Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography – photodiode array – electrospray ionisation mass spectrometer

Han, J.; Wanrooij, J.; van Bommel, M.; Quye, A.

DOI
10.1016/j.chroma.2016.11.044

Publication date
2017

Document Version
Final published version

Published in
Journal of Chromatography A

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):
Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography – photodiode array – electrospray ionisation mass spectrometer

Jing Han a, *, Jantien Wanrooij b, Maarten van Bommel b, c, Anita Quye a

a Centre for Textile Conservation and Technical Art History, School of Cultural and Creative Arts, University of Glasgow, Glasgow G12 8QH, United Kingdom
b Cultural Heritage Agency of the Netherlands, Hobbemastraat 22, 1071 ZC Amsterdam, The Netherlands
c University of Amsterdam, Conservation and Restoration of Cultural Heritage, Johannes Vermeerplein 1, 1071 DV Amsterdam, The Netherlands

A R T I C L E I N F O

Article history:
Received 31 August 2016
Received in revised form 18 November 2016
Accepted 22 November 2016
Available online 23 November 2016

Keywords:
Historical Chinese dyestuffs
Dye components
UHPLC-PDA-ESI–MS
Extraction methods
Textiles
Cultural heritage

A B S T R A C T

This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI–MS) to the chemical characterisation of common textile dyes in ancient China. Three different extraction methods, respectively involving dimethyl sulfoxide (DMSO)-oxalic acid, DMSO and hydrochloric acid, are unprecedentedly applied together to achieve an in-depth understanding of the chemical composition of these dyes. The first LC-PDA-MS database of the chemical composition of common dyes in ancient China has been established. The phenomena of esterification and isomerisation of the dye constituents of gallnut, gardenia and saffron, and the dye composition of acorn cup dyed silk are clarified for the first time. 6-Hydroxyrubriadin and its glycosides are first reported on a dyed sample with Rubia cordifolia from China. UHPLC-PDA-ESI–MS with a C18 BEH shield column shows significant advantages in the separation and identification of similar dye constituents, particularly in the cases of analysing pagoda bud and turmeric dyed sample extracts.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In ancient China colour held an important role, both symbolising social ranking and conveying rich cultural meanings. The identification of dyes on historical Chinese costume and textiles not only reveals how the specific colours of importance were obtained but also assists in determining the provenance and guiding preservation efforts of these costume and textiles. There has been extensive chemical research on historical dyes over the past several decades [1]. In the aspect of Chinese and Asian dyes, research has been carried out to identify historical and archaeological dyes [2–7], and to characterise in detail the chemical composition of dyes of specific groups such as flavonoids, protoberberines and Rubia species [8–11]. However, fundamental research on the detailed chemical characterisation of dyes in ancient China is still very limited. Faced with increasing demands for the robust identification of historical and archaeological dyes, this research investigates the chemical composition of twelve common dyes in ancient China and establishes the first database of their chemical profiles.

Liquid chromatography combined to UV–vis spectrometry and mass spectrometry has increased the capacity to identify chemical substances in different fields [12–14]. The use of UV–vis spectra to identify chemical components has some uncertainties, e.g. UV–vis absorption of chemical components is influenced by the mobile phase, and it is difficult to differentiate components with similar UV–vis absorption due to the lack of fine spectral details. Mass spectrometry analysis provides more detailed molecular structural information, i.e. the mass-to-charge ratio of the fragmental ions of the components, and thus ensures more reliable identification. This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI–MS) to the chemical characterisation of dyes commonly used in ancient China. This methodology utilises the high resolution of UHPLC. Improved separation power is achieved using columns packed with very small particles (1.7 μm diameter) as the stationary phase, allowing the separation of structurally similar components. Moreover, UHPLC-PDA enables a lower limit
of detection (LOD), i.e. the LOD of selected common colourants in historical dyestuffs can be as low as 0.02 µg/ml [15]. This is of great importance for the chemical analysis of cultural heritage objects as the samples are very precious and the amount of sample available for destructive analysis is usually very limited. Combined, the benefits of improved sensitivity and resolution of UHPLC coupled with appropriate columns and detectors prove to be key in helping to distinguish and identify trace components. The result is more comprehensive knowledge of dye compositions, which provides a solid foundation for further investigations into dye sources and dyeing procedures, and the preservation of the dyed textiles.

