Self-assembly via anisotropic interactions

Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

Newton, A.C.

Publication date
2017

Document Version
Other version

License
Other

Citation for published version (APA):
References


[51] G. Foffi and F. Sciortino, “On the possibility of extending the noro-frenkel
generalized law of correspondent states to nonisotropic patchy interactions,”

with short-ranged strongly directional attraction,” The Journal of chemi-

[53] F. Romano, E. Sanz, and F. Sciortino, “Phase diagram of a tetrahedral
patchy particle model for different interaction ranges,” The Journal of Chem-

[54] F. Romano and F. Sciortino, “Colloidal self-assembly: patchy from the bot-

[55] F. Smallenburg and F. Sciortino, “Liquids more stable than crystals in par-
ticles with limited valence and flexible bonds,” Nature Physics, vol. 9, no. 9,

[56] F. Romano and F. Sciortino, “Patterning symmetry in the rational design

formation in one-patch colloids: low coverage results,” Soft Matter, vol. 9,
no. 9, pp. 2652–2661, 2013.

[58] T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, and F. Sciortino, “Pre-
dicting crystals of janus colloids,” The Journal of chemical physics, vol. 138,
no. 16, p. 164505, 2013.

librium phases of one-patch colloids with short-range attractions,” Soft Mat-

operative polymerization of one-patch colloids,” The Journal of chemical

[61] A. W. Wilber, J. P. Doye, A. A. Louis, E. G. Noya, M. A. Miller, and
P. Wong, “Reversible self-assembly of patchy particles into monodisperse
icosahedral clusters,” The Journal of chemical physics, vol. 127, no. 8,

H. C. Kok, and R. Lyus, “Controlling crystallization and its absence: pro-
teins, colloids and patchy models,” Physical Chemistry Chemical Physics,


