M ñ∗IJ

. (2.49)

Free energy landscape

From the RPE we can calculate the free energy landscape for a chosen set of
collective variables simply by projection:

F (q) = −kBT log p(q) + C

p(q) = C

∫
DxLP[xL]

L∑
k=0

δ[q(xk)− q],
(2.50)

where C is an arbitrary constant, q(xk) are the collective variables at time step
xk and P[xL] is the reweighted path probability as given in Eq. 2.46.

One could histogram all the free energies after the simulation using saved path-
ways after one has obtained the proper weights. However, as every path that has
reached a certain maximum interface based on λmax is reweighted with the same
weight, it is convenient to histogram on the fly for each interface separately, and
subsequently reweight and sum all the histograms. As such, paths do not neces-
sarily need to be stored for subsequent analysis.

Reactive path density

In Eq. 2.50, p(q) gives the probability of each configuration, q(xk). However, the
mechanism of a process can sometimes be obscured by the dominance of certain
metastable configurations. To get more insight into the mechanism, the reactive
path density is useful. We can define two different path densities, per transition
or per state.

The reactive path density for each transition separately is defined as:

nrAB(q) =

∫
DxLP[xL]hA(x0)hB(xL)hq(xL). (2.51)

where hA(x0)hB(xL) picks out all the reactive trajectories between the appropriate
states A and B and hq(xL) is unity if the path visits q.

The reactive path density out of state A is defined as:

nrA(q) =

∫
DxLP[xL]hA(x0)hq(xL). (2.52)

37

Computational methods

where now hA(x0) picks out all reactive trajectories out of state A. The additional
information that this type of path density offers, is that also the relative probability
of reactive pathways out of state A can be seen.

Note that a path density does not add up to unity as the density is not nor-
malized by the number of configurations used to construct the final histogram, but
normalized by the number of paths.

Reactive path current

In self-assembly certain configurations are dead ends, which are still projected in
nr(q). We can also average out these dead ends by calculating the reactive path
current. The reactive path current is defined as follows [109]:

JBU (q) = C

∫
DxLP[xL]hA(x0)hB(xL)

L∑
k=0

δ[q(xk)− q]q̇(xk) (2.53)

where q̇(xk) is the estimated velocity of q: q̇(xk) ≈ q(xk+1)−q(xk−1)
2∆t . This current

has the same properties as the reactive path density, except for the fact that dead
ends are averaged out, which results in the mean direction a path will follow.

Transition Path Theory

From SRTIS we can obtain the full rate matrix, K, between states. However,
essential questions important to understanding self-assembly are not answered
directly by looking at K [110]. How can patchy particles with different initial
configurations find the correct ground state? Through which sequence of interme-
diate states do the building blocks pass through towards the final structure before
possible unbinding? Are there multiple routes possible? What is the overall rate
constant of the process if all possible routes are considered? Transition Path The-
ory (TPT) is a convenient framework designed to help answer these questions.
[109, 110]. Similarly to TIS, TPT requires state space to be separated in states
which specify the (self-assembly) process. Therefore, it seems very suited to use
TPT from TIS results. In what follows we describe a transition from A to B with
possible intermediate states I along the way.

Committor

The starting point in TPT analyses in this thesis usually start from the committor,
q+
i , defined as the probability that the system, currently in i, will reach B before

it reaches A. The commitment probabilities are computed from the transition
matrix, T, where Tij gives the probability to reach j from i within a certain lag
time, τ by solving the following linear set of equations:

q+
i =

∑
k∈B

Tik +
∑
k∈I

Tikq
+
k (2.54)

38

with the committor q+
A = 0 and q+

B = 1 as boundary conditions. We get the
transition matrix from the rate matrix obtained via TIS by T = exp (Kτ).

We can also define the reverse committor probability q−i = 1−q+
i , which is the

probability to reach A before B when currently in i.

Flux through states

As discussed above the question through which sequence of intermediate states do
the building blocks pass through towards the final structure can also be deduced
from TPT. For this purpose we can calculate the fluxes, fij , from which the dom-
inant sequence of states during self-assembly can be deduced. The effective flux
fij is given by:

fij = πiq
−
i Tijq

+
j (2.55)

where πi is the equilibrium population of state i. Note that this definition of
fij still contains all recrossings between intermediate states. To get rid of these
recrossings, we can consider the net flux which will give a more clear picture of
the sequence of states taken in the overall process:

f+
ij = max[0, fij − fji] (2.56)

Note that detailed balance dictates that the net flux for the reverse process is given
by the transpose: f−ji = (f+

ij)T.

Overall rate constant

TPT not only gives information about the mechanism of the process, one can also
calculate the overall rate constant between states considering all possible routes
between A and B. The overall rate constant is given by:

kAB =

∑
J 6=A πATAJq

+
J

τ
∑M
J=0 πJq

−
J

(2.57)

where the denominator is necessary because the numerator does not take into
account the probability of being in a forward A → B transition. Therefore, the
overall rate constant is divided by the probability that the system while being in
any state I was last in A and not in B.

39

