Self-assembly via anisotropic interactions

Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

Newton, A.C.

Publication date
2017

Document Version
Other version

License
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References


[91] I. M. Ilie, W. J. Briels, and W. K. den Otter, “An elementary singularity-
free rotational brownian dynamics algorithm for anisotropic particles,” The

[92] M. P. Allen and G. Germano, “Expressions for forces and torques in molec-
ular simulations using rigid bodies,” Molecular Physics, vol. 104, no. 20-21,

interacting overdamped particles,” Molecular Simulation, vol. 37, no. 7,

[94] F. Romano, C. De Michele, D. Marenduzzo, and E. Sanz, “Monte carlo and
event-driven dynamics of brownian particles with orientational degrees of

[95] G. Vliegenthart and H. N. Lekkerkerker, “Predicting the gas–liquid critical
point from the second virial coefficient,” The Journal of Chemical Physics,

“Decoupling of rotational and translational diffusion in supercooled colloidal
fluids,” Proceedings of the National Academy of Sciences, vol. 109, no. 44,

sampling and the calculation of rate constants,” The Journal of Chemical

[98] C. Dellago, P. G. Bolhuis, and D. Chandler, “Efficient transition path sam-
pling: Application to lennard-jones cluster rearrangements,” The Journal of

[99] P. G. Bolhuis, C. Dellago, and D. Chandler, “Reaction coordinates of
biomolecular isomerization,” Proceedings of the National Academy of Sci-

for the calculation of rate constants,” Journal of Chemical Physics, vol. 118,

methods,” Journal of computational Physics, vol. 205, no. 1, pp. 157–181,
2005.

[102] T. S. van Erp, “Reaction rate calculation by parallel path swapping,” Phys-


