Collaborative provenance for workflow-driven science and engineering
Altintas, I.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 **Background and Problem Formulation**
 1.1 Scientific Method and The Influence of Technology 1
 1.2 The Need for Collaboration .. 3
 1.3 Problem Statement and Research Contributions 4
 1.3.1 Problem Definition .. 4
 1.3.2 Contributions .. 5
 1.3.3 Research Roadmap .. 6
 1.4 Overview of the Thesis ... 7

2 **Scientific Workflows**
 2.1 Example: Sea Surface Temperature MatchUp Workflow 10
 2.2 Requirements for Scientific Workflows .. 11
 2.3 Life-cycle of Scientific Workflows .. 13
 2.4 Advantages and Limitations of Scientific Workflows 14
 2.5 Scientific Workflow Systems .. 17
 2.5.1 Kepler Scientific Workflow Environment 19
 2.5.2 A Reference Architecture for Scientific Workflow Management Sys-
 tems ... 26
 2.6 Usages and Current Challenges .. 26

3 **Provenance Tracking for Scientific Data and Process**
 3.1 Life-cycle of Scientific Workflow Provenance 31
 3.2 Modeling and Storing Scientific Workflow Provenance 33
 3.2.1 Open Provenance Model ... 34
 3.3 Querying and Browsing Provenance ... 37
 3.3.1 Query Language for Provenance .. 38
 3.4 Comparing Different Scientific Workflow Provenance Approaches 38

4 **Scientific Research and Collaboration Environments**
 4.1 Virtual Laboratories .. 42
 4.1.1 Virolab ... 42
CONTENTS

7.2.2 Answering Example Queries ... 89

8 Collaborative Provenance Database Implementation and Evaluation 97
8.1 Database Implementation .. 97
 8.1.1 CAMERA Workflows and Provenance Database 97
 8.1.2 Preparation of Collaborative Provenance Experimental Dataset ... 98
 8.1.3 Implementation ... 101
8.2 Evaluation ... 101

9 Addressing Interoperability in Collaborative Provenance 109
 9.1 Interoperability of Scientific Workflows and Their Provenance .. 109
 9.2 Interoperability Scenarios based on Provenance Challenges 110
 9.2.1 PC3 Usecase ... 111
 9.2.2 PC1 Usecase ... 112
 9.3 QLP-based Interoperable Query Framework for Provenance 114

10 Conclusions and Future Directions 117
 10.1 Summary of Contributions .. 117
 10.2 Possible Extensions to the Model 119
 10.3 Future Directions ... 119
 10.3.1 Interoperable Collaborative Provenance 119
 10.3.2 OPM Profile for Collaborative Provenance 120
 10.3.3 Restricted User Spaces 120
 10.3.4 Optimization of Collaborative Query Evaluation and Visualization . 120
 10.3.5 Semantic Collaborative Provenance Analysis using RDF 121
 10.3.6 Social Network Analysis using Collaborative Provenance 121
 10.3.7 Going Beyond Scientific Workflows and Data 121

List of Figures .. 123

List of Tables ... 127

Bibliography ... 129

Samenvatting (Dutch Summary) ... 143