An improved combination of three extraction methods was used during the sample preparation stage, which involved application of dimethyl sulfoxide (DMSO)-oxalic acid (OA), DMSO and hydrochloric acid (HCl) respectively to dyed silk and dyes, allowing in-depth characterisation of their chemical compositions. DMSO is especially suitable for dyes which bind to the textile fibre via hydrophobic interactions, i.e. vat dyes and direct dyes, while OA and HCl are used to break the metal-dye bond of mordant dyes. DMSO-OA and DMSO are considered mild extraction methods, preserving the sugar bonds of dye components. HCl is considered a harsh method, breaking down the fabric-dye and metal-dye bonds very effectively, but this method also breaks down the sugar bonds and causes possible changes to some components through hydrolysis, decarboxylation and esterification [16].

The chemical characterisation of common historical Chinese dyes greatly enhances the analytical methodologies of identifying dyes on historical and archaeological textiles, and significantly contributes to the better interpretation and preservation of the dyed textiles, including textiles not only from China but also from other geographical areas where similar dyes were used.

2. Materials and methods

2.1. Materials

This research studied twelve common dyes used in ancient China [7]. Most dyes collected to prepare the reference dyed samples are of reliable botanical provenance [17]. Safflower (Carthamus tinctorius L., root), sappanwood (Caesalpinia sp., most likely Caesalpinia sappan L., heartwood and larger branches), gromwell (most likely Lithospermum sp., root), Chinese cork tree (Phellodendron chinense Schneider, bark), turmeric (Curcuma longa L., rhizome), pagoda bud (Styphnolobium japonicum (L.) Schott, bud), gardenia (Gardenia jasminoides f. longicarpa Z. W. Xie & M. Okada, fruit), indigo (Strobilanthes cusia (Nees) Kuntze, Persicaria tinctoria (Aiton) H. Gross, Indigofera tinctoria L. or Isatis tinctoria L., leaf) and gallnut (produced by the insect Melaphis chinensis Bell or M. paitan Tsai et Tang) were purchased in Chinese medicine shops in Angou, Beijing and Shanghai. Acorn cup (Quercus acutissima Carr. or Quercus wutaishanica Mayr.) was collected at Peking University. As there are several similar species to munjeet (Rubia cordifolia L., root, also known as Indian madder) and smoketree (Cotinus coggygria var. chinerea Engl., wood) in China, plant samples of correct species were collected respectively from a hill in Beijing and the botanical garden at the Institute of Medicinal Plant Development, Beijing, by botanists.

Pure chemicals were used as dyeing additives to identify the key components of reference dyes before analysing chemically complex historical dye samples. The chemicals used included aluminium potassium sulphate dodecahydrate and sodium carbonate from Sigma-Aldrich (Dorset, UK); iron (II) sulphate, potassium carbonate, sodium hydroxide and citric acid monohydrate from Acros organics (Geel, Belgium); acetic acid and ethanol from Fisher Scientific (Loughborough, UK); and thiourea dioxide from Fibrecrafts (Guildford, UK).

For sample preparation, DMSO, oxalic acid dihydrate and 37% HCl from Merck-Schuchardt (Hohenbrunn, Germany), and methanol from Sigma-Aldrich (Munich, Germany) were used. For the preparation of eluents for UHPLC analysis, methanol and formic acid from Sigma-Aldrich (Munich, Germany) and deionised water (Millipore Simplicity TM Simpax® 2, R = 18.2 MΩ cm, Ettenleur, The Netherlands) were used.

2.2. Dyeing

Historical Chinese dye recipes, especially those using a single dye, were replicated to dye reference silk samples [7]. Detailed recipes and procedures are presented in Table A1.

2.3. Analytical methods

2.3.1. Extraction

Three different extraction methods (DMSO-OA, DMSO and HCl) were applied to dyed silk and dyes. Since reference materials were used, the sample size was increased to 1 mg so that as many major and minor components as possible could be detected and characterised. Samples from cultural heritage objects can be as light as 50 µg.

2.3.1.1. Extraction method 1. The two-step extraction method using DMSO and oxalic acid was applied to samples from all the dyed silk fabrics and an undyed silk fabric. Approximately 1 mg of dyed silk was weighed with a microbalance and transferred into a 1 ml flat-bottom glass vial. 100 µl of DMSO was added with a micropipette and then the vial was heated at 80 °C for 10 min in a water bath. Next, the DMSO extract was transferred by a micropipette with a disposible tip into a 300 µl vial insert and this extract retained. An aliquot of 0.5 µl of oxalic acid solution (0.5 M oxalic acid/acetone/water/methanol, 1:30:40:30 (v/v/v/v)) was added to the fibre sample remaining in the vial. The sample was heated for a further 15 min at 80 °C in the water bath and then the extract was evaporated to dryness using a gentle nitrogen flow. This dried extract was reconstituted using the first DMSO fraction, thereby combining the extracts from the two steps.

