Collaborative provenance for workflow-driven science and engineering

Altıntaş, İ.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Background and Problem Formulation ... 1
 1.1 Scientific Method and The Influence of Technology 1
 1.2 The Need for Collaboration .. 3
 1.3 Problem Statement and Research Contributions 4
 1.3.1 Problem Definition .. 4
 1.3.2 Contributions ... 5
 1.3.3 Research Roadmap .. 6
 1.4 Overview of the Thesis ... 7

2 Scientific Workflows .. 9
 2.1 Example: Sea Surface Temperature MatchUp Workflow 10
 2.2 Requirements for Scientific Workflows 11
 2.3 Life-cycle of Scientific Workflows 13
 2.4 Advantages and Limitations of Scientific Workflows 14
 2.5 Scientific Workflow Systems ... 17
 2.5.1 Kepler Scientific Workflow Environment 19
 2.5.2 A Reference Architecture for Scientific Workflow Management Systems ... 26
 2.6 Usages and Current Challenges .. 26

3 Provenance Tracking for Scientific Data and Process 29
 3.1 Life-cycle of Scientific Workflow Provenance 31
 3.2 Modeling and Storing Scientific Workflow Provenance 33
 3.2.1 Open Provenance Model .. 34
 3.3 Querying and Browsing Provenance 37
 3.3.1 Query Language for Provenance 38
 3.4 Comparing Different Scientific Workflow Provenance Approaches .. 38

4 Scientific Research and Collaboration Environments 41
 4.1 Virtual Laboratories ... 42
 4.1.1 Virolab .. 42
4.1.2 The Virtual Laboratory for e-Science 42
4.2 Scientific Portals .. 43
4.2.1 Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis 43
4.2.2 The Geosciences Network 46
4.3 Social Networking and Sharing Environments 47
4.3.1 myExperiment .. 47
4.3.2 crowdLabs .. 48

5 Collaborative Provenance: A Definition 49
5.1 Collaborative Provenance ... 49
5.2 Collaborative Scenario .. 50
5.3 Building Collaborative Provenance Views 53
5.4 Analyzing User Collaborations 54
5.4.1 Nature of Collaboration 55
5.4.2 Weight of Collaboration 55
5.4.3 Self Collaboration .. 57
5.5 Combining User Collaborations Attributes 57
5.6 Example Collaborative Query Use cases 60
5.6.1 Acknowledgement List for Collaborators 60
5.6.2 Usage Trail of a Data Artifact 61
5.7 Advantages of the Collaborative Provenance Approach 62

6 Modeling and Querying Collaborative Provenance 63
6.1 Collaborative Provenance Schema 63
6.2 Motivating Use case Schema 65
6.3 Generating Collaborative Provenance Views 65
6.3.1 Data Dependency View 66
6.3.2 Run Dependency View 67
6.3.3 User Collaboration View 69
6.3.4 Querying for Combinations of Collaborative Attributes ... 73
6.4 Expressing Collaborative Queries in QLP 74
6.4.1 Filtering Collaborative Provenance Views using QLP 76
6.5 Relation Between the Collaborative Model and OPM 77

7 Collaborative Provenance Use cases 81
7.1 Virolab Virtual Patient Experiment Scenario 81
7.1.1 Components of the Virtual Patient Experiment 81
7.1.2 Collaborative Provenance for VPE 83
7.2 Collaborative Metagenomics in CAMERA 86
7.2.1 Scientific Workflow-Driven Science in CAMERA 86
8 Collaborative Provenance Database Implementation and Evaluation

8.1 Database Implementation
- CAMER A Workflows and Provenance Database
- Preparation of Collaborative Provenance Experimental Dataset
- Implementation

8.2 Evaluation

9 Addressing Interoperability in Collaborative Provenance

9.1 Interoperability of Scientific Workflows and Their Provenance
9.2 Interoperability Scenarios based on Provenance Challenges
- PC3 Use case
- PC1 Use case

9.3 QLP-based Interoperable Query Framework for Provenance

10 Conclusions and Future Directions

10.1 Summary of Contributions
10.2 Possible Extensions to the Model
10.3 Future Directions
- Interoperable Collaborative Provenance
- OPM Profile for Collaborative Provenance
- Restricted User Spaces
- Optimization of Collaborative Query Evaluation and Visualization
- Semantic Collaborative Provenance Analysis using RDF
- Social Network Analysis using Collaborative Provenance
- Going Beyond Scientific Workflows and Data

List of Figures

List of Tables

Bibliography

Samenvatting (Dutch Summary)