A supersymmetric model for lattice fermions
Huijse, L.

Citation for published version (APA):
Huijse, L. (2010). A supersymmetric model for lattice fermions

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

1 Introduction .. 1
 1.1 Strongly interacting electron systems 1
 1.2 The Hubbard model ... 1
 1.3 Hard-core spinless fermions 2
 1.4 Supersymmetric models for lattice fermions 3
 1.5 This thesis .. 5
 1.6 Outline ... 5

2 A supersymmetric model for lattice fermions 7
 2.1 The model ... 7
 2.1.1 Supersymmetry .. 7
 2.1.2 Witten index ... 8
 2.1.3 Lattice fermions .. 8
 2.1.4 Example: 6-site chain 9
 2.2 Relation to independence complex and (co)homology theory 11
 2.2.1 Independence complex 12
 2.2.2 Cohomology and homology theory 12
 2.2.3 The 'tic-tac-toe' lemma 13
 2.2.4 Examples: 6-site periodic and 4-site open chain 14

3 Superconformal field theory .. 15
 3.1 Continuum theory ... 15
 3.2 Conformal field theory 15
 3.3 $\mathcal{N} = 2$ Superconformal field theory 16
 3.4 Minimal series ... 18
 3.5 Superpartners and Witten index 18
 3.6 Spectral flow ... 20

4 The supersymmetric model on the one dimensional chain 21
 4.1 Introduction .. 21
 4.2 Hamiltonian .. 21
 4.3 Witten index .. 21
 4.3.1 Transfer matrix ... 22
 4.3.2 Ground state momenta 23
 4.4 Cohomology .. 24
 4.5 Bethe Ansatz solution in continuum limit 25
 4.6 Relation to other models 25