2.3.1.2. Extraction method 2: munjeet. The munjeet dyed silk was extracted with 100 µl methanol hydrochloric acid solution (6N HCl/water/methanol, 1:1:2 (v/v/v)) at 100 °C for 10 min. The sample was then evaporated to dryness and reconstituted with 100 µl DMSO.

2.3.1.3. Extraction method 3: gromwell. The dye components of gromwell were extracted directly from the dye using 100 µl DMSO, heated at 80 °C for 10 min.

The following step of the three extraction methods was to centrifuge the (combined) extracts for 10 min at 2000rpm. The supernatant was transferred into a 250 µl micro-insert vial, with great care taken to avoid transferring any precipitates. These solutions were again centrifuged for 10 min at 2000 rpm to avoid the injection of remaining particles which could block the UHPLC column.

2.3.2. UHPLC analysis

A Waters ACQUITY UPLC H-Class system, composed of a quaternary solvent manager, a sample manager, a column manager and a PDA detector, all controlled by Empower Software, was used for the identification of dye components. A Waters C18 Ethylene Bridged Hybrid (BEH) shield column (150 × 2 mm I.D., particle size 1.7 µm) was installed for separation. A volume of 2 µl was injected
for each analysis. A gradient elution programme published earlier involving water, methanol and formic acid and with the flow rate of 0.2 ml/min was used [15].

2.3.3. PDA detection

UV–vis data from 190 to 800 nm was collected with a resolution of 1.2 nm and the chromatogram was monitored at 254 nm. The characteristic components were identified by means of their UV–vis spectra in combination with their retention time. A UHPLC–PDA software library at the Cultural Heritage Agency of the Netherlands was consulted, which contains more than 100 spectra of reference materials extracted and analysed under exactly the same conditions.

2.3.4. ESI–MS detection

The MS system used was a Micromass QTOF-2 system with an electrospray ionisation ion source inlet, a quadrupole and an orthogonal time-of-flight analyser, controlled by MassLynx NT software. ESI was chosen not only for the ease of coupling with LC, but also because this soft technique minimises fragmentation for targeted molecules and thus is suitable to detect the molecular weight of the analytes [18]. A split was used such that 20% of the effluent was transported to the MS detector while 80% of the effluent was guided through the PDA detector so that both data were obtained simultaneously. A negative ionisation mode was used. The collision energy was 8–10 eV for single MS mode. Source conditions included a capillary voltage of 3.0 kV, a cone voltage of 40 V, a source temperature of 80 °C and a desolvation gas temperature of 150 °C. The nitrogen gas flow rate was set at 120 l/h for cone gas, 90 l/h for nebulizer gas and 120 l/h for desolvation gas. The scan range for
m/z was 0–800, but was adjusted to 0–1100 for the gallnut dried sample. Published MS data of the dyes in the fields of cultural heritage, medicine, food chemistry and forestry science [4,19–21] was consulted for data interpretation.

2.3.5. MS/MS

The collision energy was set first at 80 eV and increased to 160 eV when necessary.

3. Results and discussion

Through UHPLC–PDA–MS analysis, some characteristic components not reported earlier on dyed textiles were clarified, especially for the dyes gallnut, acorn cup, gardenia and munjeet. Components of similar chemical structures showed improved separation and were identified.

3.1. Gallnut

The UHPLC–PDA profile of the extract from the gallnut dried sample (Figs. 1 and C1) shows a series of constituents with similar UV–vis absorption profiles and maximum absorption at around 219 and 277 nm. By consulting the in–house UHPLC–PDA library, gallic acid and ellagic acid were identified.

The MS analytical result (Fig. C1) shows the
m/z values of this series of components increase from 169 to 1243 Da, with intervals of 152 Da in between. Gallnut is mainly composed of gallotannins, i.e. polyphenol molecules formed by the esterification of a central β-d-glucose with surrounding gallic acid units (Fig. 2)[22]. By comparing with published data of the molecular weight of gallotannins from tannic acid and gallnut extracts [20,23], the main components of this sample were respectively identified as gallic acid isomer, trigalloyl glucose, tetragalloyl glucose, pentagalloyl glucose, hexagalloyl glucose and heptagalloyl glucose, and a trace amount of dimer was detected (Table 1 and Fig. 2). Among a large amount of natural plants containing gallotannins, hexagalloyl glucose was only reported to be present in gallnut [24], and thus this component may be used as a marker component for gallnut.

The isomerisation of digalloyl glucose, trigalloyl glucose and tetragalloyl glucose was found. These isomers differ in the position where the galloyl groups are attached with the central β-β-glucose (Fig. 2). The broad peaks of hexagalloyl glucose and heptagalloyl glucose in the chromatogram probably indicate coelution of isomers [26]. No isomer of pentagalloyl glucose was found, probably because the attachment of one galloyl with each of the five hydroxyls of the central β-β-glucose forms the most stable structure. Some other ions were detected, including doubly charged ions of pentagalloyl glucose and heptagalloyl glucose, dehydrated galloyl glucose ions of trigalloyl glucose and pentagalloyl glucose, decaxylated gallic acid monomer ions, and anhydride ellagic acid ions.

The isomerisation and different degrees of esterification of gallotannins in dyed fabrics is clarified for the first time. The in-depth knowledge of gallotannins contained in gallnut dyed fabrics is a good starting point for the identification of dye sources for gallotannins in historical textiles, which is a major group of dye sources for dark shades.

3.2. Acorn cup

By comparing the UHPLC–PDA profile of the extract from the acorn cup dried sample (Fig. C2) with data in the UHPLC library, its two main constituents were identified as ellagic acid and its equivalent. The term ‘equivalent’ in this research refers to an unidentified component with an UV–vis spectrum similar to that of an identified component but with different retention time. It is expected that the chemical structures of the two components are similar, with minor differences probably resulting from connected sugar moieties, esterification, polymerisation or isomerisation. In this case, the detected equivalent of ellagic acid is probably an ellagittannin, i.e. a pentagalloyl glucose with gallic acid units attached, and the gallic acid units connected with each other by oxidation (Fig. B1) [22]. Different oxidation pathways of the gallic acid units, different binding positions of the gallic acid units with the central glucose, etc, result in isomers of ellagittannin [32]. Only one published report elucidated various ellagittannins in acorn cup, including isovalolaginic acid, vescalin, valolaginic acid, vescalan, vescaloninic acid, castalagin and castavaloninic acid [33]. Further investigations are needed to identify the ellagittannin eluting at 7.5 min. In addition, two gallotannins, namely pentagalloyl glucose and hexagalloyl glucose, were identified, as well as a gallotannin dimer which probably co-elutes with the component at 7.5 min, judging from the UV–vis spectrum. This is the first time that the dye composition of acorn cup has been characterised, contributing to the identification of dye sources containing ellagittannins, which is also a major group of dye sources for dark shades.

3.3. Gardenia

The UHPLC–PDA–ESI–MS profiles of the extract from the gardenia dried sample (Figs. 3 and C4) shows that all its major constituents have adjacent maximum absorption at around 426 and 464 nm, and molecular ions at
m/z values of 327, 489, 651 and 813 Da were detected repetitively. By consulting the UHPLC library, crocetin was identified. Gardenia also contains a large number of crocins, which are the glycosyl esters of crocetin. By consulting published data of the
m/z values, UV–vis absorption profiles, eluting sequences and relative amounts of crocins in the commercial extract of Gardenia jasminoides Ellis fruits by HPLC–ESI–MS [21], the main components of the gardenia dried sample extract were tentatively identified (Table 1 and Fig. 3). Molecular ions at
m/z values of 327, 489, 651, 813 and 975 Da were respectively identi-
Fig. 1. UHPLC-PDA chromatogram (monitored at 254 nm) of the gallnut dyed silk extract.

(a) Examples of the isomerisation and esterification of gallotannins. (b) A negative ion mode ESI mass spectrum of trigalloyl glucose for demonstration. The m/z of the molecular ion is 635 Da. The fragment ion at m/z = 465 Da is due to loss of a gallic acid unit (170 Da). (c) The isomerisation and glycosyl esterification of crocin [25].
<table>
<thead>
<tr>
<th>Dye</th>
<th>Retention time (min)</th>
<th>λ_{max} (nm)</th>
<th>$\text{M-}H^-^a$</th>
<th>Component identified</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>gallnut</td>
<td>3.0</td>
<td>219, 271</td>
<td>169, 125</td>
<td>gallic acid</td>
<td>125: loss of $[\text{M-H-CO}_2\text{-}]^-$ (44)</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>216, 277</td>
<td>483</td>
<td>digalloyl glucose</td>
<td>283: possibly ellagic acid anhydride</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>219, 277</td>
<td>635, 465</td>
<td>trigalloyl glucose</td>
<td>465: loss of a gallic acid unit (170)</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>219, 278</td>
<td>787</td>
<td>tetragalloyl glucose</td>
<td>769: loss of a gallic acid unit (170)</td>
</tr>
<tr>
<td></td>
<td>11.8</td>
<td>219, 280</td>
<td>939, 769</td>
<td>pentagalloyl glucose</td>
<td>469: doubly charged ion $[\text{M-2H}]^{2-}$</td>
</tr>
<tr>
<td></td>
<td>13.7</td>
<td>219, 278</td>
<td>1091, 302</td>
<td>hexagalloyl glucose</td>
<td>302: probably ellagic acid coeluting</td>
</tr>
<tr>
<td></td>
<td>14.6</td>
<td>216, 277</td>
<td>1243, 621</td>
<td>heptagalloyl glucose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>621: doubly charged ion $[\text{M-2H}]^{2-}$</td>
</tr>
<tr>
<td>gardenia</td>
<td>14.5</td>
<td>261, 328, 441, 464</td>
<td>975, 813, 651, 327</td>
<td>trans-4-GG-crocin'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>261, 326, 437, 463</td>
<td>975, 651</td>
<td>trans-4-ng-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.7</td>
<td>261, 327, 440, 464</td>
<td>813, 651, 489, 327</td>
<td>trans-3-Gg-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.6</td>
<td>219, 328, 439, 463</td>
<td>975, 489, 327</td>
<td>crocin equivalent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.9</td>
<td>262, 325, 434, 458</td>
<td>975, 651</td>
<td>cis-4-GG-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.4</td>
<td>226, 323, 435, 459</td>
<td>975</td>
<td>cis-4-ng-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.8</td>
<td>261, 325, 434, 459</td>
<td>813, 651</td>
<td>cis-3-Gg-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td>219, 328, 437, 462</td>
<td>813</td>
<td>crocin equivalent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.4</td>
<td>258, 323, 434, 458</td>
<td>651, 327</td>
<td>trans-2-G-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.4</td>
<td>259, 320, 428, 454</td>
<td>651</td>
<td>cis-2-2-gg-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.6</td>
<td>259, 323, 428, 453</td>
<td>651, 489, 327</td>
<td>cis-2-G-crocin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.3</td>
<td>255, 318, 427, 452</td>
<td>327</td>
<td>trans-croctein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.0</td>
<td>257, 318, 421, 445</td>
<td>327</td>
<td>cis-croctin</td>
<td></td>
</tr>
<tr>
<td>munjeet</td>
<td>13.3</td>
<td>265, 404</td>
<td>563</td>
<td>lucidin-3-O-primeveroside</td>
<td>present in the DMSO-OA extract</td>
</tr>
<tr>
<td></td>
<td>17.6</td>
<td>275, 416</td>
<td>577</td>
<td>6-hydroxyrubridin-O-Rha-Glc</td>
<td>DMSO-OA</td>
</tr>
<tr>
<td></td>
<td>18.2</td>
<td>275, 416</td>
<td>619</td>
<td>6-hydroxyrubridin-O-Rha-Glc (an isomer of a small amount)</td>
<td>DMSO-OA</td>
</tr>
<tr>
<td>turmeric</td>
<td>22.8</td>
<td>263, 428</td>
<td>367</td>
<td>curcumin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.5</td>
<td>250, 424</td>
<td>337</td>
<td>desmethoxycurcumin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.3</td>
<td>248, 418</td>
<td>307</td>
<td>bisdesmethoxycurcumin</td>
<td></td>
</tr>
<tr>
<td>pagoda bud</td>
<td>13.6</td>
<td>256, 354</td>
<td>609</td>
<td>rutin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>255, 352</td>
<td>623</td>
<td>isorhamnetin-3-rutinoside</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.4</td>
<td>253, 356</td>
<td>593</td>
<td>kaempferol-3-rutinoside</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.4</td>
<td>255, 371</td>
<td>301</td>
<td>quercetin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.6</td>
<td>253, 371</td>
<td>315</td>
<td>isorhamnetin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.0</td>
<td>265, 366</td>
<td>285</td>
<td>kaempferol</td>
<td></td>
</tr>
<tr>
<td>indigo</td>
<td>6.4</td>
<td>242, 302, 419</td>
<td>146</td>
<td>isatin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>240, 286, 334, 614</td>
<td>261</td>
<td>indigotin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.9</td>
<td>210, 238, 289, 364, 544</td>
<td>261</td>
<td>indirubin</td>
<td></td>
</tr>
<tr>
<td>acorn cup</td>
<td>7.5</td>
<td>220, 251, 374</td>
<td>–</td>
<td>ellagic acid equivalent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>203, 214, 278</td>
<td>see gallnut</td>
<td>pentagalloyl glucose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.6</td>
<td>218, 278</td>
<td>see gallnut</td>
<td>hexagalloyl glucose</td>
<td></td>
</tr>
<tr>
<td>Chinese cork tree</td>
<td>7.8</td>
<td>227, 264, 347, 423</td>
<td>337 (positive mode)</td>
<td>berberine</td>
<td></td>
</tr>
<tr>
<td>smoketree</td>
<td>16.0</td>
<td>209, 364</td>
<td>285</td>
<td>fisetin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.2</td>
<td>203, 257, 398</td>
<td>269</td>
<td>sulfurin</td>
<td></td>
</tr>
<tr>
<td>sappanwood</td>
<td>7.4</td>
<td>203, 287</td>
<td>285</td>
<td>brasillin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>207, 253, 287</td>
<td>–</td>
<td>Type A component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>207, 253, 284</td>
<td>–</td>
<td>Type A component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>202, 294, 451</td>
<td>283</td>
<td>brasilein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>211, 253, 291</td>
<td>–</td>
<td>Type A component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>259, 306, 340</td>
<td>–</td>
<td>Type C component</td>
<td></td>
</tr>
<tr>
<td>safflower</td>
<td>15.3</td>
<td>204, 268</td>
<td>582.5</td>
<td>Ct1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.2</td>
<td>210, 287</td>
<td>582.5</td>
<td>Ct2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td>291</td>
<td>582.5</td>
<td>Ct3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.9</td>
<td>210, 295</td>
<td>582.5</td>
<td>Ct4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>206, 293</td>
<td>–</td>
<td>another Ct component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.4</td>
<td>244, 374, 520</td>
<td>909.5</td>
<td>carthamin</td>
<td></td>
</tr>
<tr>
<td>gromwell</td>
<td>17.3</td>
<td>277, 516</td>
<td>–</td>
<td>shikonin equivalent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.9</td>
<td>277, 516</td>
<td>287</td>
<td>shikonin</td>
<td></td>
</tr>
</tbody>
</table>

a: n= neoplatinanoside; G= gentibioside; g= glucoside.

b: MS data of the main components of acorn cup, Chinese cork tree, smoketree, sappanwood, safflower and gromwell (in italics) was consulted from published articles where ESI–MS, the same method as used in this research, was applied [9,27–31].
fingered as crocin, and crocins with 1, 2, 3 and 4 glucose units. The repetitive detection of these molecular ions results from the loss of glucosyls from the crocin molecular ions, as well as the isomerisation of crocins, due to different distributions of glucosyls on the two ends of crocetin and cis-trans isomerisation (Fig. 2) [21].

Additionally, three chromatographic trends on the eluting sequence of various crocins were found. Firstly, for crocins of the same type of steric configuration (cis or trans), those with more glucosyls elute earlier, because the glucosyls improve the hydrophilicity of the molecules. Secondly, for crocins with the same number of glucosyls, trans-crocins elute earlier than cis-crocins. Thirdly, for crocins with the same number of glucosyls and of the same steric configuration (cis or trans), crocins with glucosyls equally distributed at the two ends elute earlier than crocins with unequally distributed glucosyls, e.g. cis-2gg-crocin elutes earlier than 2G-crocin. The latter two trends are probably because trans-crocins and crocins with equally distributed glucosyls have less steric hindrance than their counterparts, and thus elute earlier. Differences in the UV–vis absorption of cis- and trans- crocins found previously were also confirmed [21]: cis-crocins contain extra characteristic absorption at around 320–325 nm; the maximum absorption of trans-crocins is about 5 nm longer than that of corresponding cis-crocins.

Similar to gardenia, saffron (Crocus sativus), another important yellow dye in parts of Asia and Europe in ancient times, also contains abundant crocetin and crocins [1]. UHPLC-PDA analysis was undertaken on an extract from a silk sample directly dyed by saffron (saffron was purchased from a Chinese medicine shop in Beijing), and its main components were identified as trans-4-GG-crocin, trans-4-ng-crocin, trans-3-Gg-crocin and cis-4-GG-crocin (Figs. 3 and 4).

The cis-trans isomerisation and esterification patterns of crocins in gardenia and saffron dyed silk extracts are clarified for the first time, significantly contributing to the differentiation of the two important dye sources in historical textiles.

3.4. Munjeet

By comparing the UHPLC-PDA profile of the DMSO-OA extract of munjeet (Rubia cordifolia) dyed silk (Figs. 4 (a) and 5) and data in the UHPLC library, lucidin-3-O-primeveroside, purpurin and alizarin were identified. Among the unidentified components, five components share similar UV–vis maximum absorption, four of which are at 275 and 416 nm, and one at 278 and 429 nm (Fig. 5), indicating these components have similar chemical structures, probably an aglycone and its glycosides. To confirm the presence of glycosides and identify these components, hydrochloric acid solvent was applied to sample preparation. Lucidin-3-O-primeveroside and five major components in the DMSO-OA extract disappear in the HCl extract (Figs. 4 (b) and 5), while the amount of a component eluting at 25.7 min in the HCl extract increases dramatically, indicating that this component may be an aglycone and those disappearing in the HCl extract may be its glycosides.

Analytical results by MS show that the m/z value of this component eluting at 25.7 min is 269 Da. Four anthraquinones with the molecular weight of 270 Da have been reported, respectively lucidin, 6-hydroxyrubidian, anthragalol 3-methyl ether and 1,4-dihydroxy-2-hydroxymethyl-anthraquinone [11,34].
consulting chromatographic and spectral information provided by Mouri and Laursen, this component was identified as 6-hydroxyrubiadin (Fig. 5). This was further confirmed by the report of the presence of 6-hydroxyrubiadin and its sugars in Rubia cordifolia from China [35]. The analytical result of this component by MS/MS shows the presence of a fragment at m/z 239 Da. The loss of 39 Da is most likely due to the combined loss of one methoxyl group and one hydroxyl group.

Based on the identification of 6-hydroxyrubiadin and comparing the m/z values of the molecular ions, UV–vis spectra and retention time (Fig C5) with information provided by Mouri and Laursen and published data [24], the other main components were identified, including three 6-hydroxyrubiadin sugars and esters, an isomer, and rubiadin (Table 1). With the current gradient elution programme of water, methanol and formic acid, two main components of munjeet, namely munjistin and pseudopurpurin, both acids, are partly ionised, partly neutral, and thus these peaks do not resolve completely, resulting in broad peaks in the chromatogram.

The finding of 6-hydroxyrubiadin and its derivatives in R. cordifolia from China highlights a potential difference in chemical composition among R. cordifolia from various regions. R. cordifolia distributes over a large range of areas including Africa, tropical Asia, China, Japan and Australia [1]. Chemical characterisation of R. cordifolia from Bhutan, Tanakanao (uncertain in the original report) and Nepal did not show the presence of these components [11], rather, their presence was reported to be characteristic of R. cordifolia var. pratensis (now regarded as a synonym of R. cordifolia), R. akane and R. oncotricha [36–38]. The presence of 6-hydroxyrubiadin and its derivatives in R. cordifolia from China contributes to robust identification of Rubia species and their places
3.5. Turmeric

For the turmeric and pagoda bud dyed silk, the improved methodology resulted in greater chromatographic resolution of their major components. The UHPLC–PDA result of the extract of the turmeric dyed silk shows the presence of three curcuminoids sharing similar UV–vis absorption profiles with minor bathochromic shifts (differences within 10 nm in the maximum absorption wavelength) (Fig. 6). The MS results show that the m/z value of the molecular ions are respectively 367, 337 and 307 Da, with a continual decrease of 30 Da, indicating the loss of a methoxy group. Therefore, the three main components of turmeric were identified as curcumin, desmethoxycurcumin and bisdesmethoxycurcumin (Table 1). These three components usually co-elute in HPLC system because of their highly similar chemical structures [6]. The use of an UHPLC C18 BEH shield column enhances the separation, and thus leads to the identification, of these three components.

3.6. Pagoda bud

The chromatographic result of the extract from the silk sample dyed with pagoda bud shows six main components with maximum absorption at around 255 nm and 351–370 nm (Fig. 7). By consulting the UHPLC library, rutin (also known as quercetin rutinoside), quercetin, isorhamnetin and kaempferol were identified. MS results show that the m/z values of the other two components are 623 and 593 Da, respectively 308 Da more than those of isorhamnetin and kaempferol, indicating that these two components are the rutinosides of the two aglycones (Table 1). The three rutinosides elute earlier because they are more hydrophilic. In addition, the UV–vis absorption maxima of rutinosides shift to shorter wavelengths. In HPLC systems various rutinosides of pagoda bud usually co-elute, and kaempferol and isorhamnetin co-elute [6,9]. This is the first successful separation of these dye components by LC method, offering an analytical methodology for better knowledge of the dye components of pagoda bud in historical textiles.

3.7. Indigo

Although there are no new findings from the analytical results of the samples dyed by the other dyes in this study, for completeness of the database their data is presented. Isatin, indigoindigotin and indirubin were identified in the extract from the indigo dyed sample (Fig. 8). Characteristic constituents in different plant sources for indigo may be used as marker components to differentiate these plant sources [26], which would improve the understanding of indigo dyeing in ancient times. For example, ‘pseudoindirubin’ has been found in dyed samples and may lead to being a marker component for woad (Isatis tinctoria L.) [39], although additional research is required to confirm this hypothesis.

3.8. Chinese cork tree

The main component of the Chinese cork tree dyed sample was identified as berberine (Fig. 9). Small amounts of equivalents of berberine are also present including magnoflorine, phellodendrine,
palmatine and jatrorrhizine [24]. The characteristic alkaloid components and their relative amounts are distinguishing enough to differentiate dye sources of alkaloid in Asia [9].

3.9. Smoketree

The two main dye components of the smoketree dyed sample were identified as sulfuretin and fisetin (Fig. C10). The extremely low peak area ratio of fisetin to sulfuretin (less than 0.1 in this research) in smoketree dyed samples may be characteristic to differentiate smoketree from young fustic (Cotinus coggygria), whose ratio is much higher (approximately 0.5–1.5) [28]. Smoketree also contains several additional compounds including sulfurein and disulfurein [28].

3.10. Sappanwood

The main dye component of sappanwood, brasilein, and its precursor, brasiliin, were identified in the extract from the sappanwood dyed sample (Fig. C11). Brasilein appears as a broad and tailing peak in the chromatogram. Some other brasiliin derivatives and flavonoids identified in previous research may be present as well [1,4]. Several colourless but characteristic components of sappanwood were found, namely Nowik Type A and Type C components, which are relatively lightfast and thus often used as marker components for sappanwood in historical textiles especially when its main dye components are degraded [40].

3.11. Safflower

Carthamin was identified in the extract from the safflower dyed sample (Fig. C12). Four colourless components named as C11–C14 reported in previous research were also detected. Because of their stability to hydrolysis during extraction and their light fastness, these colourless components are used as markers for safflower in historical textiles especially when carthamin is degraded [30].

3.12. Gromwell

Shikonin and its equivalent were identified in the extract from the gromwell dyed sample (Fig. C13). The main dye components in the roots of gromwell are S- and R-enantiomers (namely shikonin and alkannin) [41]. It is impossible to differentiate this pair of enantiomers by UHPLC-PDA-MS because they co-elute and they have no spectral differences [42]. Other analytical techniques like nuclear magnetic resonance have been applied to differentiate and identify various shikonin and alkannin [31,41].

4. Conclusions

This research undertook novel application of UHPLC-PDA-ESI-MS and three different extraction methods to analyse the chemical composition of common dyes in ancient China. The characteristic components of these dyes were identified and an UHPLC-PDA-MS database for historical Chinese dyes was established. The understanding of the chemical composition of these dyes was improved, including the phenomena of esterification and isomerisation of the dye constituents of gallnut, gardenia and safRON; and the dye composition of acorn cup. 6-Hydroxycrubiadi and its glycosides were first reported to be present in Rubia cordifolia dyed sample extracts. These research results form an important foundation for the identification and interpretation of dyes on historical and archaeological Chinese textiles and textiles from other geographical areas where similar dyes were used [7]. Further studies on changes in the composition of these dyes during dyeing and ageing processes will contribute to better identification of dyes. Investigations into the similarities and differences in chemical composition among dyes of the same species but from different regions and among dyes of similar species will enable better identification of provenance of the dye sources and dyed textiles.

The technique of UHPLC, used with a C18 BEH shield column and appropriate PDA and MS detectors, proved its advantage in enhancing the separation effect of similar components and in increasing detection limit, allowing successful identification of dye components, such as the main components of pagoda bud and turmeric, and the trace amounts of crocins present in the gardenia dyed sample extract. This shows the great potential of UHPLC for analysing cultural heritage objects. The combination of different extraction methods also greatly facilitated the identification of dye components.

Acknowledgements

We would like to acknowledge generous financial support from the Textile Conservation Foundation, the Swire Charitable Trust, the Sino-British Fellowship Trust and the Great Britain-China Educational Trust for the doctoral research by Jing Han. We sincerely appreciate the kind help of Art Ness Proano Gaibor (Cultural Heritage Agency of the Netherlands, Amsterdam) with MS analysis, and of Dr Richard Laursen (Boston University, Boston) and Dr Chika Mouri (The Metropolitan Museum of Art, New York) with data interpretation of munjeet. We are very grateful for the help of Dr Guo Baolin, Mr Mi Wanzhong (Institute of Medicinal Plant Development, Beijing) and Miss Lv Shuxian (Peking University Library, Beijing) with collecting reference dyes. We would also like to acknowledge Dr Lucien van Vaalen (independent researcher) for kindly sharing a reference of gromwell. We appreciate the kind support of Dr Smita Odedra (University of Glasgow) with preparation of this manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.chroma.2016.11.044.

References

J. Han, Botanical provenance research of historical chinese dye plants, Econ. Bot. 69 (2015) 230–239.

A.N.P. Gaibor, S. Bracci, M. van Bommel, J. Kirby, D. Peggie, Rare compounds studies in Reseda juteola L. and Rubia tinctorum L., Paper presented at Dyes in History and Archaeology, 31 (2012) 45.

